// basisu_tool.cpp // Copyright (C) 2019 Binomial LLC. All Rights Reserved. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "transcoder/basisu.h" #include "transcoder/basisu_transcoder_internal.h" #include "basisu_enc.h" #include "basisu_etc.h" #include "basisu_gpu_texture.h" #include "basisu_frontend.h" #include "basisu_backend.h" #include "transcoder/basisu_global_selector_palette.h" #include "basisu_comp.h" #include "transcoder/basisu_transcoder.h" #include "basisu_ssim.h" #define BASISU_CATCH_EXCEPTIONS 1 using namespace basisu; #define BASISU_TOOL_VERSION "1.09.00" enum tool_mode { cDefault, cCompress, cValidate, cUnpack, cCompare }; static void print_usage() { printf("\nUsage: basisu filename [filename ...] \n"); puts("\n" "The default mode is compression of one or more PNG files to a .basis file. Alternate modes:\n" " -unpack: Use transcoder to unpack .basis file to one or more .ktx/.png files\n" " -validate: Validate and display information about a .basis file\n" " -compare: Compare two PNG images specified with -file, output PSNR and SSIM statistics and RGB/A delta images\n" "Unless an explicit mode is specified, if one or more files have the .basis extension this tool defaults to unpack mode.\n" "\n" "Important: By default, the compressor assumes the input is in the sRGB colorspace (like photos/albedo textures).\n" "If the input is NOT sRGB (like a normal map), be sure to specify -linear for less artifacts. Depending on the content type, some experimentation may be needed.\n" "\n" "Filenames prefixed with a @ symbol are read as filename listing files. Listing text files specify which actual filenames to process (one filename per line).\n" "\n" "Options:\n" " -file filename.png: Input image filename, multiple images are OK, use -file X for each input filename (prefixing input filenames with -file is optional)\n" " -alpha_file filename.png: Input alpha image filename, multiple images are OK, use -file X for each input filename (must be paired with -file), images converted to REC709 grayscale and used as input alpha\n" " -multifile_printf: printf() format strint to use to compose multiple filenames\n" " -multifile_first: The index of the first file to process, default is 0 (must specify -multifile_printf and -multifile_num)\n" " -multifile_num: The total number of files to process.\n" " -q X: Set quality level, 1-255, default is 128, lower=better compression/lower quality/faster, higher=less compression/higher quality/slower, default is 128. For even higher quality, use -max_endpoints/-max_selectors.\n" " -linear: Use linear colorspace metrics (instead of the default sRGB), and by default linear (not sRGB) mipmap filtering.\n" " -output_file filename: Output .basis/.ktx filename\n" " -output_path: Output .basis/.ktx files to specified directory.\n" " -debug: Enable codec debug print to stdout (slightly slower).\n" " -debug_images: Enable codec debug images (much slower).\n" " -stats: Compute and display image quality metrics (slightly slower).\n" " -tex_type <2d, 2darray, 3d, video, cubemap>: Set Basis file header's texture type field. Cubemap arrays require multiples of 6 images, in X+, X-, Y+, Y-, Z+, Z- order, each image must be the same resolutions.\n" " 2d=arbitrary 2D images, 2darray=2D array, 3D=volume texture slices, video=video frames, cubemap=array of faces. For 2darray/3d/cubemaps/video, each source image's dimensions and # of mipmap levels must be the same.\n" " For video, the .basis file will be written with the first frame being an I-Frame, and subsequent frames being P-Frames (using conditional replenishment). Playback must always occur in order from first to last image.\n" " -framerate X: Set framerate in header to X/frames sec.\n" " -individual: Process input images individually and output multiple .basis files (not as a texture array)\n" " -comp_level X: Set encoding speed vs. quality tradeoff. Range is 0-5, default is 1. Higher values=MUCH slower, but slightly higher quality. Mostly intended for videos. Use -q first!\n" " -fuzz_testing: Use with -validate: Disables CRC16 validation of file contents before transcoding\n" "\n" "More options:\n" " -max_endpoints X: Manually set the max number of color endpoint clusters from 1-16128, use instead of -q\n" " -max_selectors X: Manually set the max number of color selector clusters from 1-16128, use instead of -q\n" " -y_flip: Flip input images vertically before compression\n" " -normal_map: Tunes codec parameters for better quality on normal maps (linear colorspace metrics, linear mipmap filtering, no selector RDO, no sRGB)\n" " -no_alpha: Always output non-alpha basis files, even if one or more inputs has alpha\n" " -force_alpha: Always output alpha basis files, even if no inputs has alpha\n" " -seperate_rg_to_color_alpha: Seperate input R and G channels to RGB and A (for tangent space XY normal maps)\n" " -no_multithreading: Disable multithreading\n" " -no_ktx: Disable KTX writing when unpacking (faster)\n" " -etc1_only: Only unpack to ETC1, skipping the other texture formats during -unpack\n" " -disable_hierarchical_endpoint_codebooks: Disable hierarchical endpoint codebook usage, slower but higher quality on some compression levels\n" " -compare_ssim: Compute and display SSIM of image comparison (slow)\n" "\n" "Mipmap generation options:\n" " -mipmap: Generate mipmaps for each source image\n" " -mip_srgb: Convert image to linear before filtering, then back to sRGB\n" " -mip_linear: Keep image in linear light during mipmap filtering\n" " -mip_scale X: Set mipmap filter kernel's scale, lower=sharper, higher=more blurry, default is 1.0\n" " -mip_filter X: Set mipmap filter kernel, default is kaiser, filters: box, tent, bell, blackman, catmullrom, mitchell, etc.\n" " -mip_renorm: Renormalize normal map to unit length vectors after filtering\n" " -mip_clamp: Use clamp addressing on borders, instead of wrapping\n" " -mip_smallest X: Set smallest pixel dimension for generated mipmaps, default is 1 pixel\n" "By default, mipmap filtering will occur in sRGB space (for the RGB color channels) unless -linear is specified. You can override this behavior with -mip_srgb/-mip_linear.