/**************************************************************************/ /* openxr_composition_layer_cylinder.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "openxr_composition_layer_cylinder.h" #include "../extensions/openxr_composition_layer_extension.h" #include "../openxr_api.h" #include "../openxr_interface.h" #include "scene/3d/mesh_instance_3d.h" #include "scene/main/viewport.h" #include "scene/resources/mesh.h" OpenXRCompositionLayerCylinder::OpenXRCompositionLayerCylinder() { composition_layer = { XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR, // type nullptr, // next 0, // layerFlags XR_NULL_HANDLE, // space XR_EYE_VISIBILITY_BOTH, // eyeVisibility {}, // subImage { { 0, 0, 0, 0 }, { 0, 0, 0 } }, // pose radius, // radius central_angle, // centralAngle aspect_ratio, // aspectRatio }; openxr_layer_provider = memnew(OpenXRViewportCompositionLayerProvider((XrCompositionLayerBaseHeader *)&composition_layer)); } OpenXRCompositionLayerCylinder::~OpenXRCompositionLayerCylinder() { } void OpenXRCompositionLayerCylinder::_bind_methods() { ClassDB::bind_method(D_METHOD("set_radius", "radius"), &OpenXRCompositionLayerCylinder::set_radius); ClassDB::bind_method(D_METHOD("get_radius"), &OpenXRCompositionLayerCylinder::get_radius); ClassDB::bind_method(D_METHOD("set_aspect_ratio", "aspect_ratio"), &OpenXRCompositionLayerCylinder::set_aspect_ratio); ClassDB::bind_method(D_METHOD("get_aspect_ratio"), &OpenXRCompositionLayerCylinder::get_aspect_ratio); ClassDB::bind_method(D_METHOD("set_central_angle", "angle"), &OpenXRCompositionLayerCylinder::set_central_angle); ClassDB::bind_method(D_METHOD("get_central_angle"), &OpenXRCompositionLayerCylinder::get_central_angle); ClassDB::bind_method(D_METHOD("set_fallback_segments", "segments"), &OpenXRCompositionLayerCylinder::set_fallback_segments); ClassDB::bind_method(D_METHOD("get_fallback_segments"), &OpenXRCompositionLayerCylinder::get_fallback_segments); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "radius", PROPERTY_HINT_NONE, ""), "set_radius", "get_radius"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "aspect_ratio", PROPERTY_HINT_RANGE, "0,100"), "set_aspect_ratio", "get_aspect_ratio"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "central_angle", PROPERTY_HINT_RANGE, "0,360,0.1,or_less,or_greater,radians_as_degrees"), "set_central_angle", "get_central_angle"); ADD_PROPERTY(PropertyInfo(Variant::INT, "fallback_segments", PROPERTY_HINT_NONE, ""), "set_fallback_segments", "get_fallback_segments"); } void OpenXRCompositionLayerCylinder::_on_openxr_session_begun() { OpenXRCompositionLayer::_on_openxr_session_begun(); if (openxr_api) { composition_layer.space = openxr_api->get_play_space(); } } Ref<Mesh> OpenXRCompositionLayerCylinder::_create_fallback_mesh() { Ref<ArrayMesh> mesh; mesh.instantiate(); float arc_length = radius * central_angle; float half_height = ((1.0 / aspect_ratio) * arc_length) / 2.0; Array arrays; arrays.resize(ArrayMesh::ARRAY_MAX); Vector<Vector3> vertices; Vector<Vector3> normals; Vector<Vector2> uvs; Vector<int> indices; float delta_angle = central_angle / fallback_segments; float start_angle = (-Math_PI / 2.0) - (central_angle / 2.0); for (uint32_t i = 0; i < fallback_segments + 1; i++) { float current_angle = start_angle + (delta_angle * i); float x = radius * Math::cos(current_angle); float z = radius * Math::sin(current_angle); Vector3 normal(Math::cos(current_angle), 0, Math::sin(current_angle)); vertices.push_back(Vector3(x, -half_height, z)); normals.push_back(normal); uvs.push_back(Vector2((float)i / fallback_segments, 1)); vertices.push_back(Vector3(x, half_height, z)); normals.push_back(normal); uvs.push_back(Vector2((float)i / fallback_segments, 0)); } for (uint32_t i = 0; i < fallback_segments; i++) { uint32_t index = i * 2; indices.push_back(index); indices.push_back(index + 1); indices.push_back(index + 3); indices.push_back(index); indices.push_back(index + 3); indices.push_back(index + 2); } arrays[ArrayMesh::ARRAY_VERTEX] = vertices; arrays[ArrayMesh::ARRAY_NORMAL] = normals; arrays[ArrayMesh::ARRAY_TEX_UV] = uvs; arrays[ArrayMesh::ARRAY_INDEX] = indices; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arrays); return mesh; } void OpenXRCompositionLayerCylinder::_notification(int p_what) { switch (p_what) { case NOTIFICATION_LOCAL_TRANSFORM_CHANGED: { Transform3D transform = get_transform(); Quaternion quat(transform.basis.orthonormalized()); composition_layer.pose.orientation = { (float)quat.x, (float)quat.y, (float)quat.z, (float)quat.w }; composition_layer.pose.position = { (float)transform.origin.x, (float)transform.origin.y, (float)transform.origin.z }; } break; } } void OpenXRCompositionLayerCylinder::set_radius(float p_radius) { ERR_FAIL_COND(p_radius <= 0); radius = p_radius; composition_layer.radius = radius; update_fallback_mesh(); } float OpenXRCompositionLayerCylinder::get_radius() const { return radius; } void OpenXRCompositionLayerCylinder::set_aspect_ratio(float p_aspect_ratio) { ERR_FAIL_COND(p_aspect_ratio <= 0); aspect_ratio = p_aspect_ratio; composition_layer.aspectRatio = aspect_ratio; update_fallback_mesh(); } float OpenXRCompositionLayerCylinder::get_aspect_ratio() const { return aspect_ratio; } void OpenXRCompositionLayerCylinder::set_central_angle(float p_central_angle) { ERR_FAIL_COND(p_central_angle <= 0); central_angle = p_central_angle; composition_layer.centralAngle = central_angle; update_fallback_mesh(); } float OpenXRCompositionLayerCylinder::get_central_angle() const { return central_angle; } void OpenXRCompositionLayerCylinder::set_fallback_segments(uint32_t p_fallback_segments) { ERR_FAIL_COND(p_fallback_segments == 0); fallback_segments = p_fallback_segments; update_fallback_mesh(); } uint32_t OpenXRCompositionLayerCylinder::get_fallback_segments() const { return fallback_segments; } Vector2 OpenXRCompositionLayerCylinder::intersects_ray(const Vector3 &p_origin, const Vector3 &p_direction) const { Transform3D cylinder_transform = get_global_transform(); Vector3 cylinder_axis = cylinder_transform.basis.get_column(1); Vector3 offset = p_origin - cylinder_transform.origin; float a = p_direction.dot(p_direction - cylinder_axis * p_direction.dot(cylinder_axis)); float b = 2.0 * (p_direction.dot(offset - cylinder_axis * offset.dot(cylinder_axis))); float c = offset.dot(offset - cylinder_axis * offset.dot(cylinder_axis)) - (radius * radius); float discriminant = b * b - 4.0 * a * c; if (discriminant < 0.0) { return Vector2(-1.0, -1.0); } float t0 = (-b - Math::sqrt(discriminant)) / (2.0 * a); float t1 = (-b + Math::sqrt(discriminant)) / (2.0 * a); float t = MAX(t0, t1); if (t < 0.0) { return Vector2(-1.0, -1.0); } Vector3 intersection = p_origin + p_direction * t; Basis correction = cylinder_transform.basis.inverse(); correction.rotate(Vector3(0.0, 1.0, 0.0), -Math_PI / 2.0); Vector3 relative_point = correction.xform(intersection - cylinder_transform.origin); Vector2 projected_point = Vector2(relative_point.x, relative_point.z); float intersection_angle = Math::atan2(projected_point.y, projected_point.x); if (Math::abs(intersection_angle) > central_angle / 2.0) { return Vector2(-1.0, -1.0); } float arc_length = radius * central_angle; float height = aspect_ratio * arc_length; if (Math::abs(relative_point.y) > height / 2.0) { return Vector2(-1.0, -1.0); } float u = 0.5 + (intersection_angle / central_angle); float v = 1.0 - (0.5 + (relative_point.y / height)); return Vector2(u, v); }