/**************************************************************************/ /* variant.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "variant.h" #include "core/core_string_names.h" #include "core/debugger/engine_debugger.h" #include "core/io/json.h" #include "core/io/marshalls.h" #include "core/io/resource.h" #include "core/math/math_funcs.h" #include "core/string/print_string.h" #include "core/variant/variant_parser.h" PagedAllocator Variant::Pools::_bucket_small; PagedAllocator Variant::Pools::_bucket_medium; PagedAllocator Variant::Pools::_bucket_large; String Variant::get_type_name(Variant::Type p_type) { switch (p_type) { case NIL: { return "Nil"; } // Atomic types. case BOOL: { return "bool"; } case INT: { return "int"; } case FLOAT: { return "float"; } case STRING: { return "String"; } // Math types. case VECTOR2: { return "Vector2"; } case VECTOR2I: { return "Vector2i"; } case RECT2: { return "Rect2"; } case RECT2I: { return "Rect2i"; } case TRANSFORM2D: { return "Transform2D"; } case VECTOR3: { return "Vector3"; } case VECTOR3I: { return "Vector3i"; } case VECTOR4: { return "Vector4"; } case VECTOR4I: { return "Vector4i"; } case PLANE: { return "Plane"; } case AABB: { return "AABB"; } case QUATERNION: { return "Quaternion"; } case BASIS: { return "Basis"; } case TRANSFORM3D: { return "Transform3D"; } case PROJECTION: { return "Projection"; } // Miscellaneous types. case COLOR: { return "Color"; } case RID: { return "RID"; } case OBJECT: { return "Object"; } case CALLABLE: { return "Callable"; } case SIGNAL: { return "Signal"; } case STRING_NAME: { return "StringName"; } case NODE_PATH: { return "NodePath"; } case DICTIONARY: { return "Dictionary"; } case ARRAY: { return "Array"; } // Arrays. case PACKED_BYTE_ARRAY: { return "PackedByteArray"; } case PACKED_INT32_ARRAY: { return "PackedInt32Array"; } case PACKED_INT64_ARRAY: { return "PackedInt64Array"; } case PACKED_FLOAT32_ARRAY: { return "PackedFloat32Array"; } case PACKED_FLOAT64_ARRAY: { return "PackedFloat64Array"; } case PACKED_STRING_ARRAY: { return "PackedStringArray"; } case PACKED_VECTOR2_ARRAY: { return "PackedVector2Array"; } case PACKED_VECTOR3_ARRAY: { return "PackedVector3Array"; } case PACKED_COLOR_ARRAY: { return "PackedColorArray"; } default: { } } return ""; } bool Variant::can_convert(Variant::Type p_type_from, Variant::Type p_type_to) { if (p_type_from == p_type_to) { return true; } if (p_type_to == NIL) { //nil can convert to anything return true; } if (p_type_from == NIL) { return (p_type_to == OBJECT); } const Type *valid_types = nullptr; const Type *invalid_types = nullptr; switch (p_type_to) { case BOOL: { static const Type valid[] = { INT, FLOAT, STRING, NIL, }; valid_types = valid; } break; case INT: { static const Type valid[] = { BOOL, FLOAT, STRING, NIL, }; valid_types = valid; } break; case FLOAT: { static const Type valid[] = { BOOL, INT, STRING, NIL, }; valid_types = valid; } break; case STRING: { static const Type invalid[] = { OBJECT, NIL }; invalid_types = invalid; } break; case VECTOR2: { static const Type valid[] = { VECTOR2I, NIL, }; valid_types = valid; } break; case VECTOR2I: { static const Type valid[] = { VECTOR2, NIL, }; valid_types = valid; } break; case RECT2: { static const Type valid[] = { RECT2I, NIL, }; valid_types = valid; } break; case RECT2I: { static const Type valid[] = { RECT2, NIL, }; valid_types = valid; } break; case TRANSFORM2D: { static const Type valid[] = { TRANSFORM3D, NIL }; valid_types = valid; } break; case VECTOR3: { static const Type valid[] = { VECTOR3I, NIL, }; valid_types = valid; } break; case VECTOR3I: { static const Type valid[] = { VECTOR3, NIL, }; valid_types = valid; } break; case VECTOR4: { static const Type valid[] = { VECTOR4I, NIL, }; valid_types = valid; } break; case VECTOR4I: { static const Type valid[] = { VECTOR4, NIL, }; valid_types = valid; } break; case QUATERNION: { static const Type valid[] = { BASIS, NIL }; valid_types = valid; } break; case BASIS: { static const Type valid[] = { QUATERNION, NIL }; valid_types = valid; } break; case TRANSFORM3D: { static const Type valid[] = { TRANSFORM2D, QUATERNION, BASIS, PROJECTION, NIL }; valid_types = valid; } break; case PROJECTION: { static const Type valid[] = { TRANSFORM3D, NIL }; valid_types = valid; } break; case COLOR: { static const Type valid[] = { STRING, INT, NIL, }; valid_types = valid; } break; case RID: { static const Type valid[] = { OBJECT, NIL }; valid_types = valid; } break; case OBJECT: { static const Type valid[] = { NIL }; valid_types = valid; } break; case STRING_NAME: { static