\n" "\n" "Backend endpoint/selector RDO codec options:\n" " -no_selector_rdo: Disable backend's selector rate distortion optimizations (slightly faster, less noisy output, but lower quality per output bit)\n" " -selector_rdo_thresh X: Set selector RDO quality threshold, default is 1.25, lower is higher quality but less quality per output bit (try 1.0-3.0)\n" " -no_endpoint_rdo: Disable backend's endpoint rate distortion optimizations (slightly faster, less noisy output, but lower quality per output bit)\n" " -endpoint_rdo_thresh X: Set endpoint RDO quality threshold, default is 1.5, lower is higher quality but less quality per output bit (try 1.0-3.0)\n" "\n" "Hierarchical virtual selector codebook options:\n" " -global_sel_pal: Always use vitual selector palettes (instead of custom palettes), slightly smaller files, but lower quality, slower encoding\n" " -no_auto_global_sel_pal: Don't automatically use virtual selector palettes on small images\n" " -no_hybrid_sel_cb: Don't automatically use hybrid virtual selector codebooks (for higher quality, only active when -global_sel_pal is specified)\n" " -global_pal_bits X: Set virtual selector codebook palette bits, range is [0,12], default is 8, higher is slower/better quality\n" " -global_mod_bits X: Set virtual selector codebook modifier bits, range is [0,15], defualt is 8, higher is slower/better quality\n" " -hybrid_sel_cb_quality_thresh X: Set hybrid selector codebook quality threshold, default is 2.0, try 1.5-3, higher is lower quality/smaller codebooks\n" "\n" "Set various fields in the Basis file header:\n" " -userdata0 X: Set 32-bit userdata0 field in Basis file header to X (X is a signed 32-bit int)\n" " -userdata1 X: Set 32-bit userdata1 field in Basis file header to X (X is a signed 32-bit int)\n" "\n" "Various command line examples:\n" " basisu x.png : Compress sRGB image x.png to x.basis using default settings (multiple filenames OK)\n" " basisu x.basis : Unpack x.basis to PNG/KTX files (multiple filenames OK)\n" " basisu -file x.png -mipmap -y_flip : Compress a mipmapped x.basis file from an sRGB image named x.png, Y flip each source image\n" " basisu -validate -file x.basis : Validate x.basis (check header, check file CRC's, attempt to transcode all slices)\n" " basisu -unpack -file x.basis : Validates, transcodes and unpacks x.basis to mipmapped .KTX and RGB/A .PNG files (transcodes to all supported GPU texture formats)\n" " basisu -q 255 -file x.png -mipmap -debug -stats : Compress sRGB x.png to x.basis at quality level 255 with compressor debug output/statistics\n" " basisu -linear -max_endpoints 16128 -max_selectors 16128 -file x.png : Compress non-sRGB x.png to x.basis using the largest supported manually specified codebook sizes\n" " basisu -linear -global_sel_pal -no_hybrid_sel_cb -file x.png : Compress a non-sRGB image, use virtual selector codebooks for improved compression (but slower encoding)\n" " basisu -linear -global_sel_pal -file x.png: Compress a non-sRGB image, use hybrid selector codebooks for slightly improved compression (but slower encoding)\n" " basisu -tex_type video -framerate 20 -multifile_printf \"x%02u.png\" -multifile_first 1 -multifile_count 20 : Compress a 20 sRGB source image video sequence (x01.png, x02.png, x03.png, etc.) to x01.basis\n" "\n" "Note: For video use, it's recommended you use a very powerful machine with many cores. Use -slower for better codebook generation, specify very large codebooks using -max_endpoints and -max_selectors, and reduce\n" "the default endpoint RDO threshold (-endpoint_rdo_thresh) to around 1.25. Videos may have mipmaps and alpha channels. Videos must always be played back by the transcoder in first to last image order.\n" "Video files currently use I-Frames on the first image, and P-Frames using conditional replenishment on subsequent frames.\n" "Compression level details:\n" " Level 0: Fastest, but has marginal quality and is a work in progress. Brittle on complex images. Avg. Y dB: 35.45\n" " Level 1: Hierarchical codebook searching. 36.87 dB, ~1.4x slower vs. level 0. (This is the default setting.)\n" " Level 2: Full codebook searching. 37.13 dB, ~1.8x slower vs. level 0. (Equivalent the the initial release's default settings.)\n" " Level 3: Hierarchical codebook searching, codebook k-means iterations. 37.15 dB, ~4x slower vs. level 0\n" " Level 4: Full codebook searching, codebook k-means iterations. 37.41 dB, ~5.5x slower vs. level 0. (Equivalent to the initial release's -slower setting.)\n" " Level 5: Full codebook searching, twice as many codebook k-means iterations, best ETC1 endpoint opt. 37.43 dB, ~12x slower vs. level 0\n" ); } static bool load_listing_file(const std::string &f, std::vector &filenames) { std::string filename(f); filename.erase(0, 1); FILE *pFile = nullptr; #ifdef _WIN32 fopen_s(&pFile, filename.c_str(), "r"); #else pFile = fopen(filename.c_str(), "r"); #endif if (!pFile) { error_printf("Failed opening listing file: \"%s\"\n", filename.c_str()); return false; } uint32_t total_filenames = 0; for ( ; ; ) { char buf[3072]; buf[0] = '\0'; char *p = fgets(buf, sizeof(buf), pFile); if (!p) { if (ferror(pFile)) { error_printf("Failed reading from listing file: \"%s\"\n", filename.c_str()); fclose(pFile); return false; } else break; } std::string read_filename(p); while (read_filename.size()) { if (read_filename[0] == ' ') read_filename.erase(0, 1); else break; } while (read_filename.size()) { const char c = read_filename.back(); if ((c == ' ') || (c == '\n') || (c == '\r')) read_filename.erase(read_filename.size() - 1, 1); else break; } if (read_filename.size()) { filenames.push_back(read_filename); total_filenames++; } } fclose(pFile); printf("Successfully read %u filenames(s) from listing file \"%s\"\n", total_filenames, filename.c_str()); return true; } class command_line_params { public: command_line_params() : m_mode(cDefault), m_multifile_first(0), m_multifile_num(0), m_individual(false), m_no_ktx(false), m_etc1_only(false), m_fuzz_testing(false), m_compare_ssim(false) { } bool parse(int arg_c, const char **arg_v) { int arg_index = 1; while (arg_index < arg_c) { const char *pArg = arg_v[arg_index]; const int num_remaining_args = arg_c - (arg_index + 1); int arg_count = 1; #define REMAINING_ARGS_CHECK(n) if (num_remaining_args < (n)) { error_printf("Error: Expected %u values to follow %s!