/** * meshoptimizer - version 0.18 * * Copyright (C) 2016-2022, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com) * Report bugs and download new versions at https://github.com/zeux/meshoptimizer * * This library is distributed under the MIT License. See notice at the end of this file. */ #pragma once #include <assert.h> #include <stddef.h> /* Version macro; major * 1000 + minor * 10 + patch */ #define MESHOPTIMIZER_VERSION 180 /* 0.18 */ /* If no API is defined, assume default */ #ifndef MESHOPTIMIZER_API #define MESHOPTIMIZER_API #endif /* Set the calling-convention for alloc/dealloc function pointers */ #ifndef MESHOPTIMIZER_ALLOC_CALLCONV #ifdef _MSC_VER #define MESHOPTIMIZER_ALLOC_CALLCONV __cdecl #else #define MESHOPTIMIZER_ALLOC_CALLCONV #endif #endif /* Experimental APIs have unstable interface and might have implementation that's not fully tested or optimized */ #define MESHOPTIMIZER_EXPERIMENTAL MESHOPTIMIZER_API /* C interface */ #ifdef __cplusplus extern "C" { #endif /** * Vertex attribute stream * Each element takes size bytes, beginning at data, with stride controlling the spacing between successive elements (stride >= size). */ struct meshopt_Stream { const void* data; size_t size; size_t stride; }; /** * Generates a vertex remap table from the vertex buffer and an optional index buffer and returns number of unique vertices * As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence. * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer. * Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized. * * destination must contain enough space for the resulting remap table (vertex_count elements) * indices can be NULL if the input is unindexed */ MESHOPTIMIZER_API size_t meshopt_generateVertexRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); /** * Generates a vertex remap table from multiple vertex streams and an optional index buffer and returns number of unique vertices * As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence. * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer. * To remap vertex buffers, you will need to call meshopt_remapVertexBuffer for each vertex stream. * Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized. * * destination must contain enough space for the resulting remap table (vertex_count elements) * indices can be NULL if the input is unindexed */ MESHOPTIMIZER_API size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count); /** * Generates vertex buffer from the source vertex buffer and remap table generated by meshopt_generateVertexRemap * * destination must contain enough space for the resulting vertex buffer (unique_vertex_count elements, returned by meshopt_generateVertexRemap) * vertex_count should be the initial vertex count and not the value returned by meshopt_generateVertexRemap */ MESHOPTIMIZER_API void meshopt_remapVertexBuffer(void* destination, const void* vertices, size_t vertex_count, size_t vertex_size, const unsigned int* remap); /** * Generate index buffer from the source index buffer and remap table generated by meshopt_generateVertexRemap * * destination must contain enough space for the resulting index buffer (index_count elements) * indices can be NULL if the input is unindexed */ MESHOPTIMIZER_API void meshopt_remapIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const unsigned int* remap); /** * Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary * All vertices that are binary equivalent (wrt first vertex_size bytes) map to the first vertex in the original vertex buffer. * This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering. * Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized. * * destination must contain enough space for the resulting index buffer (index_count elements) */ MESHOPTIMIZER_API void meshopt_generateShadowIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride); /** * Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary * All vertices that are binary equivalent (wrt specified streams) map to the first vertex in the original vertex buffer. * This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering. * Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized. * * destination must contain enough space for the resulting index buffer (index_count elements) */ MESHOPTIMIZER_API void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count); /** * Generate index buffer that can be used as a geometry shader input with triangle adjacency topology * Each triangle is converted into a 6-vertex patch with the following layout: * - 0, 2, 4: original triangle vertices * - 1, 3, 5: vertices adjacent to edges 02, 24 and 40 * The resulting patch can be rendered with geometry shaders using e.g. VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY. * This can be used to implement algorithms like silhouette detection/expansion and other forms of GS-driven rendering. * * destination must contain enough space for the resulting index buffer (index_count*2 elements) * vertex_positions should have float3 position in the first 12 bytes of each vertex */ MESHOPTIMIZER_API void meshopt_generateAdjacencyIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); /** * Generate index buffer that can be used for PN-AEN tessellation with crack-free displacement * Each triangle is converted into a 12-vertex patch with the following layout: * - 0, 1, 2: original triangle