/**************************************************************************/ /* transform_interpolator.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "transform_interpolator.h" #include "core/math/transform_2d.h" void TransformInterpolator::interpolate_transform_2d(const Transform2D &p_prev, const Transform2D &p_curr, Transform2D &r_result, real_t p_fraction) { // Extract parameters. Vector2 p1 = p_prev.get_origin(); Vector2 p2 = p_curr.get_origin(); // Special case for physics interpolation, if flipping, don't interpolate basis. // If the determinant polarity changes, the handedness of the coordinate system changes. if (_sign(p_prev.determinant()) != _sign(p_curr.determinant())) { r_result.elements[0] = p_curr.elements[0]; r_result.elements[1] = p_curr.elements[1]; r_result.set_origin(Vector2::linear_interpolate(p1, p2, p_fraction)); return; } real_t r1 = p_prev.get_rotation(); real_t r2 = p_curr.get_rotation(); Size2 s1 = p_prev.get_scale(); Size2 s2 = p_curr.get_scale(); // Slerp rotation. Vector2 v1(Math::cos(r1), Math::sin(r1)); Vector2 v2(Math::cos(r2), Math::sin(r2)); real_t dot = v1.dot(v2); dot = CLAMP(dot, -1, 1); Vector2 v; if (dot > 0.9995f) { v = Vector2::linear_interpolate(v1, v2, p_fraction).normalized(); // Linearly interpolate to avoid numerical precision issues. } else { real_t angle = p_fraction * Math::acos(dot); Vector2 v3 = (v2 - v1 * dot).normalized(); v = v1 * Math::cos(angle) + v3 * Math::sin(angle); } // Construct matrix. r_result = Transform2D(Math::atan2(v.y, v.x), Vector2::linear_interpolate(p1, p2, p_fraction)); r_result.scale_basis(Vector2::linear_interpolate(s1, s2, p_fraction)); } void TransformInterpolator::interpolate_transform(const Transform &p_prev, const Transform &p_curr, Transform &r_result, real_t p_fraction) { r_result.origin = p_prev.origin + ((p_curr.origin - p_prev.origin) * p_fraction); interpolate_basis(p_prev.basis, p_curr.basis, r_result.basis, p_fraction); } void TransformInterpolator::interpolate_basis(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction) { Method method = find_method(p_prev, p_curr); interpolate_basis_via_method(p_prev, p_curr, r_result, p_fraction, method); } void TransformInterpolator::interpolate_transform_via_method(const Transform &p_prev, const Transform &p_curr, Transform &r_result, real_t p_fraction, Method p_method) { r_result.origin = p_prev.origin + ((p_curr.origin - p_prev.origin) * p_fraction); interpolate_basis_via_method(p_prev.basis, p_curr.basis, r_result.basis, p_fraction, p_method); } void TransformInterpolator::interpolate_basis_via_method(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction, Method p_method) { switch (p_method) { default: { interpolate_basis_linear(p_prev, p_curr, r_result, p_fraction); } break; case INTERP_SLERP: { r_result = _basis_slerp_unchecked(p_prev, p_curr, p_fraction); } break; case INTERP_SCALED_SLERP: { interpolate_basis_scaled_slerp(p_prev, p_curr, r_result, p_fraction); } break; } } Quat TransformInterpolator::_basis_to_quat_unchecked(const Basis &p_basis) { Basis m = p_basis; real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2]; real_t temp[4]; if (trace > 0) { real_t s = Math::sqrt(trace + 1.0f); temp[3] = (s * 0.5f); s = 0.5f / s; temp[0] = ((m.elements[2][1] - m.elements[1][2]) * s); temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s); temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s); } else { int i = m.elements[0][0] < m.elements[1][1] ? (m.elements[1][1] < m.elements[2][2] ? 