/* * KdTree2d.cpp * RVO2 Library * * SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Please send all bug reports to . * * The authors may be contacted via: * * Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha * Dept. of Computer Science * 201 S. Columbia St. * Frederick P. Brooks, Jr. Computer Science Bldg. * Chapel Hill, N.C. 27599-3175 * United States of America * * */ /** * @file KdTree2d.cpp * @brief Defines the KdTree2D class. */ #include "KdTree2d.h" #include #include #include "Agent2d.h" #include "Obstacle2d.h" #include "RVOSimulator2d.h" #include "Vector2.h" namespace RVO2D { namespace { /** * @relates KdTree2D * @brief The maximum k-D tree node leaf size. */ const std::size_t RVO_MAX_LEAF_SIZE = 10U; } /* namespace */ /** * @brief Defines an agent k-D tree node. */ class KdTree2D::AgentTreeNode { public: /** * @brief Constructs an agent k-D tree node instance. */ AgentTreeNode(); /** * @brief The beginning node number. */ std::size_t begin; /** * @brief The ending node number. */ std::size_t end; /** * @brief The left node number. */ std::size_t left; /** * @brief The right node number. */ std::size_t right; /** * @brief The maximum x-coordinate. */ float maxX; /** * @brief The maximum y-coordinate. */ float maxY; /** * @brief The minimum x-coordinate. */ float minX; /** * @brief The minimum y-coordinate. */ float minY; }; KdTree2D::AgentTreeNode::AgentTreeNode() : begin(0U), end(0U), left(0U), right(0U), maxX(0.0F), maxY(0.0F), minX(0.0F), minY(0.0F) {} /** * @brief Defines an obstacle k-D tree node. */ class KdTree2D::ObstacleTreeNode { public: /** * @brief Constructs an obstacle k-D tree node instance. */ ObstacleTreeNode(); /** * @brief Destroys this obstacle k-D tree node instance. */ ~ObstacleTreeNode(); /** * @brief The obstacle number. */ const Obstacle2D *obstacle; /** * @brief The left obstacle tree node. */ ObstacleTreeNode *left; /** * @brief The right obstacle tree node. */ ObstacleTreeNode *right; private: /* Not implemented. */ ObstacleTreeNode(const ObstacleTreeNode &other); /* Not implemented. */ ObstacleTreeNode &operator=(const ObstacleTreeNode &other); }; KdTree2D::ObstacleTreeNode::ObstacleTreeNode() : obstacle(NULL), left(NULL), right(NULL) {} KdTree2D::ObstacleTreeNode::~ObstacleTreeNode() {} KdTree2D::KdTree2D(RVOSimulator2D *simulator) : obstacleTree_(NULL), simulator_(simulator) {} KdTree2D::~KdTree2D() { deleteObstacleTree(obstacleTree_); } void KdTree2D::buildAgentTree(std::vector agents) { agents_.swap(agents); if (!agents_.empty()) { agentTree_.resize(2 * agents_.size() - 1); buildAgentTreeRecursive(0, agents_.size(), 0); } } void KdTree2D::buildAgentTreeRecursive(std::size_t begin, std::size_t end, std::size_t node) { agentTree_[node].begin = begin; agentTree_[node].end = end; agentTree_[node].minX = agentTree_[node].maxX = agents_[begin]->position_.x(); agentTree_[node].minY = agentTree_[node].maxY = agents_[begin]->position_.y(); for (std::size_t i = begin + 1U; i < end; ++i) { agentTree_[node].maxX = std::max(agentTree_[node].maxX, agents_[i]->position_.x()); agentTree_[node].minX = std::min(agentTree_[node].minX, agents_[i]->position_.x()); agentTree_[node].maxY = std::max(agentTree_[node].maxY, agents_[i]->position_.y()); agentTree_[node].minY = std::min(agentTree_[node].minY, agents_[i]->position_.y()); } if (end - begin > RVO_MAX_LEAF_SIZE) { /* No leaf node. */ const bool isVertical = agentTree_[node].maxX - agentTree_[node].minX > agentTree_[node].maxY - agentTree_[node].minY; const float splitValue = 0.5F * (isVertical ? agentTree_[node].maxX + agentTree_[node].minX : agentTree_[node].maxY + agentTree_[node].minY); std::size_t left = begin; std::size_t right = end; while (left < right) { while (left < right && (isVertical ? agents_[left]->position_.x() : agents_[left]->position_.y()) < splitValue) { ++left; } while (right > left && (isVertical ? agents_[right - 1U]->position_.x() : agents_[right - 1U]->position_.y()) >= splitValue) { --right; } if (left < right) { std::swap(agents_[left], agents_[right - 1U]); ++left; --right; } } if (left == begin) { ++left; ++right; } agentTree_[node].left = node + 1U; agentTree_[node].right = node + 2U * (left - begin); buildAgentTreeRecursive(begin, left, agentTree_[node].left); buildAgentTreeRecursive(left, end, agentTree_[node].right); } } void KdTree2D::buildObstacleTree(std::vector