vertices * - 3, 4: opposing edge for edge 0, 1 * - 5, 6: opposing edge for edge 1, 2 * - 7, 8: opposing edge for edge 2, 0 * - 9, 10, 11: dominant vertices for corners 0, 1, 2 * The resulting patch can be rendered with hardware tessellation using PN-AEN and displacement mapping. * See "Tessellation on Any Budget" (John McDonald, GDC 2011) for implementation details. * * destination must contain enough space for the resulting index buffer (index_count*4 elements) * vertex_positions should have float3 position in the first 12 bytes of each vertex */ MESHOPTIMIZER_API void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); /** * Vertex transform cache optimizer * Reorders indices to reduce the number of GPU vertex shader invocations * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. * * destination must contain enough space for the resulting index buffer (index_count elements) */ MESHOPTIMIZER_API void meshopt_optimizeVertexCache(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); /** * Vertex transform cache optimizer for strip-like caches * Produces inferior results to meshopt_optimizeVertexCache from the GPU vertex cache perspective * However, the resulting index order is more optimal if the goal is to reduce the triangle strip length or improve compression efficiency * * destination must contain enough space for the resulting index buffer (index_count elements) */ MESHOPTIMIZER_API void meshopt_optimizeVertexCacheStrip(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); /** * Vertex transform cache optimizer for FIFO caches * Reorders indices to reduce the number of GPU vertex shader invocations * Generally takes ~3x less time to optimize meshes but produces inferior results compared to meshopt_optimizeVertexCache * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. * * destination must contain enough space for the resulting index buffer (index_count elements) * cache_size should be less than the actual GPU cache size to avoid cache thrashing */ MESHOPTIMIZER_API void meshopt_optimizeVertexCacheFifo(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size); /** * Overdraw optimizer * Reorders indices to reduce the number of GPU vertex shader invocations and the pixel overdraw * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. * * destination must contain enough space for the resulting index buffer (index_count elements) * indices must contain index data that is the result of meshopt_optimizeVertexCache (*not* the original mesh indices!) * vertex_positions should have float3 position in the first 12 bytes of each vertex * threshold indicates how much the overdraw optimizer can degrade vertex cache efficiency (1.05 = up to 5%) to reduce overdraw more efficiently */ MESHOPTIMIZER_API void meshopt_optimizeOverdraw(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold); /** * Vertex fetch cache optimizer * Reorders vertices and changes indices to reduce the amount of GPU memory fetches during vertex processing * Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused * This functions works for a single vertex stream; for multiple vertex streams, use meshopt_optimizeVertexFetchRemap + meshopt_remapVertexBuffer for each stream. * * destination must contain enough space for the resulting vertex buffer (vertex_count elements) * indices is used both as an input and as an output index buffer */ MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetch(void* destination, unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); /** * Vertex fetch cache optimizer * Generates vertex remap to reduce the amount of GPU memory fetches during vertex processing * Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused * The resulting remap table should be used to reorder vertex/index buffers using meshopt_remapVertexBuffer/meshopt_remapIndexBuffer * * destination must contain enough space for the resulting remap table (vertex_count elements) */ MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); /** * Index buffer encoder * Encodes index data into an array of bytes that is generally much smaller (<1.5 bytes/triangle) and compresses better (<1 bytes/triangle) compared to original. * Input index buffer must represent a triangle list. * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space * For maximum efficiency the index buffer being encoded has to be optimized for vertex cache and vertex fetch first. * * buffer must contain enough space for the encoded index buffer (use meshopt_encodeIndexBufferBound to compute worst case size) */ MESHOPTIMIZER_API size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count); MESHOPTIMIZER_API size_t meshopt_encodeIndexBufferBound(size_t index_count, size_t vertex_count); /** * Set index encoder format version * version must specify the data format version to encode; valid values are 0 (decodable by all library versions) and 1 (decodable by 0.14+) */ MESHOPTIMIZER_API void meshopt_encodeIndexVersion(int version); /** * Index buffer decoder * Decodes index data from an array of bytes generated by meshopt_encodeIndexBuffer * Returns 0 if decoding was successful, and an error code otherwise * The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices). * * destination must contain enough space for the resulting index buffer (index_count elements) */ MESHOPTIMIZER_API int meshopt_decodeIndexBuffer(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size); /** * Index