2 : 1) : (m.elements[0][0] < m.elements[2][2] ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0f); temp[i] = s * 0.5f; s = 0.5f / s; temp[3] = (m.elements[k][j] - m.elements[j][k]) * s; temp[j] = (m.elements[j][i] + m.elements[i][j]) * s; temp[k] = (m.elements[k][i] + m.elements[i][k]) * s; } return Quat(temp[0], temp[1], temp[2], temp[3]); } Quat TransformInterpolator::_quat_slerp_unchecked(const Quat &p_from, const Quat &p_to, real_t p_fraction) { Quat to1; real_t omega, cosom, sinom, scale0, scale1; // calc cosine cosom = p_from.dot(p_to); // adjust signs (if necessary) if (cosom < 0.0f) { cosom = -cosom; to1.x = -p_to.x; to1.y = -p_to.y; to1.z = -p_to.z; to1.w = -p_to.w; } else { to1.x = p_to.x; to1.y = p_to.y; to1.z = p_to.z; to1.w = p_to.w; } // calculate coefficients // This check could possibly be removed as we dealt with this // case in the find_method() function, but is left for safety, it probably // isn't a bottleneck. if ((1.0f - cosom) > (real_t)CMP_EPSILON) { // standard case (slerp) omega = Math::acos(cosom); sinom = Math::sin(omega); scale0 = Math::sin((1.0f - p_fraction) * omega) / sinom; scale1 = Math::sin(p_fraction * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation scale0 = 1.0f - p_fraction; scale1 = p_fraction; } // calculate final values return Quat( scale0 * p_from.x + scale1 * to1.x, scale0 * p_from.y + scale1 * to1.y, scale0 * p_from.z + scale1 * to1.z, scale0 * p_from.w + scale1 * to1.w); } Basis TransformInterpolator::_basis_slerp_unchecked(Basis p_from, Basis p_to, real_t p_fraction) { Quat from = _basis_to_quat_unchecked(p_from); Quat to = _basis_to_quat_unchecked(p_to); Basis b(_quat_slerp_unchecked(from, to, p_fraction)); return b; } void TransformInterpolator::interpolate_basis_scaled_slerp(Basis p_prev, Basis p_curr, Basis &r_result, real_t p_fraction) { // normalize both and find lengths Vector3 lengths_prev = _basis_orthonormalize(p_prev); Vector3 lengths_curr = _basis_orthonormalize(p_curr); r_result = _basis_slerp_unchecked(p_prev, p_curr, p_fraction); // now the result is unit length basis, we need to scale Vector3 lengths_lerped = lengths_prev + ((lengths_curr - lengths_prev) * p_fraction); // keep a note that the column / row order of the basis is weird, // so keep an eye for bugs with this. r_result[0] *= lengths_lerped; r_result[1] *= lengths_lerped; r_result[2] *= lengths_lerped; } void TransformInterpolator::interpolate_basis_linear(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction) { // interpolate basis r_result = p_prev.lerp(p_curr, p_fraction); // It turns out we need to guard against zero scale basis. // This is kind of silly, as we should probably fix the bugs elsewhere in Godot that can't deal with // zero scale, but until that time... for (int n = 0; n < 3; n++) { Vector3 &axis = r_result[n]; // not ok, this could cause errors due to bugs elsewhere, // so we will bodge set this to a small value const real_t smallest = 0.0001f; const real_t smallest_squared = smallest * smallest; if (axis.length_squared() < smallest_squared) { // setting a different component to the smallest // helps prevent the situation where all the axes are pointing in the same direction, // which could be a problem for e.g. cross products.. axis[n] = smallest; } } } real_t TransformInterpolator::checksum_transform(const Transform &p_transform) { // just a really basic checksum, this can probably be improved real_t sum = vec3_sum(p_transform.origin); sum -= vec3_sum(p_transform.basis.elements[0]); sum += vec3_sum(p_transform.basis.elements[1]); sum -= vec3_sum(p_transform.basis.elements[2]); return sum; } // return length real_t TransformInterpolator::_vec3_normalize(Vector3 &p_vec) { real_t lengthsq = p_vec.length_squared(); if (lengthsq == 0.0f) { p_vec.x = p_vec.y = p_vec.z = 0.0f; return 0.0f; } real_t length = Math::sqrt(lengthsq); p_vec.x /= length; p_vec.y /= length; p_vec.z /= length; return length; } // returns lengths Vector3 TransformInterpolator::_basis_orthonormalize(Basis &r_basis) { // Gram-Schmidt Process Vector3 x = r_basis.get_axis(0); Vector3 y = r_basis.get_axis(1); Vector3 z = r_basis.get_axis(2); Vector3 lengths; lengths.x = _vec3_normalize(x); y = (y - x * (x.dot(y))); lengths.y = _vec3_normalize(y); z = (z - x * (x.dot(z)) - y * (y.dot(z))); lengths.z = _vec3_normalize(z); r_basis.set_axis(0, x); r_basis.set_axis(1, y); r_basis.set_axis(2, z); return