const Type valid[] = { STRING, NIL }; valid_types = valid; } break; case NODE_PATH: { static const Type valid[] = { STRING, NIL }; valid_types = valid; } break; case ARRAY: { static const Type valid[] = { PACKED_BYTE_ARRAY, PACKED_INT32_ARRAY, PACKED_INT64_ARRAY, PACKED_FLOAT32_ARRAY, PACKED_FLOAT64_ARRAY, PACKED_STRING_ARRAY, PACKED_COLOR_ARRAY, PACKED_VECTOR2_ARRAY, PACKED_VECTOR3_ARRAY, NIL }; valid_types = valid; } break; // arrays case PACKED_BYTE_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_INT32_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_INT64_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_FLOAT32_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_FLOAT64_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_STRING_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_VECTOR2_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_VECTOR3_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_COLOR_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; default: { } } if (valid_types) { int i = 0; while (valid_types[i] != NIL) { if (p_type_from == valid_types[i]) { return true; } i++; } } else if (invalid_types) { int i = 0; while (invalid_types[i] != NIL) { if (p_type_from == invalid_types[i]) { return false; } i++; } return true; } return false; } bool Variant::can_convert_strict(Variant::Type p_type_from, Variant::Type p_type_to) { if (p_type_from == p_type_to) { return true; } if (p_type_to == NIL) { //nil can convert to anything return true; } if (p_type_from == NIL) { return (p_type_to == OBJECT); } const Type *valid_types = nullptr; switch (p_type_to) { case BOOL: { static const Type valid[] = { INT, FLOAT, //STRING, NIL, }; valid_types = valid; } break; case INT: { static const Type valid[] = { BOOL, FLOAT, //STRING, NIL, }; valid_types = valid; } break; case FLOAT: { static const Type valid[] = { BOOL, INT, //STRING, NIL, }; valid_types = valid; } break; case STRING: { static const Type valid[] = { NODE_PATH, STRING_NAME, NIL }; valid_types = valid; } break; case VECTOR2: { static const Type valid[] = { VECTOR2I, NIL, }; valid_types = valid; } break; case VECTOR2I: { static const Type valid[] = { VECTOR2, NIL, }; valid_types = valid; } break; case RECT2: { static const Type valid[] = { RECT2I, NIL, }; valid_types = valid; } break; case RECT2I: { static const Type valid[] = { RECT2, NIL, }; valid_types = valid; } break; case TRANSFORM2D: { static const Type valid[] = { TRANSFORM3D, NIL }; valid_types = valid; } break; case VECTOR3: { static const Type valid[] = { VECTOR3I, NIL, }; valid_types = valid; } break; case VECTOR3I: { static const Type valid[] = { VECTOR3, NIL, }; valid_types = valid; } break; case VECTOR4: { static const Type valid[] = { VECTOR4I, NIL, }; valid_types = valid; } break; case VECTOR4I: { static const Type valid[] = { VECTOR4, NIL, }; valid_types = valid; } break; case QUATERNION: { static const Type valid[] = { BASIS, NIL }; valid_types = valid; } break; case BASIS: { static const Type valid[] = { QUATERNION, NIL }; valid_types = valid; } break; case TRANSFORM3D: { static const Type valid[] = { TRANSFORM2D, QUATERNION, BASIS, PROJECTION, NIL }; valid_types = valid; } break; case PROJECTION: { static const Type valid[] = { TRANSFORM3D, NIL }; valid_types = valid; } break; case COLOR: { static const Type valid[] = { STRING, INT, NIL, }; valid_types = valid; } break; case RID: { static const Type valid[] = { OBJECT, NIL }; valid_types = valid; } break; case OBJECT: { static const Type valid[] = { NIL }; valid_types = valid; } break; case STRING_NAME: { static const Type valid[] = { STRING, NIL }; valid_types = valid; } break; case NODE_PATH: { static const Type valid[] = { STRING, NIL }; valid_types = valid; } break; case ARRAY: { static const Type valid[] = { PACKED_BYTE_ARRAY, PACKED_INT32_ARRAY, PACKED_INT64_ARRAY, PACKED_FLOAT32_ARRAY, PACKED_FLOAT64_ARRAY, PACKED_STRING_ARRAY, PACKED_COLOR_ARRAY, PACKED_VECTOR2_ARRAY, PACKED_VECTOR3_ARRAY, NIL }; valid_types = valid; } break; // arrays case PACKED_BYTE_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_INT32_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_INT64_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_FLOAT32_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_FLOAT64_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_STRING_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_VECTOR2_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_VECTOR3_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_COLOR_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; default: { } } if (valid_types) { int i = 0; while (valid_types[i] != NIL) { if (p_type_from == valid_types[i]) { return true; } i++; } } return false; } bool Variant::operator==(const Variant &p_variant) const { return hash_compare(p_variant); } bool Variant::operator!