\n", n, pArg); return false; } if (strcasecmp(pArg, "-compress") == 0) m_mode = cCompress; else if (strcasecmp(pArg, "-compare") == 0) m_mode = cCompare; else if (strcasecmp(pArg, "-unpack") == 0) m_mode = cUnpack; else if (strcasecmp(pArg, "-validate") == 0) m_mode = cValidate; else if (strcasecmp(pArg, "-compare_ssim") == 0) m_compare_ssim = true; else if (strcasecmp(pArg, "-file") == 0) { REMAINING_ARGS_CHECK(1); m_input_filenames.push_back(std::string(arg_v[arg_index + 1])); arg_count++; } else if (strcasecmp(pArg, "-alpha_file") == 0) { REMAINING_ARGS_CHECK(1); m_input_alpha_filenames.push_back(std::string(arg_v[arg_index + 1])); arg_count++; } else if (strcasecmp(pArg, "-multifile_printf") == 0) { REMAINING_ARGS_CHECK(1); m_multifile_printf = std::string(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-multifile_first") == 0) { REMAINING_ARGS_CHECK(1); m_multifile_first = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-multifile_num") == 0) { REMAINING_ARGS_CHECK(1); m_multifile_num = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-linear") == 0) m_comp_params.m_perceptual = false; else if (strcasecmp(pArg, "-srgb") == 0) m_comp_params.m_perceptual = true; else if (strcasecmp(pArg, "-q") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_quality_level = clamp(atoi(arg_v[arg_index + 1]), BASISU_QUALITY_MIN, BASISU_QUALITY_MAX); arg_count++; } else if (strcasecmp(pArg, "-output_file") == 0) { REMAINING_ARGS_CHECK(1); m_output_filename = arg_v[arg_index + 1]; arg_count++; } else if (strcasecmp(pArg, "-output_path") == 0) { REMAINING_ARGS_CHECK(1); m_output_path = arg_v[arg_index + 1]; arg_count++; } else if (strcasecmp(pArg, "-debug") == 0) { m_comp_params.m_debug = true; enable_debug_printf(true); } else if (strcasecmp(pArg, "-debug_images") == 0) m_comp_params.m_debug_images = true; else if (strcasecmp(pArg, "-stats") == 0) m_comp_params.m_compute_stats = true; else if (strcasecmp(pArg, "-comp_level") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_compression_level = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-slower") == 0) { // This option is gone, but we'll do something reasonable with it anyway. Level 4 is equivalent to the original release's -slower, but let's just go to level 2. m_comp_params.m_compression_level = 2; } else if (strcasecmp(pArg, "-max_endpoints") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_max_endpoint_clusters = clamp(atoi(arg_v[arg_index + 1]), 1, BASISU_MAX_ENDPOINT_CLUSTERS); arg_count++; } else if (strcasecmp(pArg, "-max_selectors") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_max_selector_clusters = clamp(atoi(arg_v[arg_index + 1]), 1, BASISU_MAX_SELECTOR_CLUSTERS); arg_count++; } else if (strcasecmp(pArg, "-y_flip") == 0) m_comp_params.m_y_flip = true; else if (strcasecmp(pArg, "-normal_map") == 0) { m_comp_params.m_perceptual = false; m_comp_params.m_mip_srgb = false; m_comp_params.m_no_selector_rdo = true; m_comp_params.m_no_endpoint_rdo = true; } else if (strcasecmp(pArg, "-no_alpha") == 0) m_comp_params.m_check_for_alpha = false; else if (strcasecmp(pArg, "-force_alpha") == 0) m_comp_params.m_force_alpha = true; else if (strcasecmp(pArg, "-seperate_rg_to_color_alpha") == 0) m_comp_params.m_seperate_rg_to_color_alpha = true; else if (strcasecmp(pArg, "-no_multithreading") == 0) { m_comp_params.m_multithreading = false; } else if (strcasecmp(pArg, "-mipmap") == 0) m_comp_params.m_mip_gen = true; else if (strcasecmp(pArg, "-no_ktx") == 0) m_no_ktx = true; else if (strcasecmp(pArg, "-etc1_only") == 0) m_etc1_only = true; else if (strcasecmp(pArg, "-disable_hierarchical_endpoint_codebooks") == 0) m_comp_params.m_disable_hierarchical_endpoint_codebooks = true; else if (strcasecmp(pArg, "-mip_scale") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_mip_scale = (float)atof(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-mip_filter") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_mip_filter = arg_v[arg_index + 1]; // TODO: Check filter arg_count++; } else if (strcasecmp(pArg, "-mip_renorm") == 0) m_comp_params.m_mip_renormalize = true; else if (strcasecmp(pArg, "-mip_clamp") == 0) m_comp_params.m_mip_wrapping = false; else if (strcasecmp(pArg, "-mip_smallest") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_mip_smallest_dimension = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-mip_srgb") == 0) m_comp_params.m_mip_srgb = true; else if (strcasecmp(pArg, "-mip_linear") == 0) m_comp_params.m_mip_srgb = false; else if (strcasecmp(pArg, "-no_selector_rdo") == 0) m_comp_params.m_no_selector_rdo = true; else if (strcasecmp(pArg, "-selector_rdo_thresh") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_selector_rdo_thresh = (float)atof(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-no_endpoint_rdo") == 0) m_comp_params.m_no_endpoint_rdo = true; else if (strcasecmp(pArg, "-endpoint_rdo_thresh") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_endpoint_rdo_thresh = (float)atof(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-global_sel_pal") == 0) m_comp_params.m_global_sel_pal = true; else if (strcasecmp(pArg, "-no_auto_global_sel_pal") == 0) m_comp_params.m_no_auto_global_sel_pal = true; else if (strcasecmp(pArg, "-global_pal_bits") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_global_pal_bits = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-global_mod_bits") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_global_mod_bits = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-no_hybrid_sel_cb") == 0) m_comp_params.m_no_hybrid_sel_cb = true; else if (strcasecmp(pArg, "-hybrid_sel_cb_quality_thresh") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_hybrid_sel_cb_quality_thresh = (float)atof(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-userdata0") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_userdata0 = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-userdata1") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_userdata1 = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-framerate") == 0) { REMAINING_ARGS_CHECK(1); double fps = atof(arg_v[arg_index + 1]); double us_per_frame = 0; if (fps > 0) us_per_frame = 1000000.0f / fps; m_comp_params.m_us_per_frame = clamp(static_cast(us_per_frame + .5f), 0, basist::cBASISMaxUSPerFrame); arg_count++; } else if (strcasecmp(pArg, "-tex_type") == 0) { REMAINING_ARGS_CHECK(1); const char *pType = arg_v[arg_index + 1]; if (strcasecmp(pType, "2d") == 0) m_comp_params.m_tex_type = basist::cBASISTexType2D; else if (strcasecmp(pType, "2darray") == 0) m_comp_params.m_tex_type = basist::cBASISTexType2DArray; else if (strcasecmp(pType, "3d") == 0) m_comp_params.m_tex_type = basist::cBASISTexTypeVolume; else if (strcasecmp(pType, "cubemap") == 0) m_comp_params.m_tex_type = basist::cBASISTexTypeCubemapArray; else if (strcasecmp(pType, "video") == 0) m_comp_params.m_tex_type = basist::cBASISTexTypeVideoFrames; else { error_printf("Invalid texture type: %s\n", pType); return false; } arg_count++; } else if (strcasecmp(pArg, "-individual") == 0) m_individual = true; else if (strcasecmp(pArg, "-fuzz_testing") == 0) m_fuzz_testing = true; else if (strcasecmp(pArg, "-csv_file") == 0) { REMAINING_ARGS_CHECK(1); m_csv_file = arg_v[arg_index + 1]; m_comp_params.m_compute_stats = true; arg_count++; } else if (pArg[0] == '-') { error_printf("Unrecognized command line option: %s\n", pArg); return false; } else { // Let's assume it's a source filename, so globbing works //error_printf("Unrecognized command line option: %s\n", pArg); m_input_filenames.push_back(pArg); } arg_index += arg_count; } if (m_comp_params.m_quality_level != -1) { m_comp_params.m_max_endpoint_clusters = 0; m_comp_params.m_max_selector_clusters = 0; } else if ((!m_comp_params.m_max_endpoint_clusters) || (!m_comp_params.m_max_selector_clusters)) { m_comp_params.m_max_endpoint_clusters = 0; m_comp_params.m_max_selector_clusters = 0; m_comp_params.m_quality_level = 128; } if (!m_comp_params.m_mip_srgb.was_changed()) { // They didn't specify what colorspace to do mipmap filtering in, so choose sRGB if they've specified that the texture is sRGB. if (m_comp_params.m_perceptual) m_comp_params.m_mip_srgb = true; else m_comp_params.m_mip_srgb = false; } return true; } bool process_listing_files() { std::vector new_input_filenames; for (uint32_t i = 0; i < m_input_filenames.size(); i++) { if (m_input_filenames[i][0] == '@') { if (!load_listing_file(m_input_filenames[i], new_input_filenames)) return false; } else new_input_filenames.push_back(m_input_filenames[i]); } new_input_filenames.swap(m_input_filenames); std::vector new_input_alpha_filenames; for (uint32_t i = 0; i < m_input_alpha_filenames.size(); i++) { if (m_input_alpha_filenames[i][0] == '@') { if (!load_listing_file(m_input_alpha_filenames[i], new_input_alpha_filenames)) return false; } else new_input_alpha_filenames.push_back(m_input_alpha_filenames[i]); } new_input_alpha_filenames.swap(m_input_alpha_filenames); return true; } basis_compressor_params m_comp_params; tool_mode m_mode; std::vector m_input_filenames; std::vector m_input_alpha_filenames; std::string m_output_filename; std::string m_output_path; std::string m_multifile_printf; uint32_t m_multifile_first; uint32_t m_multifile_num; std::string m_csv_file; bool m_individual; bool m_no_ktx; bool m_etc1_only; bool m_fuzz_testing; bool m_compare_ssim; }; static bool expand_multifile(command_line_params &opts) { if (!opts.m_multifile_printf.size()) return true; if (!opts.m_multifile_num) { error_printf("-multifile_printf specified, but not -multifile_num\n"); return false; } std::string fmt(opts.m_multifile_printf); size_t x = fmt.find_first_of('!'); if (x != std::string::npos) fmt[x] = '%'; if (string_find_right(fmt, '%') == -1) { error_printf("Must include C-style printf() format character '%%' in -multifile_printf string\n"); return false; } for (uint32_t i = opts.m_multifile_first; i < opts.m_multifile_first + opts.m_multifile_num; i++) { char buf[1024]; #ifdef _WIN32 sprintf_s(buf, sizeof(buf), fmt.c_str(), i); #else snprintf(buf, sizeof(buf), fmt.c_str(), i); #endif if (buf[0]) opts.m_input_filenames.push_back(buf); } return true; } static bool compress_mode(command_line_params &opts) { basist::etc1_global_selector_codebook sel_codebook(basist::g_global_selector_cb_size, basist::g_global_selector_cb); uint32_t num_threads = 1; if (opts.m_comp_params.m_multithreading) { num_threads = std::thread::hardware_concurrency(); if (num_threads < 1) num_threads = 1; } job_pool jpool(num_threads); opts.m_comp_params.m_pJob_pool = &jpool; if (!expand_multifile(opts)) { error_printf("-multifile expansion failed!\n"); return false; } if (!opts.m_input_filenames.size()) { error_printf("No input files to process!\n"); return false; } basis_compressor_params ¶ms = opts.m_comp_params; params.m_read_source_images = true; params.m_write_output_basis_files = true; params.m_pSel_codebook = &sel_codebook; FILE *pCSV_file = nullptr; if (opts.m_csv_file.size()) { pCSV_file = fopen_safe(opts.m_csv_file.c_str(), "a"); if (!pCSV_file) { error_printf("Failed opening CVS file \"%s\"\n", opts.m_csv_file.c_str()); return false; } } printf("Processing %u total files\n", (uint32_t)opts.m_input_filenames.size()); for (size_t file_index = 0; file_index < (opts.m_individual ? opts.m_input_filenames.size() : 1U); file_index++) { if (opts.m_individual) { params.m_source_filenames.resize(1); params.m_source_filenames[0] = opts.m_input_filenames[file_index]; if (file_index < opts.m_input_alpha_filenames.size()) { params.m_source_alpha_filenames.resize(1); params.m_source_alpha_filenames[0] = opts.m_input_alpha_filenames[file_index]; printf("Processing source file \"%s\", alpha file \"%s\"\n", params.m_source_filenames[0].c_str(), params.m_source_alpha_filenames[0].c_str()); } else { params.m_source_alpha_filenames.resize(0); printf("Processing source file \"%s\"\n", params.m_source_filenames[0].c_str()); } } else { params.m_source_filenames = opts.m_input_filenames; params.m_source_alpha_filenames = opts.m_input_alpha_filenames; } if ((opts.m_output_filename.size()) && (!opts.m_individual)) params.m_out_filename = opts.m_output_filename; else { std::string filename; string_get_filename(opts.m_input_filenames[file_index].c_str(), filename); string_remove_extension(filename); filename += ".basis"; if (opts.m_output_path.size()) string_combine_path(filename, opts.m_output_path.c_str(), filename.c_str()); params.m_out_filename = filename; } basis_compressor c; if (!c.init(opts.m_comp_params)) { error_printf("basis_compressor::init() failed!