obstacles) { deleteObstacleTree(obstacleTree_); obstacleTree_ = buildObstacleTreeRecursive(obstacles); } KdTree2D::ObstacleTreeNode *KdTree2D::buildObstacleTreeRecursive( const std::vector &obstacles) { if (!obstacles.empty()) { ObstacleTreeNode *const node = new ObstacleTreeNode(); std::size_t optimalSplit = 0U; std::size_t minLeft = obstacles.size(); std::size_t minRight = obstacles.size(); for (std::size_t i = 0U; i < obstacles.size(); ++i) { std::size_t leftSize = 0U; std::size_t rightSize = 0U; const Obstacle2D *const obstacleI1 = obstacles[i]; const Obstacle2D *const obstacleI2 = obstacleI1->next_; /* Compute optimal split node. */ for (std::size_t j = 0U; j < obstacles.size(); ++j) { if (i != j) { const Obstacle2D *const obstacleJ1 = obstacles[j]; const Obstacle2D *const obstacleJ2 = obstacleJ1->next_; const float j1LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ1->point_); const float j2LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ2->point_); if (j1LeftOfI >= -RVO2D_EPSILON && j2LeftOfI >= -RVO2D_EPSILON) { ++leftSize; } else if (j1LeftOfI <= RVO2D_EPSILON && j2LeftOfI <= RVO2D_EPSILON) { ++rightSize; } else { ++leftSize; ++rightSize; } if (std::make_pair(std::max(leftSize, rightSize), std::min(leftSize, rightSize)) >= std::make_pair(std::max(minLeft, minRight), std::min(minLeft, minRight))) { break; } } } if (std::make_pair(std::max(leftSize, rightSize), std::min(leftSize, rightSize)) < std::make_pair(std::max(minLeft, minRight), std::min(minLeft, minRight))) { minLeft = leftSize; minRight = rightSize; optimalSplit = i; } } /* Build split node. */ std::vector leftObstacles(minLeft); std::vector rightObstacles(minRight); std::size_t leftCounter = 0U; std::size_t rightCounter = 0U; const std::size_t i = optimalSplit; const Obstacle2D *const obstacleI1 = obstacles[i]; const Obstacle2D *const obstacleI2 = obstacleI1->next_; for (std::size_t j = 0U; j < obstacles.size(); ++j) { if (i != j) { Obstacle2D *const obstacleJ1 = obstacles[j]; Obstacle2D *const obstacleJ2 = obstacleJ1->next_; const float j1LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ1->point_); const float j2LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ2->point_); if (j1LeftOfI >= -RVO2D_EPSILON && j2LeftOfI >= -RVO2D_EPSILON) { leftObstacles[leftCounter++] = obstacles[j]; } else if (j1LeftOfI <= RVO2D_EPSILON && j2LeftOfI <= RVO2D_EPSILON) { rightObstacles[rightCounter++] = obstacles[j]; } else { /* Split obstacle j. */ const float t = det(obstacleI2->point_ - obstacleI1->point_, obstacleJ1->point_ - obstacleI1->point_) / det(obstacleI2->point_ - obstacleI1->point_, obstacleJ1->point_ - obstacleJ2->point_); const Vector2 splitPoint = obstacleJ1->point_ + t * (obstacleJ2->point_ - obstacleJ1->point_); Obstacle2D *const newObstacle = new Obstacle2D(); newObstacle->direction_ = obstacleJ1->direction_; newObstacle->point_ = splitPoint; newObstacle->next_ = obstacleJ2; newObstacle->previous_ = obstacleJ1; newObstacle->id_ = simulator_->obstacles_.size(); newObstacle->isConvex_ = true; simulator_->obstacles_.push_back(newObstacle); obstacleJ1->next_ = newObstacle; obstacleJ2->previous_ = newObstacle; if (j1LeftOfI > 0.0F) { leftObstacles[leftCounter++] = obstacleJ1; rightObstacles[rightCounter++] = newObstacle; } else { rightObstacles[rightCounter++] = obstacleJ1; leftObstacles[leftCounter++] = newObstacle; } } } } node->obstacle = obstacleI1; node->left = buildObstacleTreeRecursive(leftObstacles); node->right = buildObstacleTreeRecursive(rightObstacles); return node; } return NULL; } void KdTree2D::computeAgentNeighbors(Agent2D *agent, float &rangeSq) const { queryAgentTreeRecursive(agent, rangeSq, 0U); } void KdTree2D::computeObstacleNeighbors(Agent2D *agent, float rangeSq) const { queryObstacleTreeRecursive(agent, rangeSq, obstacleTree_); } void KdTree2D::deleteObstacleTree(ObstacleTreeNode *node) { if (node != NULL) { deleteObstacleTree(node->left); deleteObstacleTree(node->right); delete node; } } void KdTree2D::queryAgentTreeRecursive(Agent2D *agent, float &rangeSq, std::size_t node) const { if (agentTree_[node].end - agentTree_[node].begin <= RVO_MAX_LEAF_SIZE) { for (std::size_t i = agentTree_[node].begin; i < agentTree_[node].end; ++i) { agent->insertAgentNeighbor(agents_[i], rangeSq); } } else { const float distLeftMinX = std::max( 0.0F, agentTree_[agentTree_[node].left].minX - agent->position_.x()); const float distLeftMaxX = std::max( 