sequence encoder * Encodes index sequence into an array of bytes that is generally smaller and compresses better compared to original. * Input index sequence can represent arbitrary topology; for triangle lists meshopt_encodeIndexBuffer is likely to be better. * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space * * buffer must contain enough space for the encoded index sequence (use meshopt_encodeIndexSequenceBound to compute worst case size) */ MESHOPTIMIZER_API size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count); MESHOPTIMIZER_API size_t meshopt_encodeIndexSequenceBound(size_t index_count, size_t vertex_count); /** * Index sequence decoder * Decodes index data from an array of bytes generated by meshopt_encodeIndexSequence * Returns 0 if decoding was successful, and an error code otherwise * The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices). * * destination must contain enough space for the resulting index sequence (index_count elements) */ MESHOPTIMIZER_API int meshopt_decodeIndexSequence(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size); /** * Vertex buffer encoder * Encodes vertex data into an array of bytes that is generally smaller and compresses better compared to original. * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space * This function works for a single vertex stream; for multiple vertex streams, call meshopt_encodeVertexBuffer for each stream. * Note that all vertex_size bytes of each vertex are encoded verbatim, including padding which should be zero-initialized. * * buffer must contain enough space for the encoded vertex buffer (use meshopt_encodeVertexBufferBound to compute worst case size) */ MESHOPTIMIZER_API size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size); MESHOPTIMIZER_API size_t meshopt_encodeVertexBufferBound(size_t vertex_count, size_t vertex_size); /** * Set vertex encoder format version * version must specify the data format version to encode; valid values are 0 (decodable by all library versions) */ MESHOPTIMIZER_API void meshopt_encodeVertexVersion(int version); /** * Vertex buffer decoder * Decodes vertex data from an array of bytes generated by meshopt_encodeVertexBuffer * Returns 0 if decoding was successful, and an error code otherwise * The decoder is safe to use for untrusted input, but it may produce garbage data. * * destination must contain enough space for the resulting vertex buffer (vertex_count * vertex_size bytes) */ MESHOPTIMIZER_API int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size); /** * Vertex buffer filters * These functions can be used to filter output of meshopt_decodeVertexBuffer in-place. * * meshopt_decodeFilterOct decodes octahedral encoding of a unit vector with K-bit (K <= 16) signed X/Y as an input; Z must store 1.0f. * Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. W is preserved as is. * * meshopt_decodeFilterQuat decodes 3-component quaternion encoding with K-bit (4 <= K <= 16) component encoding and a 2-bit component index indicating which component to reconstruct. * Each component is stored as an 16-bit integer; stride must be equal to 8. * * meshopt_decodeFilterExp decodes exponential encoding of floating-point data with 8-bit exponent and 24-bit integer mantissa as 2^E*M. * Each 32-bit component is decoded in isolation; stride must be divisible by 4. */ MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterOct(void* buffer, size_t count, size_t stride); MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterQuat(void* buffer, size_t count, size_t stride); MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterExp(void* buffer, size_t count, size_t stride); /** * Vertex buffer filter encoders * These functions can be used to encode data in a format that meshopt_decodeFilter can decode * * meshopt_encodeFilterOct encodes unit vectors with K-bit (K <= 16) signed X/Y as an output. * Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. W is preserved as is. * Input data must contain 4 floats for every vector (count*4 total). * * meshopt_encodeFilterQuat encodes unit quaternions with K-bit (4 <= K <= 16) component encoding. * Each component is stored as an 16-bit integer; stride must be equal to 8. * Input data must contain 4 floats for every quaternion (count*4 total). * * meshopt_encodeFilterExp encodes arbitrary (finite) floating-point data with 8-bit exponent and K-bit integer mantissa (1 <= K <= 24). * Mantissa is shared between all components of a given vector as defined by stride; stride must be divisible by 4. * Input data must contain stride/4 floats for every vector (count*stride/4 total). * When individual (scalar) encoding is desired, simply pass stride=4 and adjust count accordingly. */ MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterOct(void* destination, size_t count, size_t stride, int bits, const float* data); MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterQuat(void* destination, size_t count, size_t stride, int bits, const float* data); MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterExp(void* destination, size_t count, size_t stride, int bits, const float* data); /** * Simplification options */ enum { /* Do not move vertices that are located on the topological border (vertices on triangle edges that don't have a paired triangle). Useful for simplifying