\n"); if (pCSV_file) { fclose(pCSV_file); pCSV_file = nullptr; } return false; } interval_timer tm; tm.start(); basis_compressor::error_code ec = c.process(); tm.stop(); if (ec == basis_compressor::cECSuccess) { printf("Compression succeeded to file \"%s\" in %3.3f secs\n", params.m_out_filename.c_str(), tm.get_elapsed_secs()); } else { bool exit_flag = true; switch (ec) { case basis_compressor::cECFailedReadingSourceImages: { error_printf("Compressor failed reading a source image!\n"); if (opts.m_individual) exit_flag = false; break; } case basis_compressor::cECFailedValidating: error_printf("Compressor failed 2darray/cubemap/video validation checks!\n"); break; case basis_compressor::cECFailedFrontEnd: error_printf("Compressor frontend stage failed!\n"); break; case basis_compressor::cECFailedFontendExtract: error_printf("Compressor frontend data extraction failed!\n"); break; case basis_compressor::cECFailedBackend: error_printf("Compressor backend stage failed!\n"); break; case basis_compressor::cECFailedCreateBasisFile: error_printf("Compressor failed creating Basis file data!\n"); break; case basis_compressor::cECFailedWritingOutput: error_printf("Compressor failed writing to output Basis file!\n"); break; default: error_printf("basis_compress::process() failed!\n"); break; } if (exit_flag) { if (pCSV_file) { fclose(pCSV_file); pCSV_file = nullptr; } return false; } } if ((pCSV_file) && (c.get_stats().size())) { for (size_t slice_index = 0; slice_index < c.get_stats().size(); slice_index++) { fprintf(pCSV_file, "\"%s\", %u, %u, %u, %u, %u, %f, %f, %f, %f, %u, %u, %f\n", params.m_out_filename.c_str(), (uint32_t)slice_index, (uint32_t)c.get_stats().size(), c.get_stats()[slice_index].m_width, c.get_stats()[slice_index].m_height, (uint32_t)c.get_any_source_image_has_alpha(), c.get_basis_bits_per_texel(), c.get_stats()[slice_index].m_best_luma_709_psnr, c.get_stats()[slice_index].m_basis_etc1s_luma_709_psnr, c.get_stats()[slice_index].m_basis_bc1_luma_709_psnr, params.m_quality_level, (int)params.m_compression_level, tm.get_elapsed_secs()); fflush(pCSV_file); } } if (opts.m_individual) printf("\n"); } // file_index if (pCSV_file) { fclose(pCSV_file); pCSV_file = nullptr; } return true; } static bool unpack_and_validate_mode(command_line_params &opts, bool validate_flag) { basist::etc1_global_selector_codebook sel_codebook(basist::g_global_selector_cb_size, basist::g_global_selector_cb); if (!opts.m_input_filenames.size()) { error_printf("No input files to process!\n"); return false; } uint32_t total_unpack_warnings = 0; uint32_t total_pvrtc_nonpow2_warnings = 0; for (uint32_t file_index = 0; file_index < opts.m_input_filenames.size(); file_index++) { const char* pInput_filename = opts.m_input_filenames[file_index].c_str(); std::string base_filename; string_split_path(pInput_filename, nullptr, nullptr, &base_filename, nullptr); uint8_vec basis_data; if (!basisu::read_file_to_vec(pInput_filename, basis_data)) { error_printf("Failed reading file \"%s\"\n", pInput_filename); return false; } printf("Input file \"%s\"\n", pInput_filename); if (!basis_data.size()) { error_printf("File is empty!\n"); return false; } if (basis_data.size() > UINT32_MAX) { error_printf("File is too large!\n"); return false; } basist::basisu_transcoder dec(&sel_codebook); if (!opts.m_fuzz_testing) { // Skip the full validation, which CRC16's the entire file. // Validate the file - note this isn't necessary for transcoding if (!dec.validate_file_checksums(&basis_data[0], (uint32_t)basis_data.size(), true)) { error_printf("File version is unsupported, or file fail CRC checks!\n"); return false; } } printf("File version and CRC checks succeeded\n"); basist::basisu_file_info fileinfo; if (!dec.get_file_info(&basis_data[0], (uint32_t)basis_data.size(), fileinfo)) { error_printf("Failed retrieving Basis file information!\n"); return false; } assert(fileinfo.m_total_images == fileinfo.m_image_mipmap_levels.size()); assert(fileinfo.m_total_images == dec.get_total_images(&basis_data[0], (uint32_t)basis_data.size())); printf("File info:\n"); printf(" Version: %X\n", fileinfo.m_version); printf(" Total header size: %u\n", fileinfo.m_total_header_size); printf(" Total selectors: %u\n", fileinfo.m_total_selectors); printf(" Selector codebook size: %u\n", fileinfo.m_selector_codebook_size); printf(" Total endpoints: %u\n", fileinfo.m_total_endpoints); printf(" Endpoint codebook size: %u\n", fileinfo.m_endpoint_codebook_size); printf(" Tables size: %u\n", fileinfo.m_tables_size); printf(" Slices size: %u\n", fileinfo.m_slices_size); printf(" Texture type: %s\n", basist::basis_get_texture_type_name(fileinfo.m_tex_type)); printf(" us per frame: %u (%f fps)\n", fileinfo.m_us_per_frame, fileinfo.m_us_per_frame ? (1.0f / ((float)fileinfo.m_us_per_frame / 1000000.0f)) : 0.0f); printf(" Total slices: %u\n", (uint32_t)fileinfo.m_slice_info.size()); printf(" Total images: %i\n", fileinfo.m_total_images); printf(" Y Flipped: %u, Has alpha slices: %u\n", fileinfo.m_y_flipped, fileinfo.m_has_alpha_slices); printf(" userdata0: 0x%X userdata1: 0x%X\n", fileinfo.m_userdata0, fileinfo.m_userdata1); printf(" Per-image mipmap levels: "); for (uint32_t i = 0; i < fileinfo.m_total_images; i++) printf("%u ", fileinfo.m_image_mipmap_levels[i]); printf("\n"); printf("\nImage info:\n"); for (uint32_t i = 0; i < fileinfo.m_total_images; i++) { basist::basisu_image_info ii; if (!dec.get_image_info(&basis_data[0], (uint32_t)basis_data.size(), ii, i)) { error_printf("get_image_info() failed!