=(const Variant &p_variant) const { // Don't use `!hash_compare(p_variant)` given it makes use of OP_EQUAL if (type != p_variant.type) { //evaluation of operator== needs to be more strict return true; } bool v; Variant r; evaluate(OP_NOT_EQUAL, *this, p_variant, r, v); return r; } bool Variant::operator<(const Variant &p_variant) const { if (type != p_variant.type) { //if types differ, then order by type first return type < p_variant.type; } bool v; Variant r; evaluate(OP_LESS, *this, p_variant, r, v); return r; } bool Variant::is_zero() const { switch (type) { case NIL: { return true; } // Atomic types. case BOOL: { return !(_data._bool); } case INT: { return _data._int == 0; } case FLOAT: { return _data._float == 0; } case STRING: { return *reinterpret_cast(_data._mem) == String(); } // Math types. case VECTOR2: { return *reinterpret_cast(_data._mem) == Vector2(); } case VECTOR2I: { return *reinterpret_cast(_data._mem) == Vector2i(); } case RECT2: { return *reinterpret_cast(_data._mem) == Rect2(); } case RECT2I: { return *reinterpret_cast(_data._mem) == Rect2i(); } case TRANSFORM2D: { return *_data._transform2d == Transform2D(); } case VECTOR3: { return *reinterpret_cast(_data._mem) == Vector3(); } case VECTOR3I: { return *reinterpret_cast(_data._mem) == Vector3i(); } case VECTOR4: { return *reinterpret_cast(_data._mem) == Vector4(); } case VECTOR4I: { return *reinterpret_cast(_data._mem) == Vector4i(); } case PLANE: { return *reinterpret_cast(_data._mem) == Plane(); } case AABB: { return *_data._aabb == ::AABB(); } case QUATERNION: { return *reinterpret_cast(_data._mem) == Quaternion(); } case BASIS: { return *_data._basis == Basis(); } case TRANSFORM3D: { return *_data._transform3d == Transform3D(); } case PROJECTION: { return *_data._projection == Projection(); } // Miscellaneous types. case COLOR: { return *reinterpret_cast(_data._mem) == Color(); } case RID: { return *reinterpret_cast(_data._mem) == ::RID(); } case OBJECT: { return get_validated_object() == nullptr; } case CALLABLE: { return reinterpret_cast(_data._mem)->is_null(); } case SIGNAL: { return reinterpret_cast(_data._mem)->is_null(); } case STRING_NAME: { return *reinterpret_cast(_data._mem) == StringName(); } case NODE_PATH: { return reinterpret_cast(_data._mem)->is_empty(); } case DICTIONARY: { return reinterpret_cast(_data._mem)->is_empty(); } case ARRAY: { return reinterpret_cast(_data._mem)->is_empty(); } // Arrays. case PACKED_BYTE_ARRAY: { return PackedArrayRef::get_array(_data.packed_array).size() == 0; } case PACKED_INT32_ARRAY: { return PackedArrayRef::get_array(_data.packed_array).size() == 0; } case PACKED_INT64_ARRAY: { return PackedArrayRef::get_array(_data.packed_array).size() == 0; } case PACKED_FLOAT32_ARRAY: { return PackedArrayRef::get_array(_data.packed_array).size() == 0; } case PACKED_FLOAT64_ARRAY: { return PackedArrayRef::get_array(_data.packed_array).size() == 0; } case PACKED_STRING_ARRAY: { return PackedArrayRef::get_array(_data.packed_array).size() == 0; } case PACKED_VECTOR2_ARRAY: { return PackedArrayRef::get_array(_data.packed_array).size() == 0; } case PACKED_VECTOR3_ARRAY: { return PackedArrayRef::get_array(_data.packed_array).size() == 0; } case PACKED_COLOR_ARRAY: { return PackedArrayRef::get_array(_data.packed_array).size() == 0; } default: { } } return false; } bool Variant::is_one() const { switch (type) { case NIL: { return true; } case BOOL: { return _data._bool; } case INT: { return _data._int == 1; } case FLOAT: { return _data._float == 1; } case VECTOR2: { return *reinterpret_cast(_data._mem) == Vector2(1, 1); } case VECTOR2I: { return *reinterpret_cast(_data._mem) == Vector2i(1, 1); } case RECT2: { return *reinterpret_cast(_data._mem) == Rect2(1, 1, 1, 1); } case RECT2I: { return *reinterpret_cast(_data._mem) == Rect2i(1, 1, 1, 1); } case VECTOR3: { return *reinterpret_cast(_data._mem) == Vector3(1, 1, 1); } case VECTOR3I: { return *reinterpret_cast(_data._mem) == Vector3i(1, 1, 1); } case VECTOR4: { return *reinterpret_cast(_data._mem) == Vector4(1, 1, 1, 1); } case VECTOR4I: { return *reinterpret_cast(_data._mem) == Vector4i(1, 1, 1, 1); } case PLANE: { return *reinterpret_cast(_data._mem) == Plane(1, 1, 1, 1); } case COLOR: { return *reinterpret_cast(_data._mem) == Color(1, 1, 1, 1); } default: { return !is_zero(); } } } bool Variant::is_null() const { if (type == OBJECT && _get_obj().obj) { return false; } else { return true; } } bool Variant::initialize_ref(Object *p_object) { RefCounted *ref_counted = const_cast(static_cast(p_object)); if (!ref_counted->init_ref()) { return false; } return true; } void Variant::reference(const Variant &p_variant) { switch (type) { case NIL: case BOOL: case INT: case FLOAT: break; default: clear(); } type = p_variant.type; switch (p_variant.type) { case NIL: { // None. } break; // Atomic types. case BOOL: { _data._bool = p_variant._data._bool; } break; case INT: { _data._int = p_variant._data._int; } break; case FLOAT: { _data._float = p_variant._data._float; } break; case STRING: { memnew_placement(_data._mem, String(*reinterpret_cast(p_variant._data._mem))); } break; // Math types. case VECTOR2: { memnew_placement(_data._mem, Vector2(*reinterpret_cast(p_variant._data._mem))); } break; case VECTOR2I: { memnew_placement(_data._mem, Vector2i(*reinterpret_cast(p_variant._data._mem))); } break; case RECT2: { memnew_placement(_data._mem, Rect2(*reinterpret_cast(p_variant._data._mem))); } break; case RECT2I: { memnew_placement(_data._mem, Rect2i(*reinterpret_cast(p_variant._data._mem))); } break; case TRANSFORM2D: { _data._transform2d = (Transform2D *)Pools::_bucket_small.alloc(); memnew_placement(_data._transform2d, Transform2D(*p_variant._data._transform2d)); } break; case VECTOR3: { memnew_placement(_data._mem, Vector3(*reinterpret_cast(p_variant._data._mem))); } break; case VECTOR3I: { memnew_placement(_data._mem, Vector3i(*reinterpret_cast(p_variant._data._mem))); } break; case VECTOR4: { memnew_placement(_data._mem, Vector4(*reinterpret_cast(p_variant._data._mem))); } break; case VECTOR4I: { memnew_placement(_data._mem, Vector4i(*reinterpret_cast(p_variant._data._mem))); } break; case PLANE: { memnew_placement(_data._mem, Plane(*reinterpret_cast(p_variant._data._mem))); } break; case AABB: { _data._aabb = (::AABB *)Pools::_bucket_small.alloc(); memnew_placement(_data._aabb, ::AABB(*p_variant._data._aabb)); } break; case QUATERNION: { memnew_placement(_data._mem, Quaternion(*reinterpret_cast(p_variant._data._mem))); } break; case BASIS: { _data._basis = (Basis *)Pools::_bucket_medium.alloc(); memnew_placement(_data._basis, Basis(*p_variant._data._basis)); } break; case TRANSFORM3D: { _data._transform3d = (Transform3D *)Pools::_bucket_medium.alloc(); memnew_placement(_data._transform3d, Transform3D(*p_variant._data._transform3d)); } break; case PROJECTION: { _data._projection = (Projection *)Pools::_bucket_large.alloc(); memnew_placement(_data._projection, Projection(*p_variant._data._projection)); } break; // Miscellaneous types. case COLOR: { memnew_placement(_data._mem, Color(*reinterpret_cast(p_variant._data._mem))); } break; case RID: { memnew_placement(_data._mem, ::RID(*reinterpret_cast(p_variant._data._mem))); } break; case OBJECT: { memnew_placement(_data._mem, ObjData); if (p_variant._get_obj().obj && p_variant._get_obj().id.is_ref_counted()) { RefCounted *ref_counted = static_cast(p_variant._get_obj().obj); if (!ref_counted->reference()) { _get_obj().obj = nullptr; _get_obj().id = ObjectID(); break; } } _get_obj().obj = const_cast(p_variant._get_obj().obj); _get_obj().id = p_variant._get_obj().id; } break; case CALLABLE: { memnew_placement(_data._mem, Callable(*reinterpret_cast(p_variant._data._mem))); } break; case SIGNAL: { memnew_placement(_data._mem, Signal(*reinterpret_cast(p_variant._data._mem))); } break; case STRING_NAME: { memnew_placement(_data._mem, StringName(*reinterpret_cast(p_variant._data._mem))); } break; case NODE_PATH: { memnew_placement(_data._mem, NodePath(*reinterpret_cast(p_variant._data._mem))); } break; case DICTIONARY: { memnew_placement(_data._mem, Dictionary(*reinterpret_cast(p_variant._data._mem))); } break; case ARRAY: { memnew_placement(_data._mem, Array(*reinterpret_cast(p_variant._data._mem))); } break; // Arrays. case PACKED_BYTE_ARRAY: { _data.packed_array = static_cast *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef::create(); } } break; case PACKED_INT32_ARRAY: { _data.packed_array = static_cast *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef::create(); } } break; case PACKED_INT64_ARRAY: { _data.packed_array = static_cast *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef::create(); } } break; case PACKED_FLOAT32_ARRAY: { _data.packed_array = static_cast *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef::create(); } } break; case PACKED_FLOAT64_ARRAY: { _data.packed_array = static_cast *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef::create(); } } break; case PACKED_STRING_ARRAY: { _data.packed_array = static_cast *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef::create(); } } break; case PACKED_VECTOR2_ARRAY: { _data.packed_array = static_cast *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef::create(); } } break; case PACKED_VECTOR3_ARRAY: { _data.packed_array = static_cast *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef::create(); } } break; case PACKED_COLOR_ARRAY: { _data.packed_array = static_cast *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef::create(); } } break; default: { } } } void Variant::zero() { switch (type) { case NIL: break; case BOOL: _data._bool = false; break; case INT: _data._int = 0; break; case FLOAT: _data._float = 0; break; case VECTOR2: *reinterpret_cast(_data._mem) = Vector2(); break; case VECTOR2I: *reinterpret_cast(_data._mem) = Vector2i(); break; case RECT2: *reinterpret_cast(_data._mem) = Rect2(); break; case RECT2I: *reinterpret_cast(_data._mem) = Rect2i(); break; case VECTOR3: *reinterpret_cast(_data._mem) = Vector3(); break; case VECTOR3I: *reinterpret_cast(_data._mem) = Vector3i(); break; case VECTOR4: *reinterpret_cast(_data._mem) = Vector4(); break; case VECTOR4I: *reinterpret_cast(_data._mem) = Vector4i(); break; case PLANE: *reinterpret_cast(_data._mem) = Plane(); break; case QUATERNION: *reinterpret_cast(_data._mem) = Quaternion(); break; case COLOR: *reinterpret_cast(_data._mem) = Color(); break; default: Type prev_type = type; clear(); if (type != prev_type) { // clear() changes type to NIL, so it needs to be restored. Callable::CallError ce; Variant::construct(prev_type, *this, nullptr, 0, ce); } break; } } void Variant::_clear_internal() { switch (type) { case STRING: { reinterpret_cast(_data._mem)->~String(); } break; // Math types. case TRANSFORM2D: { if (_data._transform2d) { _data._transform2d->~Transform2D(); Pools::_bucket_small.free((Pools::BucketSmall *)_data._transform2d); _data._transform2d = nullptr; } } break; case AABB: { if (_data._aabb) { _data._aabb->~AABB(); Pools::_bucket_small.free((Pools::BucketSmall *)_data._aabb); _data._aabb = nullptr; } } break; case BASIS: { if (_data._basis) { _data._basis->~Basis(); Pools::_bucket_medium.free((Pools::BucketMedium *)_data._basis); _data._basis = nullptr; } } break; case TRANSFORM3D: { if (_data._transform3d) { _data._transform3d->~Transform3D(); Pools::_bucket_medium.free((Pools::BucketMedium *)_data._transform3d); _data._transform3d = nullptr; } } break; case PROJECTION: { if (_data._projection) { _data._projection->~Projection(); Pools::_bucket_large.free((Pools::BucketLarge *)_data._projection); _data._projection = nullptr; } } break; // Miscellaneous types. case STRING_NAME: { reinterpret_cast(_data._mem)->~StringName(); } break; case NODE_PATH: { reinterpret_cast(_data._mem)->~NodePath(); } break; case OBJECT: { if (_get_obj().id.is_ref_counted()) { // We are safe that there is a reference here. RefCounted *ref_counted = static_cast(_get_obj().obj); if (ref_counted->unreference()) { memdelete(ref_counted); } } _get_obj().obj = nullptr; _get_obj().id = ObjectID(); } break; case RID: { // Not much need probably. // HACK: Can't seem to use destructor + scoping operator, so hack. typedef ::RID RID_Class; reinterpret_cast(_data._mem)->~RID_Class(); } break; case CALLABLE: { reinterpret_cast(_data._mem)->~Callable(); } break; case SIGNAL: { reinterpret_cast(_data._mem)->~Signal(); } break; case DICTIONARY: { reinterpret_cast(_data._mem)->~Dictionary(); } break; case ARRAY: { reinterpret_cast(_data._mem)->~Array(); } break; // Arrays. case PACKED_BYTE_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_INT32_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_INT64_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_FLOAT32_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_FLOAT64_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_STRING_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_VECTOR2_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_VECTOR3_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_COLOR_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; default: { // Not needed, there is no point. The following do not allocate memory: // VECTOR2, VECTOR3, RECT2, PLANE, QUATERNION, COLOR. } } } Variant::operator int64_t() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator int32_t() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator int16_t() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator int8_t() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator uint64_t() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator uint32_t() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator uint16_t() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator uint8_t() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator ObjectID() const { if (type == INT) { return ObjectID(_data._int); } else if (type == OBJECT) { return _get_obj().id; } else { return ObjectID(); } } Variant::operator char32_t() const { return operator uint32_t(); } Variant::operator float() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1.0 : 0.0; case INT: return (float)_data._int; case FLOAT: return _data._float; case STRING: return operator String().to_float(); default: { return 0; } } } Variant::operator double() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1.0 : 0.0; case INT: return (double)_data._int; case FLOAT: return _data._float; case STRING: return operator String().to_float(); default: { return 0; } } } Variant::operator StringName() const { if (type == STRING_NAME) { return *reinterpret_cast(_data._mem); } else if (type == STRING) { return *reinterpret_cast(_data._mem); } return StringName(); } struct _VariantStrPair { String key; String value; bool operator<(const _VariantStrPair &p) const { return key < p.key; } }; Variant::operator String() const { return stringify(0); } String stringify_variant_clean(const Variant &p_variant, int recursion_count) { String s = p_variant.stringify(recursion_count); // Wrap strings in quotes to avoid ambiguity. switch (p_variant.get_type()) { case Variant::STRING: { s = s.c_escape().quote(); } break; case Variant::STRING_NAME: { s = "&" + s.c_escape().quote(); } break; case Variant::NODE_PATH: { s = "^" + s.c_escape().quote(); } break; default: { } break; } return s; } template String stringify_vector(const T &vec, int recursion_count) { String str("["); for (int i = 0; i < vec.size(); i++) { if (i > 0) { str += ", "; } str += stringify_variant_clean(vec[i], recursion_count); } str += "]"; return str; } String Variant::stringify(int recursion_count) const { switch (type) { case NIL: return ""; case BOOL: return _data._bool ? "true" : "false"; case INT: return itos(_data._int); case FLOAT: return rtos(_data._float); case STRING: return *reinterpret_cast(_data._mem); case VECTOR2: return operator Vector2(); case VECTOR2I: return operator Vector2i(); case RECT2: return operator Rect2(); case RECT2I: return operator Rect2i(); case TRANSFORM2D: return operator Transform2D(); case VECTOR3: return operator Vector3(); case VECTOR3I: return operator Vector3i(); case VECTOR4: return operator Vector4(); case VECTOR4I: return operator Vector4i(); case PLANE: return operator Plane(); case AABB: return operator ::AABB(); case QUATERNION: return operator Quaternion(); case BASIS: return operator Basis(); case TRANSFORM3D: return operator Transform3D(); case PROJECTION: return operator Projection(); case STRING_NAME: return operator StringName(); case NODE_PATH: return operator NodePath(); case COLOR: return operator Color(); case DICTIONARY: { ERR_FAIL_COND_V_MSG(recursion_count > MAX_RECURSION, "{ ... }", "Maximum dictionary recursion reached!"); recursion_count++; const Dictionary &d = *reinterpret_cast(_data._mem); // Add leading and trailing space to Dictionary printing. This distinguishes it // from array printing on fonts that have similar-looking {} and [] characters. String str("{ "); List keys; d.get_key_list(&keys); Vector<_VariantStrPair> pairs; for (List::Element *E = keys.front(); E; E = E->next()) { _VariantStrPair sp; sp.key = stringify_variant_clean(E->get(), recursion_count); sp.value = stringify_variant_clean(d[E->get()], recursion_count); pairs.push_back(sp); } for (int i = 0; i < pairs.size(); i++) { if (i > 0) { str += ", "; } str += pairs[i].key + ": " + pairs[i].value; } str += " }"; return str; } // Packed arrays cannot contain recursive structures, the recursion_count increment is not needed. case PACKED_VECTOR2_ARRAY: { return stringify_vector(operator PackedVector2Array(), recursion_count); } case PACKED_VECTOR3_ARRAY: { return stringify_vector(operator PackedVector3Array(), recursion_count); } case PACKED_COLOR_ARRAY: { return stringify_vector(operator PackedColorArray(), recursion_count); } case PACKED_STRING_ARRAY: { return stringify_vector(operator PackedStringArray(), recursion_count); } case PACKED_BYTE_ARRAY: { return stringify_vector(operator PackedByteArray(), recursion_count); } case PACKED_INT32_ARRAY: { return stringify_vector(operator PackedInt32Array(), recursion_count); } case PACKED_INT64_ARRAY: { return stringify_vector(operator PackedInt64Array(), recursion_count); } case PACKED_FLOAT32_ARRAY: { return stringify_vector(operator PackedFloat32Array(), recursion_count); } case PACKED_FLOAT64_ARRAY: { return stringify_vector(operator PackedFloat64Array(), recursion_count); } case ARRAY: { ERR_FAIL_COND_V_MSG(recursion_count > MAX_RECURSION, "[...]", "Maximum array recursion reached!"); recursion_count++; return stringify_vector(operator Array(), recursion_count); } case OBJECT: { if (_get_obj().obj) { if (!