portions of the larger mesh. */ meshopt_SimplifyLockBorder = 1 << 0, }; /** * Experimental: Mesh simplifier with attribute metric; attributes follow xyz position data atm (vertex data must contain 3 + attribute_count floats per vertex) */ MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_data, size_t vertex_count, size_t vertex_stride, size_t target_index_count, float target_error, unsigned int options, float* result_error, const float* attributes, const float* attribute_weights, size_t attribute_count); /** * Mesh simplifier * Reduces the number of triangles in the mesh, attempting to preserve mesh appearance as much as possible * The algorithm tries to preserve mesh topology and can stop short of the target goal based on topology constraints or target error. * If not all attributes from the input mesh are required, it's recommended to reindex the mesh using meshopt_generateShadowIndexBuffer prior to simplification. * Returns the number of indices after simplification, with destination containing new index data * The resulting index buffer references vertices from the original vertex buffer. * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. * * destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)! * vertex_positions should have float3 position in the first 12 bytes of each vertex * target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation; value range [0..1] * options must be a bitmask composed of meshopt_SimplifyX options; 0 is a safe default * result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification */ MESHOPTIMIZER_API size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* result_error); /** * Experimental: Mesh simplifier (sloppy) * Reduces the number of triangles in the mesh, sacrificing mesh appearance for simplification performance * The algorithm doesn't preserve mesh topology but can stop short of the target goal based on target error. * Returns the number of indices after simplification, with destination containing new index data * The resulting index buffer references vertices from the original vertex buffer. * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. * * destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)! * vertex_positions should have float3 position in the first 12 bytes of each vertex * target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation; value range [0..1] * result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification */ MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error); /** * Experimental: Point cloud simplifier * Reduces the number of points in the cloud to reach the given target * Returns the number of points after simplification, with destination containing new index data * The resulting index buffer references vertices from the original vertex buffer. * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. * * destination must contain enough space for the target index buffer (target_vertex_count elements) * vertex_positions should have float3 position in the first 12 bytes of each vertex */ MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_vertex_count); /** * Returns the error scaling factor used by the simplifier to convert between absolute and relative extents * * Absolute error must be *divided* by the scaling factor before passing it to meshopt_simplify as target_error * Relative error returned by meshopt_simplify via result_error must be *multiplied* by the scaling factor to get absolute error. */ MESHOPTIMIZER_API float meshopt_simplifyScale(const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); /** * Mesh stripifier * Converts a previously vertex cache optimized triangle list to triangle strip, stitching strips using restart index or degenerate triangles * Returns the number of indices in the resulting strip, with destination containing new index data * For maximum efficiency the index buffer being converted has to be optimized for vertex cache first. * Using restart indices can result in ~10% smaller index buffers, but on some GPUs restart indices may result in decreased performance. * * destination must contain enough space for the target index buffer, worst case can be computed with meshopt_stripifyBound * restart_index should be 0xffff or 0xffffffff depending on index size, or 0 to use degenerate triangles */ MESHOPTIMIZER_API size_t meshopt_stripify(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int restart_index); MESHOPTIMIZER_API size_t meshopt_stripifyBound(size_t index_count); /** * Mesh unstripifier * Converts a triangle strip to a triangle list * Returns the number of indices in the resulting list, with destination containing new index data * * destination must contain enough space for the target index buffer, worst case can be computed with meshopt_unstripifyBound */ MESHOPTIMIZER_API size_t meshopt_unstripify(unsigned int* destination, const unsigned int* indices, size_t index_count, unsigned int restart_index); MESHOPTIMIZER_API size_t meshopt_unstripifyBound(size_t index_count); struct meshopt_VertexCacheStatistics { unsigned int vertices_transformed; unsigned int warps_executed; float acmr; /* transformed vertices / triangle count; best case 0.5, worst case 3.0, optimum depends on topology */ float atvr; /* transformed vertices / vertex count; best case 1.0, worst case 6.0, optimum is 1.0 (each vertex is transformed once) */ }; /** * Vertex transform cache analyzer * Returns cache hit statistics using a simplified FIFO model * Results may not match actual GPU performance */ MESHOPTIMIZER_API struct meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int primgroup_size); struct meshopt_OverdrawStatistics { unsigned int pixels_covered; unsigned int pixels_shaded; float overdraw; /* shaded pixels / covered pixels; best case 1.0 */ }; /** * Overdraw analyzer * Returns overdraw statistics using a software rasterizer * Results may not match actual GPU performance * * vertex_positions should have float3 position in the first 12 bytes of each vertex */ MESHOPTIMIZER_API struct meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); struct meshopt_VertexFetchStatistics { unsigned int bytes_fetched; float overfetch; /* fetched bytes / vertex buffer size; best case 1.0 (each byte is fetched once) */ }; /** * Vertex fetch cache analyzer * Returns cache hit statistics using a simplified direct mapped model * Results may not match actual GPU performance */ MESHOPTIMIZER_API struct meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const unsigned int* indices, size_t index_count, size_t vertex_count, size_t vertex_size); struct meshopt_Meshlet { /* offsets within meshlet_vertices and meshlet_triangles arrays with meshlet data */ unsigned int vertex_offset; unsigned int triangle_offset; /* number of vertices and triangles used in the meshlet; data is stored in consecutive range defined by offset and count */ unsigned int vertex_count; unsigned int triangle_count; }; /** * Meshlet builder * Splits the mesh into a set of meshlets where each meshlet has a micro index buffer indexing into meshlet vertices that refer to the original vertex buffer * The resulting data can be used to render meshes using NVidia programmable mesh shading pipeline, or in other cluster-based renderers. * When using buildMeshlets, vertex positions need to be provided to minimize the size of the resulting clusters. * When using buildMeshletsScan, for maximum efficiency the index buffer being converted has to be optimized for vertex cache first. * * meshlets must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound * meshlet_vertices must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_vertices * meshlet_triangles must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_triangles * 3 * vertex_positions should have float3 position in the first 12 bytes of each vertex * max_vertices and max_triangles must not exceed implementation limits (max_vertices <= 255 - not 256!, max_triangles <= 512) * cone_weight should be set to 0 when cone culling is not used, and a value between 0 and 1 otherwise to balance between cluster size and cone culling efficiency */ MESHOPTIMIZER_API size_t meshopt_buildMeshlets(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight); MESHOPTIMIZER_API size_t meshopt_buildMeshletsScan(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles); MESHOPTIMIZER_API size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles); struct meshopt_Bounds { /* bounding sphere, useful for frustum and occlusion culling */ float center[3]; float radius; /* normal cone, useful for backface culling */ float cone_apex[3]; float cone_axis[3]; float cone_cutoff; /* = cos(angle/2) */ /* normal cone axis and cutoff, stored in 8-bit SNORM format; decode using x/127.0 */ signed char cone_axis_s8[3]; signed char cone_cutoff_s8; }; /** * Cluster bounds generator * Creates bounding volumes that can be used for frustum, backface and occlusion culling. * * For backface culling with orthographic projection, use the following formula to reject backfacing clusters: * dot(view, cone_axis) >= cone_cutoff * * For perspective projection, you can the formula that needs cone apex in addition to axis & cutoff: * dot(normalize(cone_apex - camera_position), cone_axis) >= cone_cutoff * * Alternatively, you can use the formula that doesn't need cone apex and uses bounding sphere instead: * dot(normalize(center - camera_position), cone_axis) >= cone_cutoff + radius / length(center - camera_position) * or an equivalent formula that doesn't have a singularity at center = camera_position: * dot(center - camera_position, cone_axis) >= cone_cutoff * length(center - camera_position) + radius * * The formula that uses the apex is slightly more accurate but needs the apex; if you are already using bounding sphere * to do frustum/occlusion culling, the formula that doesn't use the apex may be preferable. * * vertex_positions should have float3 position in the first 12 bytes of each vertex * index_count/3 should be less than or equal to 512 (the function assumes clusters of limited size) */ MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); /** * Experimental: Spatial sorter * Generates a remap table that can be used to reorder points for spatial locality. * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer. * * destination must contain enough space for the resulting remap table (vertex_count elements) */ MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); /** * Experimental: Spatial sorter * Reorders triangles for spatial locality, and generates a new index buffer. The resulting index buffer can be used with other functions like optimizeVertexCache. * * destination must contain enough space for the resulting index buffer (index_count