\n"); return false; } printf("Image %u: MipLevels: %u OrigDim: %ux%u, BlockDim: %ux%u, FirstSlice: %u, HasAlpha: %u\n", i, ii.m_total_levels, ii.m_orig_width, ii.m_orig_height, ii.m_num_blocks_x, ii.m_num_blocks_y, ii.m_first_slice_index, (uint32_t)ii.m_alpha_flag); } printf("\nSlice info:\n"); for (uint32_t i = 0; i < fileinfo.m_slice_info.size(); i++) { const basist::basisu_slice_info& sliceinfo = fileinfo.m_slice_info[i]; printf("%u: OrigWidthHeight: %ux%u, BlockDim: %ux%u, TotalBlocks: %u, Compressed size: %u, Image: %u, Level: %u, UnpackedCRC16: 0x%X, alpha: %u, iframe: %i\n", i, sliceinfo.m_orig_width, sliceinfo.m_orig_height, sliceinfo.m_num_blocks_x, sliceinfo.m_num_blocks_y, sliceinfo.m_total_blocks, sliceinfo.m_compressed_size, sliceinfo.m_image_index, sliceinfo.m_level_index, sliceinfo.m_unpacked_slice_crc16, (uint32_t)sliceinfo.m_alpha_flag, (uint32_t)sliceinfo.m_iframe_flag); } printf("\n"); interval_timer tm; tm.start(); if (!dec.start_transcoding(&basis_data[0], (uint32_t)basis_data.size())) { error_printf("start_transcoding() failed!\n"); return false; } printf("start_transcoding time: %3.3f ms\n", tm.get_elapsed_ms()); std::vector< gpu_image_vec > gpu_images[basist::cTFTotalTextureFormats]; int first_format = 0; int last_format = basist::cTFTotalBlockTextureFormats; if (opts.m_etc1_only) { first_format = basist::cTFETC1; last_format = first_format + 1; } for (int format_iter = first_format; format_iter < last_format; format_iter++) { basist::transcoder_texture_format tex_fmt = static_cast(format_iter); gpu_images[tex_fmt].resize(fileinfo.m_total_images); for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++) gpu_images[tex_fmt][image_index].resize(fileinfo.m_image_mipmap_levels[image_index]); } // Now transcode the file to all supported texture formats and save mipmapped KTX files for (int format_iter = first_format; format_iter < last_format; format_iter++) { for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++) { for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++) { basist::basisu_image_level_info level_info; if (!dec.get_image_level_info(&basis_data[0], (uint32_t)basis_data.size(), level_info, image_index, level_index)) { error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index); return false; } const basist::transcoder_texture_format transcoder_tex_fmt = static_cast(format_iter); if ((transcoder_tex_fmt == basist::cTFPVRTC1_4_RGB) || (transcoder_tex_fmt == basist::cTFPVRTC1_4_RGBA)) { if (!is_pow2(level_info.m_width) || !is_pow2(level_info.m_height)) { total_pvrtc_nonpow2_warnings++; printf("Warning: Will not transcode image %u level %u res %ux%u to PVRTC1 (one or more dimension is not a power of 2)\n", image_index, level_index, level_info.m_width, level_info.m_height); // Can't transcode this image level to PVRTC because it's not a pow2 (we're going to support transcoding non-pow2 to the next larger pow2 soon) continue; } } basisu::texture_format tex_fmt = basis_get_basisu_texture_format(transcoder_tex_fmt); gpu_image& gi = gpu_images[transcoder_tex_fmt][image_index][level_index]; gi.init(tex_fmt, level_info.m_orig_width, level_info.m_orig_height); // Fill the buffer with psuedo-random bytes, to help more visibly detect cases where the transcoder fails to write to part of the output. fill_buffer_with_random_bytes(gi.get_ptr(), gi.get_size_in_bytes()); tm.start(); #if 1 if (!dec.transcode_image_level(&basis_data[0], (uint32_t)basis_data.size(), image_index, level_index, gi.get_ptr(), gi.get_total_blocks(), transcoder_tex_fmt, 0)) { error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, format_iter); return false; } double total_transcode_time = tm.get_elapsed_ms(); #else // quick and dirty row pitch parameter test, to be moved into a unit test uint8_vec temp; uint32_t block_pitch_to_test = level_info.m_num_blocks_x; if ((transcoder_tex_fmt != basist::cTFPVRTC1_4_RGB) || (transcoder_tex_fmt != basist::cTFPVRTC1_4_RGBA)) block_pitch_to_test += 5; temp.resize(level_info.m_num_blocks_y * block_pitch_to_test * gi.get_bytes_per_block()); fill_buffer_with_random_bytes(&temp[0], temp.size()); tm.start(); if (!dec.transcode_image_level(&basis_data[0], (uint32_t)basis_data.size(), image_index, level_index, &temp[0], (uint32_t)(temp.size() / gi.get_bytes_per_block()), transcoder_tex_fmt, 0, block_pitch_to_test)) { error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, format_iter); return false; } double total_transcode_time = tm.get_elapsed_ms(); if ((transcoder_tex_fmt == basist::cTFPVRTC1_4_RGB) || (transcoder_tex_fmt == basist::cTFPVRTC1_4_RGBA)) { assert(temp.size() == gi.get_size_in_bytes()); memcpy(gi.get_ptr(), &temp[0], gi.get_size_in_bytes()); } else { for (uint32_t y = 0; y < level_info.m_num_blocks_y; y++) memcpy(gi.get_block_ptr(0, y), &temp[y * block_pitch_to_test * gi.get_bytes_per_block()], gi.get_row_pitch_in_bytes()); } #endif printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time); } // format_iter } // level_index } // image_info if (!validate_flag) { // Now write KTX files and unpack them to individual PNG's for (int format_iter = first_format; format_iter < last_format; format_iter++) { const basist::transcoder_texture_format transcoder_tex_fmt = static_cast(format_iter); if ((!opts.m_no_ktx) && (fileinfo.m_tex_type == basist::cBASISTexTypeCubemapArray)) { // No KTX tool that we know of supports cubemap arrays, so write individual cubemap files. for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index += 6) { std::vector cubemap; for (uint32_t i = 0; i < 6; i++) cubemap.push_back(gpu_images[format_iter][image_index + i]); std::string ktx_filename(base_filename + string_format("_transcoded_cubemap_%s_%u.ktx", basist::basis_get_format_name(transcoder_tex_fmt), image_index / 6)); if (!write_compressed_texture_file(ktx_filename.c_str(), cubemap, true)) { error_printf("Failed writing KTX file \"%s\"!\n", ktx_filename.c_str()); return false; } printf("Wrote KTX file \"%s\"\n", ktx_filename.c_str()); } } for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++) { gpu_image_vec& gi = gpu_images[format_iter][image_index]; if (!gi.size()) continue; uint32_t level; for (level = 0; level < gi.size(); level++) if (!gi[level].get_total_blocks()) break; if (level < gi.size()) continue; if ((!opts.m_no_ktx) && (fileinfo.m_tex_type != basist::cBASISTexTypeCubemapArray)) { std::string ktx_filename(base_filename + string_format("_transcoded_%s_%04u.ktx", basist::basis_get_format_name(transcoder_tex_fmt), image_index)); if (!write_compressed_texture_file(ktx_filename.c_str(), gi)) { error_printf("Failed writing KTX file \"%s\"!