0.0F, agent->position_.x() - agentTree_[agentTree_[node].left].maxX); const float distLeftMinY = std::max( 0.0F, agentTree_[agentTree_[node].left].minY - agent->position_.y()); const float distLeftMaxY = std::max( 0.0F, agent->position_.y() - agentTree_[agentTree_[node].left].maxY); const float distSqLeft = distLeftMinX * distLeftMinX + distLeftMaxX * distLeftMaxX + distLeftMinY * distLeftMinY + distLeftMaxY * distLeftMaxY; const float distRightMinX = std::max( 0.0F, agentTree_[agentTree_[node].right].minX - agent->position_.x()); const float distRightMaxX = std::max( 0.0F, agent->position_.x() - agentTree_[agentTree_[node].right].maxX); const float distRightMinY = std::max( 0.0F, agentTree_[agentTree_[node].right].minY - agent->position_.y()); const float distRightMaxY = std::max( 0.0F, agent->position_.y() - agentTree_[agentTree_[node].right].maxY); const float distSqRight = distRightMinX * distRightMinX + distRightMaxX * distRightMaxX + distRightMinY * distRightMinY + distRightMaxY * distRightMaxY; if (distSqLeft < distSqRight) { if (distSqLeft < rangeSq) { queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left); if (distSqRight < rangeSq) { queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right); } } } else if (distSqRight < rangeSq) { queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right); if (distSqLeft < rangeSq) { queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left); } } } } void KdTree2D::queryObstacleTreeRecursive(Agent2D *agent, float rangeSq, const ObstacleTreeNode *node) const { if (node != NULL) { const Obstacle2D *const obstacle1 = node->obstacle; const Obstacle2D *const obstacle2 = obstacle1->next_; const float agentLeftOfLine = leftOf(obstacle1->point_, obstacle2->point_, agent->position_); queryObstacleTreeRecursive( agent, rangeSq, agentLeftOfLine >= 0.0F ? node->left : node->right); const float distSqLine = agentLeftOfLine * agentLeftOfLine / absSq(obstacle2->point_ - obstacle1->point_); if (distSqLine < rangeSq) { if (agentLeftOfLine < 0.0F) { /* Try obstacle at this node only if agent is on right side of obstacle * and can see obstacle. */ agent->insertObstacleNeighbor(node->obstacle, rangeSq); } /* Try other side of line. */ queryObstacleTreeRecursive( agent, rangeSq, agentLeftOfLine >= 0.0F ? node->right : node->left); } } } bool KdTree2D::queryVisibility(const Vector2 &vector1, const Vector2 &vector2, float radius) const { return queryVisibilityRecursive(vector1, vector2, radius, obstacleTree_); } bool KdTree2D::queryVisibilityRecursive(const Vector2 &vector1, const Vector2 &vector2, float radius, const ObstacleTreeNode *node) const { if (node != NULL) { const Obstacle2D *const obstacle1 = node->obstacle; const Obstacle2D *const obstacle2 = obstacle1->next_; const float q1LeftOfI = leftOf(obstacle1->point_, obstacle2->point_, vector1); const float q2LeftOfI = leftOf(obstacle1->point_, obstacle2->point_, vector2); const float invLengthI = 1.0F / absSq(obstacle2->point_ - obstacle1->point_); if (q1LeftOfI >= 0.0F && q2LeftOfI >= 0.0F) { return queryVisibilityRecursive(vector1, vector2, radius, node->left) && ((q1LeftOfI * q1LeftOfI * invLengthI >= radius * radius && q2LeftOfI * q2LeftOfI * invLengthI >= radius * radius) || queryVisibilityRecursive(vector1, vector2, radius, node->right)); } if (q1LeftOfI <= 0.0F && q2LeftOfI <= 0.0F) { return queryVisibilityRecursive(vector1, vector2, radius, node->right) && ((q1LeftOfI * q1LeftOfI * invLengthI >= radius * radius && q2LeftOfI * q2LeftOfI * invLengthI >= radius * radius) || queryVisibilityRecursive(vector1, vector2, radius, node->left)); } if (q1LeftOfI >= 0.0F && q2LeftOfI <= 0.0F) { /* One can see through obstacle from left to right. */ return queryVisibilityRecursive(vector1, vector2, radius, node->left) && queryVisibilityRecursive(vector1, vector2, radius, node->right); } const float point1LeftOfQ = leftOf(vector1, vector2, obstacle1->point_); const float point2LeftOfQ = leftOf(vector1, vector2, obstacle2->point_); const float invLengthQ = 1.0F / absSq(vector2 - vector1); return point1LeftOfQ * point2LeftOfQ >= 0.0F && point1LeftOfQ * point1LeftOfQ * invLengthQ > radius * radius && point2LeftOfQ * point2LeftOfQ * invLengthQ > radius * radius && queryVisibilityRecursive(vector1, vector2, radius, node->left) && queryVisibilityRecursive(vector1, vector2, radius, node->right); } return true; } } /* namespace RVO2D */