elements) * vertex_positions should have float3 position in the first 12 bytes of each vertex */ MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); /** * Set allocation callbacks * These callbacks will be used instead of the default operator new/operator delete for all temporary allocations in the library. * Note that all algorithms only allocate memory for temporary use. * allocate/deallocate are always called in a stack-like order - last pointer to be allocated is deallocated first. */ MESHOPTIMIZER_API void meshopt_setAllocator(void* (MESHOPTIMIZER_ALLOC_CALLCONV *allocate)(size_t), void (MESHOPTIMIZER_ALLOC_CALLCONV *deallocate)(void*)); #ifdef __cplusplus } /* extern "C" */ #endif /* Quantization into commonly supported data formats */ #ifdef __cplusplus /** * Quantize a float in [0..1] range into an N-bit fixed point unorm value * Assumes reconstruction function (q / (2^N-1)), which is the case for fixed-function normalized fixed point conversion * Maximum reconstruction error: 1/2^(N+1) */ inline int meshopt_quantizeUnorm(float v, int N); /** * Quantize a float in [-1..1] range into an N-bit fixed point snorm value * Assumes reconstruction function (q / (2^(N-1)-1)), which is the case for fixed-function normalized fixed point conversion (except early OpenGL versions) * Maximum reconstruction error: 1/2^N */ inline int meshopt_quantizeSnorm(float v, int N); /** * Quantize a float into half-precision floating point value * Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest * Representable magnitude range: [6e-5; 65504] * Maximum relative reconstruction error: 5e-4 */ inline unsigned short meshopt_quantizeHalf(float v); /** * Quantize a float into a floating point value with a limited number of significant mantissa bits * Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest * Assumes N is in a valid mantissa precision range, which is 1..23 */ inline float meshopt_quantizeFloat(float v, int N); #endif /** * C++ template interface * * These functions mirror the C interface the library provides, providing template-based overloads so that * the caller can use an arbitrary type for the index data, both for input and output. * When the supplied type is the same size as that of unsigned int, the wrappers are zero-cost; when it's not, * the wrappers end up allocating memory and copying index data to convert from one type to another. */ #if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS) template <typename T> inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); template <typename T> inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count); template <typename T> inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap); template <typename T> inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride); template <typename T> inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count); template <typename T> inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); template <typename T> inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); template <typename T> inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count); template <typename T> inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count); template <typename T> inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size); template <typename T> inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold); template <typename T> inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count); template <typename T> inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); template <typename T> inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count); template <typename T> inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size); template <typename T> inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count); template <typename T> inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size); template <typename T> inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options = 0, float* result_error = 0); template <typename T> inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error = 0); template <typename T> inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index); template <typename T> inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index); template <typename T> inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size); template <typename T> inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); template <typename T> inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size); template <typename T> inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight); template <typename T> inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles); template <typename T> inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); template <typename T> inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); #endif /* Inline implementation */ #ifdef __cplusplus inline int meshopt_quantizeUnorm(float v, int N) { const float scale = float((1 << N) - 1); v = (v >= 0) ? v : 0; v = (v <= 1) ? v : 1; return int(v * scale + 0.5f); } inline int meshopt_quantizeSnorm(float v, int N) { const float scale = float((1 << (N - 1)) - 1); float round = (v >= 0 ? 