\n", ktx_filename.c_str()); return false; } printf("Wrote KTX file \"%s\"\n", ktx_filename.c_str()); } for (uint32_t level_index = 0; level_index < gi.size(); level_index++) { basist::basisu_image_level_info level_info; if (!dec.get_image_level_info(&basis_data[0], (uint32_t)basis_data.size(), level_info, image_index, level_index)) { error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index); return false; } image u; if (!gi[level_index].unpack(u)) { printf("Warning: Failed unpacking GPU texture data (%u %u %u). Unpacking as much as possible.\n", format_iter, image_index, level_index); total_unpack_warnings++; } //u.crop(level_info.m_orig_width, level_info.m_orig_height); std::string rgb_filename; if (gi.size() > 1) rgb_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index); else rgb_filename = base_filename + string_format("_unpacked_rgb_%s_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), image_index); if (!save_png(rgb_filename, u, cImageSaveIgnoreAlpha)) { error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str()); if (basis_transcoder_format_has_alpha(transcoder_tex_fmt)) { std::string a_filename; if (gi.size() > 1) a_filename = base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index); else a_filename = base_filename + string_format("_unpacked_a_%s_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), image_index); if (!save_png(a_filename, u, cImageSaveGrayscale, 3)) { error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", a_filename.c_str()); } } // level_index } // image_index } // format_iter } // if (!validate_flag) // Now unpack to RGBA using the transcoder itself to do the unpacking to raster images for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++) { for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++) { const basist::transcoder_texture_format transcoder_tex_fmt = basist::cTFRGBA32; basist::basisu_image_level_info level_info; if (!dec.get_image_level_info(&basis_data[0], (uint32_t)basis_data.size(), level_info, image_index, level_index)) { error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index); return false; } image img(level_info.m_orig_width, level_info.m_orig_height); fill_buffer_with_random_bytes(&img(0, 0), img.get_total_pixels() * sizeof(uint32_t)); tm.start(); if (!dec.transcode_image_level(&basis_data[0], (uint32_t)basis_data.size(), image_index, level_index, &img(0, 0).r, img.get_total_pixels(), transcoder_tex_fmt, 0, img.get_pitch(), nullptr, img.get_height())) { error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, transcoder_tex_fmt); return false; } double total_transcode_time = tm.get_elapsed_ms(); printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time); std::string rgb_filename(base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index)); if (!save_png(rgb_filename, img, cImageSaveIgnoreAlpha)) { error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str()); std::string a_filename(base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index)); if (!save_png(a_filename, img, cImageSaveGrayscale, 3)) { error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", a_filename.c_str()); } // level_index } // image_index // Now unpack to RGB565 using the transcoder itself to do the unpacking to raster images for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++) { for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++) { const basist::transcoder_texture_format transcoder_tex_fmt = basist::cTFRGB565; basist::basisu_image_level_info level_info; if (!dec.get_image_level_info(&basis_data[0], (uint32_t)basis_data.size(), level_info, image_index, level_index)) { error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index); return false; } std::vector packed_img(level_info.m_orig_width * level_info.m_orig_height); fill_buffer_with_random_bytes(&packed_img[0], packed_img.size() * sizeof(uint16_t)); tm.start(); if (!dec.transcode_image_level(&basis_data[0], (uint32_t)basis_data.size(), image_index, level_index, &packed_img[0], (uint32_t)packed_img.size(), transcoder_tex_fmt, 0, level_info.m_orig_width, nullptr, level_info.m_orig_height)) { error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, transcoder_tex_fmt); return false; } double total_transcode_time = tm.get_elapsed_ms(); image img(level_info.m_orig_width, level_info.m_orig_height); for (uint32_t y = 0; y < level_info.m_orig_height; y++) { for (uint32_t x = 0; x < level_info.m_orig_width; x++) { const uint16_t p = packed_img[x + y * level_info.m_orig_width]; uint32_t r = p >> 11, g = (p >> 5) & 63, b = p & 31; r = (r << 3) | (r >> 2); g = (g << 2) | (g >> 4); b = (b << 3) | (b >> 2); img(x, y).set(r, g, b, 255); } } printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time); std::string rgb_filename(base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index)); if (!save_png(rgb_filename, img, cImageSaveIgnoreAlpha)) { error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str()); std::string a_filename(base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index)); if (!save_png(a_filename, img, cImageSaveGrayscale, 3)) { error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", a_filename.c_str()); } // level_index } // image_index // Now unpack to RGBA4444 using the transcoder itself to do the unpacking to raster images for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++) { for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++) { const basist::transcoder_texture_format transcoder_tex_fmt = basist::cTFRGBA4444; basist::basisu_image_level_info level_info; if (!dec.get_image_level_info(&basis_data[0], (uint32_t)basis_data.size(), level_info, image_index, level_index)) { error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index); return false; } std::vector packed_img(level_info.m_orig_width * level_info.m_orig_height); fill_buffer_with_random_bytes(&packed_img[0], packed_img.size() * sizeof(uint16_t)); tm.start(); if (!dec.transcode_image_level(&basis_data[0], (uint32_t)basis_data.size(), image_index, level_index, &packed_img[0], (uint32_t)packed_img.size(), transcoder_tex_fmt, 0, level_info.m_orig_width, nullptr, level_info.m_orig_height)) { error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, transcoder_tex_fmt); return false; } double total_transcode_time = tm.get_elapsed_ms(); image img(level_info.m_orig_width, level_info.m_orig_height); for (uint32_t y = 0; y < level_info.m_orig_height; y++) { for (uint32_t x = 0; x < level_info.m_orig_width; x++) { const uint16_t p = packed_img[x + y * level_info.m_orig_width]; uint32_t r = p >> 12, g = (p >> 8) & 15, b = (p >> 4) & 15, a = p & 15; r = (r << 4) | r; g = (g << 4) | g; b = (b << 4) | b; a = (a << 4) | a; img(x, y).set(r, g, b, a); } } printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time); std::string rgb_filename(base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index)); if (!save_png(rgb_filename, img, cImageSaveIgnoreAlpha)) { error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str()); std::string a_filename(base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index)); if (!save_png(a_filename, img, cImageSaveGrayscale, 3)) { error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", a_filename.c_str()); } // level_index } // image_index } // file_index if (total_pvrtc_nonpow2_warnings) printf("Warning: %u images could not be transcoded to PVRTC1 because one or both dimensions were not a power of 2\n", total_pvrtc_nonpow2_warnings); if (total_unpack_warnings) printf("ATTENTION: %u total images had invalid GPU texture data!\n", total_unpack_warnings); else printf("Success\n"); return true; } static bool compare_mode(command_line_params &opts) { if (opts.m_input_filenames.size() != 2) { error_printf("Must specify two PNG filenames using -file\n"); return false; } image a, b; if (!load_png(opts.m_input_filenames[0].c_str(), a)) { error_printf("Failed loading image from file \"%s\"!\n", opts.m_input_filenames[0].c_str()); return false; } printf("Loaded \"%s\", %ux%u, has alpha: %u\n", opts.m_input_filenames[0].c_str(), a.get_width(), a.get_height(), a.has_alpha()); if (!load_png(opts.m_input_filenames[1].c_str(), b)) { error_printf("Failed loading image from file \"%s\"!\n", opts.m_input_filenames[1].c_str()); return false; } printf("Loaded \"%s\", %ux%u, has alpha: %u\n", opts.m_input_filenames[1].c_str(), b.get_width(), b.get_height(), b.has_alpha()); if ((a.get_width() != b.get_width()) || (a.get_height() != b.get_height())) { printf("Images don't have the same dimensions - cropping input images to smallest common dimensions\n"); uint32_t w = minimum(a.get_width(), b.get_width()); uint32_t h = minimum(a.get_height(), b.get_height()); a.crop(w, h); b.crop(w, h); } printf("Comparison image res: %ux%u\n", a.get_width(), a.get_height()); image_metrics im; im.calc(a, b, 0, 3); im.print("RGB "); im.calc(a, b, 0, 1); im.print("R "); im.calc(a, b, 1, 1); im.print("G "); im.calc(a, b, 2, 1); im.print("B "); im.calc(a, b, 0, 0); im.print("Y 709 " ); im.calc(a, b, 0, 0, true, true); im.print("Y 601 " ); if (opts.m_compare_ssim) { vec4F s_rgb(compute_ssim(a, b, false, false)); printf("R SSIM: %f\n", s_rgb[0]); printf("G SSIM: %f\n", s_rgb[1]); printf("B SSIM: %f\n", s_rgb[2]); printf("RGB Avg SSIM: %f\n", (s_rgb[0] + s_rgb[1] + s_rgb[2]) / 3.0f); printf("A SSIM: %f\n", s_rgb[3]); vec4F s_y_709(compute_ssim(a, b, true, false)); printf("Y 709 SSIM: %f\n", s_y_709[0]); vec4F s_y_601(compute_ssim(a, b, true, true)); printf("Y 601 SSIM: %f\n", s_y_601[0]); } image delta_img(a.get_width(), a.get_height()); const int X = 2; for (uint32_t y = 0; y < a.get_height(); y++) { for (uint32_t x = 0; x < a.get_width(); x++) { color_rgba &d = delta_img(x, y); for (int c = 0; c < 4; c++) d[c] = (uint8_t)clamp((a(x, y)[c] - b(x, y)[c]) * X + 128, 0, 255); } // x } // y save_png("a_rgb.png", a, cImageSaveIgnoreAlpha); save_png("a_alpha.png", a, cImageSaveGrayscale, 3); printf("Wrote a_rgb.png and a_alpha.png\n"); save_png("b_rgb.png", b, cImageSaveIgnoreAlpha); save_png("b_alpha.png", b, cImageSaveGrayscale, 3); printf("Wrote b_rgb.png and b_alpha.png\n"); save_png("delta_img_rgb.png", delta_img, cImageSaveIgnoreAlpha); printf("Wrote delta_img_rgb.png\n"); save_png("delta_img_a.png", delta_img, cImageSaveGrayscale, 3); printf("Wrote delta_img_a.png\n"); return true; } static int main_internal(int argc, const char **argv) { printf("Basis Universal GPU Texture Compressor Reference Encoder v" BASISU_TOOL_VERSION ", Copyright (C) 2019 Binomial LLC, All rights reserved\n"); //interval_timer tm; //tm.start(); basisu_encoder_init(); //printf("Encoder and transcoder libraries initialized in %3.3f ms\n", tm.get_elapsed_ms()); #if defined(DEBUG) || defined(_DEBUG) printf("DEBUG build\n"); #endif if (argc == 1) { print_usage(); return EXIT_FAILURE; } command_line_params opts; if (!opts.parse(argc, argv)) { print_usage(); return EXIT_FAILURE; } if (!opts.process_listing_files()) return EXIT_FAILURE; if (opts.m_mode == cDefault) { for (size_t i = 0; i < opts.m_input_filenames.size(); i++) { std::string ext(string_get_extension(opts.m_input_filenames[i])); if (strcasecmp(ext.c_str(), "basis") == 0) { // If they haven't specified any modes, and they give us a .basis file, then assume they want to unpack it. opts.m_mode = cUnpack; break; } } } bool status = false; switch (opts.m_mode) { case cDefault: case cCompress: status = compress_mode(opts); break; case cValidate: status = unpack_and_validate_mode(opts, true); break; case cUnpack: status = unpack_and_validate_mode(opts, false); break; case cCompare: status = compare_mode(opts); break; default: assert(0); break; } return status ? EXIT_SUCCESS : EXIT_FAILURE; } int main(int argc, const char **argv) { int status = EXIT_FAILURE; #if BASISU_CATCH_EXCEPTIONS try { status = main_internal(argc, argv); } catch (const std::exception &exc) { fprintf(stderr, "Fatal error: Caught exception \"%s\"\n", exc.what()); } catch (...) { fprintf(stderr, "Fatal error: Uncaught exception!\n"); } #else status = main_internal(argc, argv); #endif return status; }