lengths; } TransformInterpolator::Method TransformInterpolator::_test_basis(Basis p_basis, bool r_needed_normalize, Quat &r_quat) { // axis lengths Vector3 al = Vector3(p_basis.get_axis(0).length_squared(), p_basis.get_axis(1).length_squared(), p_basis.get_axis(2).length_squared()); // non unit scale? if (r_needed_normalize || !al.is_equal_approx(Vector3(1.0, 1.0, 1.0), (real_t)0.001f)) { // If the basis is not normalized (at least approximately), it will fail the checks needed for slerp. // So we try to detect a scaled (but not sheared) basis, which we *can* slerp by normalizing first, // and lerping the scales separately. // if any of the axes are really small, it is unlikely to be a valid rotation, or is scaled too small to deal with float error const real_t sl_epsilon = 0.00001f; if ((al.x < sl_epsilon) || (al.y < sl_epsilon) || (al.z < sl_epsilon)) { return INTERP_LERP; } // normalize the basis Basis norm_basis = p_basis; al.x = Math::sqrt(al.x); al.y = Math::sqrt(al.y); al.z = Math::sqrt(al.z); norm_basis.set_axis(0, norm_basis.get_axis(0) / al.x); norm_basis.set_axis(1, norm_basis.get_axis(1) / al.y); norm_basis.set_axis(2, norm_basis.get_axis(2) / al.z); // This doesn't appear necessary, as the later checks will catch it // if (!_basis_is_orthogonal_any_scale(norm_basis)) { // return INTERP_LERP; // } p_basis = norm_basis; // Orthonormalize not necessary as normal normalization(!) works if the // axes are orthonormal. // p_basis.orthonormalize(); // if we needed to normalize one of the two basis, we will need to normalize both, // regardless of whether the 2nd needs it, just to make sure it takes the path to return // INTERP_SCALED_LERP on the 2nd call of _test_basis. r_needed_normalize = true; } // Apply less stringent tests than the built in slerp, the standard Godot slerp // is too susceptible to float error to be useful real_t det = p_basis.determinant(); if (!Math::is_equal_approx(det, 1, (real_t)0.01f)) { return INTERP_LERP; } if (!_basis_is_orthogonal(p_basis)) { return INTERP_LERP; } // This could possibly be less stringent too, check this. r_quat = _basis_to_quat_unchecked(p_basis); if (!r_quat.is_normalized()) { return INTERP_LERP; } return r_needed_normalize ? INTERP_SCALED_SLERP : INTERP_SLERP; } // This check doesn't seem to be needed but is preserved in case of bugs. bool TransformInterpolator::_basis_is_orthogonal_any_scale(const Basis &p_basis) { Vector3 cross = p_basis.get_axis(0).cross(p_basis.get_axis(1)); real_t l = _vec3_normalize(cross); // too small numbers, revert to lerp if (l < 0.001f) { return false; } const real_t epsilon = 0.9995f; real_t dot = cross.dot(p_basis.get_axis(2)); if (dot < epsilon) { return false; } cross = p_basis.get_axis(1).cross(p_basis.get_axis(2)); l = _vec3_normalize(cross); // too small numbers, revert to lerp if (l < 0.001f) { return false; } dot = cross.dot(p_basis.get_axis(0)); if (dot < epsilon) { return false; } return true; } bool TransformInterpolator::_basis_is_orthogonal(const Basis &p_basis, real_t p_epsilon) { Basis identity; Basis m = p_basis * p_basis.transposed(); // Less stringent tests than the standard Godot slerp if (!m[0].is_equal_approx(identity[0], p_epsilon) || !m[1].is_equal_approx(identity[1], p_epsilon) || !m[2].is_equal_approx(identity[2], p_epsilon)) { return false; } return true; } TransformInterpolator::Method TransformInterpolator::find_method(const Basis &p_a, const Basis &p_b) { bool needed_normalize = false; Quat q0; Method method = _test_basis(p_a, needed_normalize, q0); if (method == INTERP_LERP) { return method; } Quat q1; method = _test_basis(p_b, needed_normalize, q1); if (method == INTERP_LERP) { return method; } // Are they close together? // Apply the same test that will revert to lerp as // is present in the slerp routine. // Calc cosine real_t cosom = Math::abs(q0.dot(q1)); if ((1.0f - cosom) <= (real_t)CMP_EPSILON) { return INTERP_LERP; } return method; }