0.5f : -0.5f); v = (v >= -1) ? v : -1; v = (v <= +1) ? v : +1; return int(v * scale + round); } inline unsigned short meshopt_quantizeHalf(float v) { union { float f; unsigned int ui; } u = {v}; unsigned int ui = u.ui; int s = (ui >> 16) & 0x8000; int em = ui & 0x7fffffff; /* bias exponent and round to nearest; 112 is relative exponent bias (127-15) */ int h = (em - (112 << 23) + (1 << 12)) >> 13; /* underflow: flush to zero; 113 encodes exponent -14 */ h = (em < (113 << 23)) ? 0 : h; /* overflow: infinity; 143 encodes exponent 16 */ h = (em >= (143 << 23)) ? 0x7c00 : h; /* NaN; note that we convert all types of NaN to qNaN */ h = (em > (255 << 23)) ? 0x7e00 : h; return (unsigned short)(s | h); } inline float meshopt_quantizeFloat(float v, int N) { union { float f; unsigned int ui; } u = {v}; unsigned int ui = u.ui; const int mask = (1 << (23 - N)) - 1; const int round = (1 << (23 - N)) >> 1; int e = ui & 0x7f800000; unsigned int rui = (ui + round) & ~mask; /* round all numbers except inf/nan; this is important to make sure nan doesn't overflow into -0 */ ui = e == 0x7f800000 ? ui : rui; /* flush denormals to zero */ ui = e == 0 ? 0 : ui; u.ui = ui; return u.f; } #endif /* Internal implementation helpers */ #ifdef __cplusplus class meshopt_Allocator { public: template <typename T> struct StorageT { static void* (MESHOPTIMIZER_ALLOC_CALLCONV *allocate)(size_t); static void (MESHOPTIMIZER_ALLOC_CALLCONV *deallocate)(void*); }; typedef StorageT<void> Storage; meshopt_Allocator() : blocks() , count(0) { } ~meshopt_Allocator() { for (size_t i = count; i > 0; --i) Storage::deallocate(blocks[i - 1]); } template <typename T> T* allocate(size_t size) { assert(count < sizeof(blocks) / sizeof(blocks[0])); T* result = static_cast<T*>(Storage::allocate(size > size_t(-1) / sizeof(T) ? size_t(-1) : size * sizeof(T))); blocks[count++] = result; return result; } private: void* blocks[24]; size_t count; }; // This makes sure that allocate/deallocate are lazily generated in translation units that need them and are deduplicated by the linker template <typename T> void* (MESHOPTIMIZER_ALLOC_CALLCONV *meshopt_Allocator::StorageT<T>::allocate)(size_t) = operator new; template <typename T> void (MESHOPTIMIZER_ALLOC_CALLCONV *meshopt_Allocator::StorageT<T>::deallocate)(void*) = operator delete; #endif /* Inline implementation for C++ templated wrappers */ #if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS) template <typename T, bool ZeroCopy = sizeof(T) == sizeof(unsigned int)> struct meshopt_IndexAdapter; template <typename T> struct meshopt_IndexAdapter<T, false> { T* result; unsigned int* data; size_t count; meshopt_IndexAdapter(T* result_, const T* input, size_t count_) : result(result_) , data(0) , count(count_) { size_t size = count > size_t(-1) / sizeof(unsigned int) ? size_t(-1) : count * sizeof(unsigned int); data = static_cast<unsigned int*>(meshopt_Allocator::Storage::allocate(size)); if (input) { for (size_t i = 0; i < count; ++i) data[i] = input[i]; } } ~meshopt_IndexAdapter() { if (result) { for (size_t i = 0; i < count; ++i) result[i] = T(data[i]); } meshopt_Allocator::Storage::deallocate(data); } }; template <typename T> struct meshopt_IndexAdapter<T, true> { unsigned int* data; meshopt_IndexAdapter(T* result, const T* input, size_t) : data(reinterpret_cast<unsigned int*>(result ? result : const_cast<T*>(input))) { } }; template <typename T> inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size) { meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0); return meshopt_generateVertexRemap(destination, indices ? in.data : 0, index_count, vertices, vertex_count, vertex_size); } template <typename T> inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count) { meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0); return meshopt_generateVertexRemapMulti(destination, indices ? in.data : 0, index_count, vertex_count, streams, stream_count); } template <typename T> inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap) { meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0); meshopt_IndexAdapter<T> out(destination, 0, index_count); meshopt_remapIndexBuffer(out.data, indices ? in.data : 0, index_count, remap); } template <typename T> inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride) { meshopt_IndexAdapter<T> in(0, indices, index_count); meshopt_IndexAdapter<T> out(destination, 0, index_count); meshopt_generateShadowIndexBuffer(out.data, in.data, index_count, vertices, vertex_count, vertex_size, vertex_stride); } template <typename T> inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count) { meshopt_IndexAdapter<T> in(0, indices, index_count); meshopt_IndexAdapter<T> out(destination, 0, index_count); meshopt_generateShadowIndexBufferMulti(out.data, in.data, index_count, vertex_count, streams, stream_count); } template <typename T> inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { meshopt_IndexAdapter<T> in(0, indices, index_count); meshopt_IndexAdapter<T> out(destination, 0, index_count * 2); meshopt_generateAdjacencyIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); } template <typename T> inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { meshopt_IndexAdapter<T> in(0, indices, index_count); meshopt_IndexAdapter<T> out(destination, 0, index_count * 4); meshopt_generateTessellationIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); } template <typename T> inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count) { meshopt_IndexAdapter<T> in(0, indices, index_count); meshopt_IndexAdapter<T> out(destination, 0, index_count); meshopt_optimizeVertexCache(out.data, in.data, index_count, vertex_count); } template <typename T> inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count) { meshopt_IndexAdapter<T> in(0, indices, index_count); meshopt_IndexAdapter<T> out(destination, 0, index_count); meshopt_optimizeVertexCacheStrip(out.data, in.data, index_count, vertex_count); } template <typename T> inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size) { meshopt_IndexAdapter<T> in(0, indices, index_count); meshopt_IndexAdapter<T> out(destination, 0, index_count); meshopt_optimizeVertexCacheFifo(out.data, in.data, index_count, vertex_count, cache_size); } template <typename T> inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold) { meshopt_IndexAdapter<T> in(0, indices, index_count); meshopt_IndexAdapter<T> out(destination, 0, index_count); meshopt_optimizeOverdraw(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, threshold); } template <typename T> inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count) { meshopt_IndexAdapter<T> in(0, indices, index_count); return meshopt_optimizeVertexFetchRemap(destination, in.data, index_count, vertex_count); } template <typename T> inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size) { meshopt_IndexAdapter<T> inout(indices, indices, index_count); return meshopt_optimizeVertexFetch(destination, inout.data, index_count, vertices, vertex_count, vertex_size); } template <typename T> inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count) { meshopt_IndexAdapter<T> in(0, indices, index_count); return meshopt_encodeIndexBuffer(buffer, buffer_size, in.data, index_count); } template <typename T> inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size) { char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1]; (void)index_size_valid; return meshopt_decodeIndexBuffer(destination, index_count, sizeof(T), buffer, buffer_size); } template <typename T> inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count) { meshopt_IndexAdapter<T> in(0, indices, index_count); return meshopt_encodeIndexSequence(buffer, buffer_size, in.data, index_count); } template <typename T> inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size) { char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1]; (void)index_size_valid; return meshopt_decodeIndexSequence(destination, index_count, sizeof(T), buffer, buffer_size); } template <typename T> inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* result_error) { meshopt_IndexAdapter<T> in(0, indices, index_count); meshopt_IndexAdapter<T> out(destination, 0, index_count); return meshopt_simplify(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, options, result_error); } template <typename T> inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error) { meshopt_IndexAdapter<T> in(0, indices, index_count); meshopt_IndexAdapter<T> out(destination, 0, index_count); return meshopt_simplifySloppy(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, result_error); } template <typename T> inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index) { meshopt_IndexAdapter<T> in(0, indices, index_count); meshopt_IndexAdapter<T> out(destination, 0, (index_count / 3) * 5); return meshopt_stripify(out.data, in.data, index_count, vertex_count, unsigned(restart_index)); } template <typename T> inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index) { meshopt_IndexAdapter<T> in(0, indices, index_count); meshopt_IndexAdapter<T> out(destination, 0, (index_count - 2) * 3); return meshopt_unstripify(out.data, in.data, index_count, unsigned(restart_index)); } template <typename T> inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size) { meshopt_IndexAdapter<T> in(0, indices, index_count); return meshopt_analyzeVertexCache(in.data, index_count, vertex_count, cache_size, warp_size, buffer_size); } template <typename T> inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { meshopt_IndexAdapter<T> in(0, indices, index_count); return meshopt_analyzeOverdraw(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); } template <typename T> inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size) { meshopt_IndexAdapter<T> in(0, indices, index_count); return meshopt_analyzeVertexFetch(in.data, index_count, vertex_count, vertex_size); } template <typename T> inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight) { meshopt_IndexAdapter<T> in(0, indices, index_count); return meshopt_buildMeshlets(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, max_triangles, cone_weight); } template <typename T> inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles) { meshopt_IndexAdapter<T> in(0, indices, index_count); return meshopt_buildMeshletsScan(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_count, max_vertices, max_triangles); } template <typename T> inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { meshopt_IndexAdapter<T> in(0, indices, index_count); return meshopt_computeClusterBounds(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); } template <typename T> inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { meshopt_IndexAdapter<T> in(0, indices, index_count); meshopt_IndexAdapter<T> out(destination, 0, index_count); meshopt_spatialSortTriangles(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); } #endif /** * Copyright (c) 2016-2022 Arseny Kapoulkine * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */