/**************************************************************************/ /* camera.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "camera.h" #include "collision_object.h" #include "core/engine.h" #include "core/math/camera_matrix.h" #include "core/math/transform_interpolator.h" #include "scene/resources/material.h" #include "scene/resources/surface_tool.h" #include "servers/visual/visual_server_constants.h" void Camera::_update_audio_listener_state() { } void Camera::_request_camera_update() { _update_camera(); } void Camera::_update_camera_mode() { force_change = true; switch (mode) { case PROJECTION_PERSPECTIVE: { set_perspective(fov, near, far); } break; case PROJECTION_ORTHOGONAL: { set_orthogonal(size, near, far); } break; case PROJECTION_FRUSTUM: { set_frustum(size, frustum_offset, near, far); } break; } } void Camera::_validate_property(PropertyInfo &p_property) const { if (p_property.name == "fov") { if (mode != PROJECTION_PERSPECTIVE) { p_property.usage = PROPERTY_USAGE_NOEDITOR; } } else if (p_property.name == "size") { if (mode != PROJECTION_ORTHOGONAL && mode != PROJECTION_FRUSTUM) { p_property.usage = PROPERTY_USAGE_NOEDITOR; } } else if (p_property.name == "frustum_offset") { if (mode != PROJECTION_FRUSTUM) { p_property.usage = PROPERTY_USAGE_NOEDITOR; } } } void Camera::_update_camera() { if (!is_inside_tree()) { return; } if (!is_physics_interpolated_and_enabled()) { VisualServer::get_singleton()->camera_set_transform(camera, get_camera_transform()); } else { // Ideally we shouldn't be moving a physics interpolated camera within a frame, // because it will break smooth interpolation, but it may occur on e.g. level load. if (!Engine::get_singleton()->is_in_physics_frame() && camera.is_valid()) { _physics_interpolation_ensure_transform_calculated(true); VisualServer::get_singleton()->camera_set_transform(camera, _interpolation_data.camera_xform_interpolated); } } // here goes listener stuff /* if (viewport_ptr && is_inside_scene() && is_current()) get_viewport()->_camera_transform_changed_notify(); */ if (get_tree()->is_node_being_edited(this) || !is_current()) { return; } get_viewport()->_camera_transform_changed_notify(); if (get_world().is_valid()) { get_world()->_update_camera(this); } } void Camera::_physics_interpolated_changed() { _update_process_mode(); } void Camera::_physics_interpolation_ensure_data_flipped() { // The curr -> previous update can either occur // on the INTERNAL_PHYSICS_PROCESS OR // on NOTIFICATION_TRANSFORM_CHANGED, // if NOTIFICATION_TRANSFORM_CHANGED takes place // earlier than INTERNAL_PHYSICS_PROCESS on a tick. // This is to ensure that the data keeps flowing, but the new data // doesn't overwrite before prev has been set. // Keep the data flowing. uint64_t tick = Engine::get_singleton()->get_physics_frames(); if (_interpolation_data.last_update_physics_tick != tick) { _interpolation_data.xform_prev = _interpolation_data.xform_curr; _interpolation_data.last_update_physics_tick = tick; physics_interpolation_flip_data(); } } void Camera::_physics_interpolation_ensure_transform_calculated(bool p_force) const { DEV_CHECK_ONCE(!Engine::get_singleton()->is_in_physics_frame()); InterpolationData &id = _interpolation_data; uint64_t frame = Engine::get_singleton()->get_frames_drawn(); if (id.last_update_frame != frame || p_force) { id.last_update_frame = frame; TransformInterpolator::interpolate_transform(id.xform_prev, id.xform_curr, id.xform_interpolated, Engine::get_singleton()->get_physics_interpolation_fraction()); Transform &tr = id.camera_xform_interpolated; tr = _get_adjusted_camera_transform(id.xform_interpolated); } } void Camera::set_desired_process_modes(bool p_process_internal, bool p_physics_process_internal) { _desired_process_internal = p_process_internal; _desired_physics_process_internal = p_physics_process_internal; _update_process_mode(); } void Camera::_update_process_mode() { bool process = _desired_process_internal; bool physics_process = _desired_physics_process_internal; if (is_physics_interpolated_and_enabled()) { if (is_current()) { process = true; physics_process = true; } } set_process_internal(process); set_physics_process_internal(physics_process); } void Camera::_notification(int p_what) { switch (p_what) { case NOTIFICATION_ENTER_WORLD: { // Needs to track the Viewport because it's needed on NOTIFICATION_EXIT_WORLD // and Spatial will handle it first, including clearing its reference to the Viewport, // therefore making it impossible to subclasses to access it viewport = get_viewport(); ERR_FAIL_COND(!viewport); bool first_camera = viewport->_camera_add(this); if (current || first_camera) { viewport->_camera_set(this); } } break; case NOTIFICATION_INTERNAL_PROCESS: { if (is_physics_interpolated_and_enabled() && camera.is_valid()) { _physics_interpolation_ensure_transform_calculated(); #ifdef VISUAL_SERVER_DEBUG_PHYSICS_INTERPOLATION print_line("\t\tinterpolated Camera: " + rtos(_interpolation_data.xform_interpolated.origin.x) + "\t( prev " + rtos(_interpolation_data.xform_prev.origin.x) + ", curr " + rtos(_interpolation_data.xform_curr.origin.x) + " ) on tick " + itos(Engine::get_singleton()->get_physics_frames())); #endif VisualServer::get_singleton()->camera_set_transform(camera, _interpolation_data.camera_xform_interpolated); } } break; case NOTIFICATION_INTERNAL_PHYSICS_PROCESS: { if (is_physics_interpolated_and_enabled()) { _physics_interpolation_ensure_data_flipped(); _interpolation_data.xform_curr = get_global_transform(); } } break; case NOTIFICATION_TRANSFORM_CHANGED: { if (is_physics_interpolated_and_enabled()) { _physics_interpolation_ensure_data_flipped(); _interpolation_data.xform_curr = get_global_transform(); #if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED) if (!Engine::get_singleton()->is_in_physics_frame()) { PHYSICS_INTERPOLATION_NODE_WARNING(get_instance_id(), "Interpolated Camera triggered from outside physics process"); } #endif } _request_camera_update(); if (doppler_tracking != DOPPLER_TRACKING_DISABLED) { velocity_tracker->update_position(get_global_transform().origin); } // Allow auto-reset when first adding to the tree, as a convenience. if (_is_physics_interpolation_reset_requested() && is_inside_tree()) { _notification(NOTIFICATION_RESET_PHYSICS_INTERPOLATION); _set_physics_interpolation_reset_requested(false); } } break; case NOTIFICATION_RESET_PHYSICS_INTERPOLATION: { if (is_inside_tree()) { _interpolation_data.xform_curr = get_global_transform(); _interpolation_data.xform_prev = _interpolation_data.xform_curr; } } break; case NOTIFICATION_EXIT_WORLD: { if (!get_tree()->is_node_being_edited(this)) { if (is_current()) { clear_current(); current = true; //keep it true } else { current = false; } } if (viewport) { viewport->_camera_remove(this); viewport = nullptr; } } break; case NOTIFICATION_BECAME_CURRENT: { if (viewport) { viewport->find_world()->_register_camera(this); } _update_process_mode(); } break; case NOTIFICATION_LOST_CURRENT: { if (viewport) { viewport->find_world()->_remove_camera(this); } _update_process_mode(); } break; } } Transform Camera::_get_adjusted_camera_transform(const Transform &p_xform) const { Transform tr = p_xform.orthonormalized(); tr.origin += tr.basis.get_axis(1) * v_offset; tr.origin += tr.basis.get_axis(0) * h_offset; return tr; } Transform Camera::get_camera_transform() const { if (is_physics_interpolated_and_enabled() && !Engine::get_singleton()->is_in_physics_frame()) { _physics_interpolation_ensure_transform_calculated(); return _interpolation_data.camera_xform_interpolated; } return _get_adjusted_camera_transform(get_global_transform()); } void Camera::set_perspective(float p_fovy_degrees, float p_z_near, float p_z_far) { if (!force_change && fov == p_fovy_degrees && p_z_near == near && p_z_far == far && mode == PROJECTION_PERSPECTIVE) { return; } fov = p_fovy_degrees; near = p_z_near; far = p_z_far; mode = PROJECTION_PERSPECTIVE; VisualServer::get_singleton()->camera_set_perspective(camera, fov, near, far); update_gizmo(); force_change = false; } void Camera::set_orthogonal(float p_size, float p_z_near, float p_z_far) { if (!force_change && size == p_size && p_z_near == near && p_z_far == far && mode == PROJECTION_ORTHOGONAL) { return; } size = p_size; near = p_z_near; far = p_z_far; mode = PROJECTION_ORTHOGONAL; force_change = false; VisualServer::get_singleton()->camera_set_orthogonal(camera, size, near, far); update_gizmo(); } void Camera::set_frustum(float p_size, Vector2 p_offset, float p_z_near, float p_z_far) { if (!force_change && size == p_size && frustum_offset == p_offset && p_z_near == near && p_z_far == far && mode == PROJECTION_FRUSTUM) { return; } size = p_size; frustum_offset = p_offset; near = p_z_near; far = p_z_far; mode = PROJECTION_FRUSTUM; force_change = false; VisualServer::get_singleton()->camera_set_frustum(camera, size, frustum_offset, near, far); update_gizmo(); } void Camera::set_projection(Camera::Projection p_mode) { if (p_mode == PROJECTION_PERSPECTIVE || p_mode == PROJECTION_ORTHOGONAL || p_mode == PROJECTION_FRUSTUM) { mode = p_mode; _update_camera_mode(); _change_notify(); } } RID Camera::get_camera() const { return camera; }; void Camera::make_current() { current = true; if (!is_inside_tree()) { return; } get_viewport()->_camera_set(this); //get_scene()->call_group(SceneMainLoop::GROUP_CALL_REALTIME,camera_group,"_camera_make_current",this); } void Camera::clear_current(bool p_enable_next) { current = false; if (!is_inside_tree()) { return; } if (get_viewport()->get_camera() == this) { get_viewport()->_camera_set(nullptr); if (p_enable_next) { get_viewport()->_camera_make_next_current(this); } } } void Camera::set_current(bool p_current) { if (p_current) { make_current(); } else { clear_current(); } } bool Camera::is_current() const { if (is_inside_tree() && !get_tree()->is_node_being_edited(this)) { return get_viewport()->get_camera() == this; } else { return current; } } Vector3 Camera::project_ray_normal(const Point2 &p_pos) const { Vector3 ray = project_local_ray_normal(p_pos); return get_camera_transform().basis.xform(ray).normalized(); }; Vector3 Camera::project_local_ray_normal(const Point2 &p_pos) const { ERR_FAIL_COND_V_MSG(!is_inside_tree(), Vector3(), "Camera is not inside scene."); Size2 viewport_size = get_viewport()->get_camera_rect_size(); Vector2 cpos = get_viewport()->get_camera_coords(p_pos); Vector3 ray; if (mode == PROJECTION_ORTHOGONAL) { ray = Vector3(0, 0, -1); } else { CameraMatrix cm; cm.set_perspective(fov, viewport_size.aspect(), near, far, keep_aspect == KEEP_WIDTH); Vector2 screen_he = cm.get_viewport_half_extents(); ray = Vector3(((cpos.x / viewport_size.width) * 2.0 - 1.0) * screen_he.x, ((1.0 - (cpos.y / viewport_size.height)) * 2.0 - 1.0) * screen_he.y, -near).normalized(); } return ray; }; Vector3 Camera::project_ray_origin(const Point2 &p_pos) const { ERR_FAIL_COND_V_MSG(!is_inside_tree(), Vector3(), "Camera is not inside scene."); Size2 viewport_size = get_viewport()->get_camera_rect_size(); Vector2 cpos = get_viewport()->get_camera_coords(p_pos); ERR_FAIL_COND_V(viewport_size.y == 0, Vector3()); if (mode == PROJECTION_PERSPECTIVE) { return get_camera_transform().origin; } else { Vector2 pos = cpos / viewport_size; float vsize, hsize; if (keep_aspect == KEEP_WIDTH) { vsize = size / viewport_size.aspect(); hsize = size; } else { hsize = size * viewport_size.aspect(); vsize = size; } Vector3 ray; ray.x = pos.x * (hsize)-hsize / 2; ray.y = (1.0 - pos.y) * (vsize)-vsize / 2; ray.z = -near; ray = get_camera_transform().xform(ray); return ray; }; }; bool Camera::is_position_behind(const Vector3 &p_pos) const { Transform t = get_global_transform(); Vector3 eyedir = -t.basis.get_axis(2).normalized(); return eyedir.dot(p_pos - t.origin) < near; } Vector Camera::get_near_plane_points() const { ERR_FAIL_COND_V_MSG(!is_inside_tree(), Vector(), "Camera is not inside scene."); Size2 viewport_size = get_viewport()->get_visible_rect().size; CameraMatrix cm; if (mode == PROJECTION_ORTHOGONAL) { cm.set_orthogonal(size, viewport_size.aspect(), near, far, keep_aspect == KEEP_WIDTH); } else { cm.set_perspective(fov, viewport_size.aspect(), near, far, keep_aspect == KEEP_WIDTH); } Vector3 endpoints[8]; cm.get_endpoints(Transform(), endpoints); Vector points; points.push_back(Vector3()); for (int i = 0; i < 4; i++) { points.push_back(endpoints[i + 4]); } return points; } Point2 Camera::unproject_position(const Vector3 &p_pos) const { ERR_FAIL_COND_V_MSG(!is_inside_tree(), Vector2(), "Camera is not inside scene."); Size2 viewport_size = get_viewport()->get_visible_rect().size; CameraMatrix cm; if (mode == PROJECTION_ORTHOGONAL) { cm.set_orthogonal(size, viewport_size.aspect(), near, far, keep_aspect == KEEP_WIDTH); } else { cm.set_perspective(fov, viewport_size.aspect(), near, far, keep_aspect == KEEP_WIDTH); } Plane p(get_camera_transform().xform_inv(p_pos), 1.0); p = cm.xform4(p); // Prevent divide by zero. // TODO : Investigate, this was causing Nans. ERR_FAIL_COND_V(p.d == 0, Point2()); p.normal /= p.d; Point2 res; res.x = (p.normal.x * 0.5 + 0.5) * viewport_size.x; res.y = (-p.normal.y * 0.5 + 0.5) * viewport_size.y; return res; } Vector3 Camera::project_position(const Point2 &p_point, float p_z_depth) const { ERR_FAIL_COND_V_MSG(!is_inside_tree(), Vector3(), "Camera is not inside scene."); if (p_z_depth == 0 && mode != PROJECTION_ORTHOGONAL) { return get_global_transform().origin; } Size2 viewport_size = get_viewport()->get_visible_rect().size; CameraMatrix cm; if (mode == PROJECTION_ORTHOGONAL) { cm.set_orthogonal(size, viewport_size.aspect(), p_z_depth, far, keep_aspect == KEEP_WIDTH); } else { cm.set_perspective(fov, viewport_size.aspect(), p_z_depth, far, keep_aspect == KEEP_WIDTH); } Vector2 vp_he = cm.get_viewport_half_extents(); Vector2 point; point.x = (p_point.x / viewport_size.x) * 2.0 - 1.0; point.y = (1.0 - (p_point.y / viewport_size.y)) * 2.0 - 1.0; point *= vp_he; Vector3 p(point.x, point.y, -p_z_depth); return get_camera_transform().xform(p); } /* void Camera::_camera_make_current(Node *p_camera) { if (p_camera==this) { VisualServer::get_singleton()->viewport_attach_camera(viewport_id,camera); active=true; } else { if (active && p_camera==NULL) { //detech camera because no one else will claim it VisualServer::get_singleton()->viewport_attach_camera(viewport_id,RID()); } active=false; } } */ void Camera::set_environment(const Ref &p_environment) { environment = p_environment; if (environment.is_valid()) { VS::get_singleton()->camera_set_environment(camera, environment->get_rid()); } else { VS::get_singleton()->camera_set_environment(camera, RID()); } _update_camera_mode(); } Ref Camera::get_environment() const { return environment; } void Camera::set_keep_aspect_mode(KeepAspect p_aspect) { keep_aspect = p_aspect; VisualServer::get_singleton()->camera_set_use_vertical_aspect(camera, p_aspect == KEEP_WIDTH); _update_camera_mode(); _change_notify(); } Camera::KeepAspect Camera::get_keep_aspect_mode() const { return keep_aspect; } void Camera::set_doppler_tracking(DopplerTracking p_tracking) { if (doppler_tracking == p_tracking) { return; } doppler_tracking = p_tracking; if (p_tracking != DOPPLER_TRACKING_DISABLED) { velocity_tracker->set_track_physics_step(doppler_tracking == DOPPLER_TRACKING_PHYSICS_STEP); if (is_inside_tree()) { velocity_tracker->reset(get_global_transform().origin); } } _update_camera_mode(); } Camera::DopplerTracking Camera::get_doppler_tracking() const { return doppler_tracking; } void Camera::_bind_methods() { ClassDB::bind_method(D_METHOD("project_ray_normal", "screen_point"), &Camera::project_ray_normal); ClassDB::bind_method(D_METHOD("project_local_ray_normal", "screen_point"), &Camera::project_local_ray_normal); ClassDB::bind_method(D_METHOD("project_ray_origin", "screen_point"), &Camera::project_ray_origin); ClassDB::bind_method(D_METHOD("unproject_position", "world_point"), &Camera::unproject_position); ClassDB::bind_method(D_METHOD("is_position_behind", "world_point"), &Camera::is_position_behind); ClassDB::bind_method(D_METHOD("project_position", "screen_point", "z_depth"), &Camera::project_position); ClassDB::bind_method(D_METHOD("set_perspective", "fov", "z_near", "z_far"), &Camera::set_perspective); ClassDB::bind_method(D_METHOD("set_orthogonal", "size", "z_near", "z_far"), &Camera::set_orthogonal); ClassDB::bind_method(D_METHOD("set_frustum", "size", "offset", "z_near", "z_far"), &Camera::set_frustum); ClassDB::bind_method(D_METHOD("make_current"), &Camera::make_current); ClassDB::bind_method(D_METHOD("clear_current", "enable_next"), &Camera::clear_current, DEFVAL(true)); ClassDB::bind_method(D_METHOD("set_current", "enable"), &Camera::set_current); ClassDB::bind_method(D_METHOD("is_current"), &Camera::is_current); ClassDB::bind_method(D_METHOD("get_camera_transform"), &Camera::get_camera_transform); ClassDB::bind_method(D_METHOD("get_fov"), &Camera::get_fov); ClassDB::bind_method(D_METHOD("get_frustum_offset"), &Camera::get_frustum_offset); ClassDB::bind_method(D_METHOD("get_size"), &Camera::get_size); ClassDB::bind_method(D_METHOD("get_zfar"), &Camera::get_zfar); ClassDB::bind_method(D_METHOD("get_znear"), &Camera::get_znear); ClassDB::bind_method(D_METHOD("set_fov", "fov"), &Camera::set_fov); ClassDB::bind_method(D_METHOD("set_frustum_offset", "frustum_offset"), &Camera::set_frustum_offset); ClassDB::bind_method(D_METHOD("set_size", "size"), &Camera::set_size); ClassDB::bind_method(D_METHOD("set_zfar", "zfar"), &Camera::set_zfar); ClassDB::bind_method(D_METHOD("set_znear", "znear"), &Camera::set_znear); ClassDB::bind_method(D_METHOD("get_projection"), &Camera::get_projection); ClassDB::bind_method(D_METHOD("set_projection", "projection"), &Camera::set_projection); ClassDB::bind_method(D_METHOD("set_h_offset", "ofs"), &Camera::set_h_offset); ClassDB::bind_method(D_METHOD("get_h_offset"), &Camera::get_h_offset); ClassDB::bind_method(D_METHOD("set_v_offset", "ofs"), &Camera::set_v_offset); ClassDB::bind_method(D_METHOD("get_v_offset"), &Camera::get_v_offset); ClassDB::bind_method(D_METHOD("set_cull_mask", "mask"), &Camera::set_cull_mask); ClassDB::bind_method(D_METHOD("get_cull_mask"), &Camera::get_cull_mask); ClassDB::bind_method(D_METHOD("set_environment", "env"), &Camera::set_environment); ClassDB::bind_method(D_METHOD("get_environment"), &Camera::get_environment); ClassDB::bind_method(D_METHOD("set_keep_aspect_mode", "mode"), &Camera::set_keep_aspect_mode); ClassDB::bind_method(D_METHOD("get_keep_aspect_mode"), &Camera::get_keep_aspect_mode); ClassDB::bind_method(D_METHOD("set_doppler_tracking", "mode"), &Camera::set_doppler_tracking); ClassDB::bind_method(D_METHOD("get_doppler_tracking"), &Camera::get_doppler_tracking); ClassDB::bind_method(D_METHOD("get_frustum"), &Camera::get_frustum); ClassDB::bind_method(D_METHOD("get_camera_rid"), &Camera::get_camera); ClassDB::bind_method(D_METHOD("set_affect_lod", "enable"), &Camera::set_affect_lod); ClassDB::bind_method(D_METHOD("get_affect_lod"), &Camera::get_affect_lod); ClassDB::bind_method(D_METHOD("set_cull_mask_bit", "layer", "enable"), &Camera::set_cull_mask_bit); ClassDB::bind_method(D_METHOD("get_cull_mask_bit", "layer"), &Camera::get_cull_mask_bit); //ClassDB::bind_method(D_METHOD("_camera_make_current"),&Camera::_camera_make_current ); ADD_PROPERTY(PropertyInfo(Variant::INT, "keep_aspect", PROPERTY_HINT_ENUM, "Keep Width,Keep Height"), "set_keep_aspect_mode", "get_keep_aspect_mode"); ADD_PROPERTY(PropertyInfo(Variant::INT, "cull_mask", PROPERTY_HINT_LAYERS_3D_RENDER), "set_cull_mask", "get_cull_mask"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "environment", PROPERTY_HINT_RESOURCE_TYPE, "Environment"), "set_environment", "get_environment"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "h_offset"), "set_h_offset", "get_h_offset"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "v_offset"), "set_v_offset", "get_v_offset"); ADD_PROPERTY(PropertyInfo(Variant::INT, "doppler_tracking", PROPERTY_HINT_ENUM, "Disabled,Idle,Physics"), "set_doppler_tracking", "get_doppler_tracking"); ADD_PROPERTY(PropertyInfo(Variant::INT, "projection", PROPERTY_HINT_ENUM, "Perspective,Orthogonal,Frustum"), "set_projection", "get_projection"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "current"), "set_current", "is_current"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "fov", PROPERTY_HINT_RANGE, "1,179,0.1"), "set_fov", "get_fov"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "size", PROPERTY_HINT_RANGE, "0.001,16384,0.001"), "set_size", "get_size"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "frustum_offset"), "set_frustum_offset", "get_frustum_offset"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "near", PROPERTY_HINT_EXP_RANGE, "0.01,8192,0.01,or_greater"), "set_znear", "get_znear"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "far", PROPERTY_HINT_EXP_RANGE, "0.1,8192,0.1,or_greater"), "set_zfar", "get_zfar"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "affect_lod"), "set_affect_lod", "get_affect_lod"); BIND_ENUM_CONSTANT(PROJECTION_PERSPECTIVE); BIND_ENUM_CONSTANT(PROJECTION_ORTHOGONAL); BIND_ENUM_CONSTANT(PROJECTION_FRUSTUM); BIND_ENUM_CONSTANT(KEEP_WIDTH); BIND_ENUM_CONSTANT(KEEP_HEIGHT); BIND_ENUM_CONSTANT(DOPPLER_TRACKING_DISABLED); BIND_ENUM_CONSTANT(DOPPLER_TRACKING_IDLE_STEP); BIND_ENUM_CONSTANT(DOPPLER_TRACKING_PHYSICS_STEP); } float Camera::get_fov() const { return fov; } float Camera::get_size() const { return size; } float Camera::get_znear() const { return near; } Vector2 Camera::get_frustum_offset() const { return frustum_offset; } float Camera::get_zfar() const { return far; } Camera::Projection Camera::get_projection() const { return mode; } void Camera::set_fov(float p_fov) { ERR_FAIL_COND(p_fov < 1 || p_fov > 179); fov = p_fov; _update_camera_mode(); _change_notify("fov"); } void Camera::set_size(float p_size) { ERR_FAIL_COND(p_size < 0.001 || p_size > 16384); size = p_size; _update_camera_mode(); _change_notify("size"); } void Camera::set_znear(float p_znear) { near = p_znear; _update_camera_mode(); } void Camera::set_frustum_offset(Vector2 p_offset) { frustum_offset = p_offset; _update_camera_mode(); } void Camera::set_zfar(float p_zfar) { far = p_zfar; _update_camera_mode(); } void Camera::set_cull_mask(uint32_t p_layers) { layers = p_layers; VisualServer::get_singleton()->camera_set_cull_mask(camera, layers); _update_camera_mode(); } uint32_t Camera::get_cull_mask() const { return layers; } void Camera::set_cull_mask_bit(int p_layer, bool p_enable) { ERR_FAIL_INDEX(p_layer, 32); if (p_enable) { set_cull_mask(layers | (1 << p_layer)); } else { set_cull_mask(layers & (~(1 << p_layer))); } } bool Camera::get_cull_mask_bit(int p_layer) const { ERR_FAIL_INDEX_V(p_layer, 32, false); return (layers & (1 << p_layer)); } Vector Camera::get_frustum() const { ERR_FAIL_COND_V(!is_inside_world(), Vector()); Size2 viewport_size = get_viewport()->get_visible_rect().size; CameraMatrix cm; if (mode == PROJECTION_PERSPECTIVE) { cm.set_perspective(fov, viewport_size.aspect(), near, far, keep_aspect == KEEP_WIDTH); } else { cm.set_orthogonal(size, viewport_size.aspect(), near, far, keep_aspect == KEEP_WIDTH); } return cm.get_projection_planes(get_camera_transform()); } void Camera::set_v_offset(float p_offset) { v_offset = p_offset; _update_camera(); } float Camera::get_v_offset() const { return v_offset; } void Camera::set_h_offset(float p_offset) { h_offset = p_offset; _update_camera(); } float Camera::get_h_offset() const { return h_offset; } Vector3 Camera::get_doppler_tracked_velocity() const { if (doppler_tracking != DOPPLER_TRACKING_DISABLED) { return velocity_tracker->get_tracked_linear_velocity(); } else { return Vector3(); } } Camera::Camera() { camera = RID_PRIME(VisualServer::get_singleton()->camera_create()); size = 1; fov = 0; frustum_offset = Vector2(); near = 0; far = 0; current = false; viewport = nullptr; force_change = false; mode = PROJECTION_PERSPECTIVE; set_perspective(70.0, 0.05, 100.0); keep_aspect = KEEP_HEIGHT; layers = 0xfffff; v_offset = 0; h_offset = 0; VisualServer::get_singleton()->camera_set_cull_mask(camera, layers); //active=false; velocity_tracker.instance(); doppler_tracking = DOPPLER_TRACKING_DISABLED; set_notify_transform(true); set_disable_scale(true); } Camera::~Camera() { VisualServer::get_singleton()->free(camera); } //////////////////////////////////////// void ClippedCamera::set_margin(float p_margin) { margin = p_margin; } float ClippedCamera::get_margin() const { return margin; } void ClippedCamera::set_process_mode(ProcessMode p_mode) { if (is_physics_interpolated_and_enabled() && p_mode == CLIP_PROCESS_IDLE) { p_mode = CLIP_PROCESS_PHYSICS; WARN_PRINT_ONCE("[Physics interpolation] Forcing ClippedCamera to PROCESS_PHYSICS mode."); } if (process_mode == p_mode) { return; } process_mode = p_mode; set_desired_process_modes(process_mode == CLIP_PROCESS_IDLE, process_mode == CLIP_PROCESS_PHYSICS); } ClippedCamera::ProcessMode ClippedCamera::get_process_mode() const { return process_mode; } void ClippedCamera::physics_interpolation_flip_data() { _interpolation_data.clip_offset_prev = _interpolation_data.clip_offset_curr; } void ClippedCamera::_physics_interpolated_changed() { // Switch process mode to physics if we are turning on interpolation. // Idle process mode doesn't work well with physics interpolation. set_process_mode(get_process_mode()); Camera::_physics_interpolated_changed(); } Transform ClippedCamera::_get_adjusted_camera_transform(const Transform &p_xform) const { Transform t = Camera::_get_adjusted_camera_transform(p_xform); t.origin += -t.basis.get_axis(Vector3::AXIS_Z).normalized() * clip_offset; return t; } void ClippedCamera::_notification(int p_what) { if (p_what == NOTIFICATION_ENTER_TREE) { // Switch process mode to physics if we are turning on interpolation. // Idle process mode doesn't work well with physics interpolation. set_process_mode(get_process_mode()); } if (((p_what == NOTIFICATION_INTERNAL_PROCESS) && process_mode == CLIP_PROCESS_IDLE) || ((p_what == NOTIFICATION_INTERNAL_PHYSICS_PROCESS) && process_mode == CLIP_PROCESS_PHYSICS)) { Spatial *parent = Object::cast_to(get_parent()); if (!parent) { return; } PhysicsDirectSpaceState *dspace = get_world()->get_direct_space_state(); ERR_FAIL_COND(!dspace); // most likely physics set to threads Vector3 cam_fw = -get_global_transform().basis.get_axis(Vector3::AXIS_Z).normalized(); Vector3 cam_pos = get_global_transform().origin; Vector3 parent_pos = parent->get_global_transform().origin; Plane parent_plane(parent_pos, cam_fw); if (parent_plane.is_point_over(cam_pos)) { //cam is beyond parent plane return; } Vector3 ray_from = parent_plane.project(cam_pos); _interpolation_data.clip_offset_curr = 0; // Reset by default. { //check if points changed Vector local_points = get_near_plane_points(); bool all_equal = true; for (int i = 0; i < 5; i++) { if (points[i] != local_points[i]) { all_equal = false; break; } } if (!all_equal) { PhysicsServer::get_singleton()->shape_set_data(pyramid_shape, local_points); points = local_points; } } Transform xf = get_global_transform(); xf.origin = ray_from; xf.orthonormalize(); float closest_safe = 1.0f, closest_unsafe = 1.0f; if (dspace->cast_motion(pyramid_shape, xf, cam_pos - ray_from, margin, closest_safe, closest_unsafe, exclude, collision_mask, clip_to_bodies, clip_to_areas)) { _interpolation_data.clip_offset_curr = cam_pos.distance_to(ray_from + (cam_pos - ray_from) * closest_safe); } // Default to use the current value // (in the case of non-interpolated). if (!is_physics_interpolated_and_enabled()) { clip_offset = _interpolation_data.clip_offset_curr; } _update_camera(); } if (is_physics_interpolated_and_enabled() && (p_what == NOTIFICATION_INTERNAL_PROCESS)) { clip_offset = ((_interpolation_data.clip_offset_curr - _interpolation_data.clip_offset_prev) * Engine::get_singleton()->get_physics_interpolation_fraction()) + _interpolation_data.clip_offset_prev; } if (p_what == NOTIFICATION_LOCAL_TRANSFORM_CHANGED) { update_gizmo(); } if (p_what == NOTIFICATION_RESET_PHYSICS_INTERPOLATION) { _interpolation_data.clip_offset_prev = _interpolation_data.clip_offset_curr; } } void ClippedCamera::set_collision_mask(uint32_t p_mask) { collision_mask = p_mask; } uint32_t ClippedCamera::get_collision_mask() const { return collision_mask; } void ClippedCamera::set_collision_mask_bit(int p_bit, bool p_value) { ERR_FAIL_INDEX_MSG(p_bit, 32, "Collision layer bit must be between 0 and 31 inclusive."); uint32_t mask = get_collision_mask(); if (p_value) { mask |= 1 << p_bit; } else { mask &= ~(1 << p_bit); } set_collision_mask(mask); } bool ClippedCamera::get_collision_mask_bit(int p_bit) const { ERR_FAIL_INDEX_V_MSG(p_bit, 32, false, "Collision mask bit must be between 0 and 31 inclusive."); return get_collision_mask() & (1 << p_bit); } void ClippedCamera::add_exception_rid(const RID &p_rid) { exclude.insert(p_rid); } void ClippedCamera::add_exception(const Object *p_object) { ERR_FAIL_NULL(p_object); const CollisionObject *co = Object::cast_to(p_object); ERR_FAIL_COND_MSG(!co, "The passed Node must be an instance of CollisionObject."); add_exception_rid(co->get_rid()); } void ClippedCamera::remove_exception_rid(const RID &p_rid) { exclude.erase(p_rid); } void ClippedCamera::remove_exception(const Object *p_object) { ERR_FAIL_NULL(p_object); const CollisionObject *co = Object::cast_to(p_object); ERR_FAIL_COND_MSG(!co, "The passed Node must be an instance of CollisionObject."); remove_exception_rid(co->get_rid()); } void ClippedCamera::clear_exceptions() { exclude.clear(); } float ClippedCamera::get_clip_offset() const { return clip_offset; } void ClippedCamera::set_clip_to_areas(bool p_clip) { clip_to_areas = p_clip; } bool ClippedCamera::is_clip_to_areas_enabled() const { return clip_to_areas; } void ClippedCamera::set_clip_to_bodies(bool p_clip) { clip_to_bodies = p_clip; } bool ClippedCamera::is_clip_to_bodies_enabled() const { return clip_to_bodies; } void ClippedCamera::_bind_methods() { ClassDB::bind_method(D_METHOD("set_margin", "margin"), &ClippedCamera::set_margin); ClassDB::bind_method(D_METHOD("get_margin"), &ClippedCamera::get_margin); ClassDB::bind_method(D_METHOD("set_process_mode", "process_mode"), &ClippedCamera::set_process_mode); ClassDB::bind_method(D_METHOD("get_process_mode"), &ClippedCamera::get_process_mode); ClassDB::bind_method(D_METHOD("set_collision_mask", "mask"), &ClippedCamera::set_collision_mask); ClassDB::bind_method(D_METHOD("get_collision_mask"), &ClippedCamera::get_collision_mask); ClassDB::bind_method(D_METHOD("set_collision_mask_bit", "bit", "value"), &ClippedCamera::set_collision_mask_bit); ClassDB::bind_method(D_METHOD("get_collision_mask_bit", "bit"), &ClippedCamera::get_collision_mask_bit); ClassDB::bind_method(D_METHOD("add_exception_rid", "rid"), &ClippedCamera::add_exception_rid); ClassDB::bind_method(D_METHOD("add_exception", "node"), &ClippedCamera::add_exception); ClassDB::bind_method(D_METHOD("remove_exception_rid", "rid"), &ClippedCamera::remove_exception_rid); ClassDB::bind_method(D_METHOD("remove_exception", "node"), &ClippedCamera::remove_exception); ClassDB::bind_method(D_METHOD("set_clip_to_areas", "enable"), &ClippedCamera::set_clip_to_areas); ClassDB::bind_method(D_METHOD("is_clip_to_areas_enabled"), &ClippedCamera::is_clip_to_areas_enabled); ClassDB::bind_method(D_METHOD("get_clip_offset"), &ClippedCamera::get_clip_offset); ClassDB::bind_method(D_METHOD("set_clip_to_bodies", "enable"), &ClippedCamera::set_clip_to_bodies); ClassDB::bind_method(D_METHOD("is_clip_to_bodies_enabled"), &ClippedCamera::is_clip_to_bodies_enabled); ClassDB::bind_method(D_METHOD("clear_exceptions"), &ClippedCamera::clear_exceptions); ADD_PROPERTY(PropertyInfo(Variant::REAL, "margin", PROPERTY_HINT_RANGE, "0,32,0.01"), "set_margin", "get_margin"); ADD_PROPERTY(PropertyInfo(Variant::INT, "process_mode", PROPERTY_HINT_ENUM, "Physics,Idle"), "set_process_mode", "get_process_mode"); ADD_PROPERTY(PropertyInfo(Variant::INT, "collision_mask", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_collision_mask", "get_collision_mask"); ADD_GROUP("Clip To", "clip_to"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "clip_to_areas", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_clip_to_areas", "is_clip_to_areas_enabled"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "clip_to_bodies", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_clip_to_bodies", "is_clip_to_bodies_enabled"); BIND_ENUM_CONSTANT(CLIP_PROCESS_PHYSICS); BIND_ENUM_CONSTANT(CLIP_PROCESS_IDLE); } ClippedCamera::ClippedCamera() { margin = 0; // Force initializing to physics (prevent noop check). process_mode = CLIP_PROCESS_IDLE; set_process_mode(CLIP_PROCESS_PHYSICS); collision_mask = 1; set_notify_local_transform(Engine::get_singleton()->is_editor_hint()); points.resize(5); pyramid_shape = RID_PRIME(PhysicsServer::get_singleton()->shape_create(PhysicsServer::SHAPE_CONVEX_POLYGON)); clip_to_areas = false; clip_to_bodies = true; } ClippedCamera::~ClippedCamera() { PhysicsServer::get_singleton()->free(pyramid_shape); }