_get_obj().id.is_ref_counted() && ObjectDB::get_instance(_get_obj().id) == nullptr) { return ""; } return _get_obj().obj->to_string(); } else { return ""; } } case CALLABLE: { const Callable &c = *reinterpret_cast(_data._mem); return c; } case SIGNAL: { const Signal &s = *reinterpret_cast(_data._mem); return s; } case RID: { const ::RID &s = *reinterpret_cast(_data._mem); return "RID(" + itos(s.get_id()) + ")"; } default: { return "<" + get_type_name(type) + ">"; } } } String Variant::to_json_string() const { return JSON::stringify(*this); } Variant::operator Vector2() const { if (type == VECTOR2) { return *reinterpret_cast(_data._mem); } else if (type == VECTOR2I) { return *reinterpret_cast(_data._mem); } else if (type == VECTOR3) { return Vector2(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y); } else if (type == VECTOR3I) { return Vector2(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y); } else if (type == VECTOR4) { return Vector2(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y); } else if (type == VECTOR4I) { return Vector2(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y); } else { return Vector2(); } } Variant::operator Vector2i() const { if (type == VECTOR2I) { return *reinterpret_cast(_data._mem); } else if (type == VECTOR2) { return *reinterpret_cast(_data._mem); } else if (type == VECTOR3) { return Vector2(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y); } else if (type == VECTOR3I) { return Vector2(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y); } else if (type == VECTOR4) { return Vector2(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y); } else if (type == VECTOR4I) { return Vector2(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y); } else { return Vector2i(); } } Variant::operator Rect2() const { if (type == RECT2) { return *reinterpret_cast(_data._mem); } else if (type == RECT2I) { return *reinterpret_cast(_data._mem); } else { return Rect2(); } } Variant::operator Rect2i() const { if (type == RECT2I) { return *reinterpret_cast(_data._mem); } else if (type == RECT2) { return *reinterpret_cast(_data._mem); } else { return Rect2i(); } } Variant::operator Vector3() const { if (type == VECTOR3) { return *reinterpret_cast(_data._mem); } else if (type == VECTOR3I) { return *reinterpret_cast(_data._mem); } else if (type == VECTOR2) { return Vector3(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, 0.0); } else if (type == VECTOR2I) { return Vector3(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, 0.0); } else if (type == VECTOR4) { return Vector3(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, reinterpret_cast(_data._mem)->z); } else if (type == VECTOR4I) { return Vector3(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, reinterpret_cast(_data._mem)->z); } else { return Vector3(); } } Variant::operator Vector3i() const { if (type == VECTOR3I) { return *reinterpret_cast(_data._mem); } else if (type == VECTOR3) { return *reinterpret_cast(_data._mem); } else if (type == VECTOR2) { return Vector3i(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, 0.0); } else if (type == VECTOR2I) { return Vector3i(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, 0.0); } else if (type == VECTOR4) { return Vector3i(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, reinterpret_cast(_data._mem)->z); } else if (type == VECTOR4I) { return Vector3i(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, reinterpret_cast(_data._mem)->z); } else { return Vector3i(); } } Variant::operator Vector4() const { if (type == VECTOR4) { return *reinterpret_cast(_data._mem); } else if (type == VECTOR4I) { return *reinterpret_cast(_data._mem); } else if (type == VECTOR2) { return Vector4(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, 0.0, 0.0); } else if (type == VECTOR2I) { return Vector4(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, 0.0, 0.0); } else if (type == VECTOR3) { return Vector4(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, reinterpret_cast(_data._mem)->z, 0.0); } else if (type == VECTOR3I) { return Vector4(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, reinterpret_cast(_data._mem)->z, 0.0); } else { return Vector4(); } } Variant::operator Vector4i() const { if (type == VECTOR4I) { return *reinterpret_cast(_data._mem); } else if (type == VECTOR4) { const Vector4 &v4 = *reinterpret_cast(_data._mem); return Vector4i(v4.x, v4.y, v4.z, v4.w); } else if (type == VECTOR2) { return Vector4i(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, 0.0, 0.0); } else if (type == VECTOR2I) { return Vector4i(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, 0.0, 0.0); } else if (type == VECTOR3) { return Vector4i(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, reinterpret_cast(_data._mem)->z, 0.0); } else if (type == VECTOR3I) { return Vector4i(reinterpret_cast(_data._mem)->x, reinterpret_cast(_data._mem)->y, reinterpret_cast(_data._mem)->z, 0.0); } else { return Vector4i(); } } Variant::operator Plane() const { if (type == PLANE) { return *reinterpret_cast(_data._mem); } else { return Plane(); } } Variant::operator ::AABB() const { if (type == AABB) { return *_data._aabb; } else { return ::AABB(); } } Variant::operator Basis() const { if (type == BASIS) { return *_data._basis; } else if (type == QUATERNION) { return *reinterpret_cast(_data._mem); } else if (type == TRANSFORM3D) { // unexposed in Variant::can_convert? return _data._transform3d->basis; } else { return Basis(); } } Variant::operator Quaternion() const { if (type == QUATERNION) { return *reinterpret_cast(_data._mem); } else if (type == BASIS) { return *_data._basis; } else if (type == TRANSFORM3D) { return _data._transform3d->basis; } else { return Quaternion(); } } Variant::operator Transform3D() const { if (type == TRANSFORM3D) { return *_data._transform3d; } else if (type == BASIS) { return Transform3D(*_data._basis, Vector3()); } else if (type == QUATERNION) { return Transform3D(Basis(*reinterpret_cast(_data._mem)), Vector3()); } else if (type == TRANSFORM2D) { const Transform2D &t = *_data._transform2d; Transform3D m; m.basis.rows[0][0] = t.columns[0][0]; m.basis.rows[1][0] = t.columns[0][1]; m.basis.rows[0][1] = t.columns[1][0]; m.basis.rows[1][1] = t.columns[1][1]; m.origin[0] = t.columns[2][0]; m.origin[1] = t.columns[2][1]; return m; } else if (type == PROJECTION) { return *_data._projection; } else { return Transform3D(); } } Variant::operator Projection() const { if (type == TRANSFORM3D) { return *_data._transform3d; } else if (type == BASIS) { return Transform3D(*_data._basis, Vector3()); } else if (type == QUATERNION) { return Transform3D(Basis(*reinterpret_cast(_data._mem)), Vector3()); } else if (type == TRANSFORM2D) { const Transform2D &t = *_data._transform2d; Transform3D m; m.basis.rows[0][0] = t.columns[0][0]; m.basis.rows[1][0] = t.columns[0][1]; m.basis.rows[0][1] = t.columns[1][0]; m.basis.rows[1][1] = t.columns[1][1]; m.origin[0] = t.columns[2][0]; m.origin[1] = t.columns[2][1]; return m; } else if (type == PROJECTION) { return *_data._projection; } else { return Projection(); } } Variant::operator Transform2D() const { if (type == TRANSFORM2D) { return *_data._transform2d; } else if (type == TRANSFORM3D) { const Transform3D &t = *_data._transform3d; Transform2D m; m.columns[0][0] = t.basis.rows[0][0]; m.columns[0][1] = t.basis.rows[1][0]; m.columns[1][0] = t.basis.rows[0][1]; m.columns[1][1] = t.basis.rows[1][1]; m.columns[2][0] = t.origin[0]; m.columns[2][1] = t.origin[1]; return m; } else { return Transform2D(); } } Variant::operator Color() const { if (type == COLOR) { return *reinterpret_cast(_data._mem); } else if (type == STRING) { return Color(operator String()); } else if (type == INT) { return Color::hex(operator int()); } else { return Color(); } } Variant::operator NodePath() const { if (type == NODE_PATH) { return *reinterpret_cast(_data._mem); } else if (type == STRING) { return NodePath(operator String()); } else { return NodePath(); } } Variant::operator ::RID() const { if (type == RID) { return *reinterpret_cast(_data._mem); } else if (type == OBJECT && _get_obj().obj == nullptr) { return ::RID(); } else if (type == OBJECT && _get_obj().obj) { #ifdef DEBUG_ENABLED if (EngineDebugger::is_active()) { ERR_FAIL_NULL_V_MSG(ObjectDB::get_instance(_get_obj().id), ::RID(), "Invalid pointer (object was freed)."); } #endif Callable::CallError ce; Variant ret = _get_obj().obj->callp(CoreStringNames::get_singleton()->get_rid, nullptr, 0, ce); if (ce.error == Callable::CallError::CALL_OK && ret.get_type() == Variant::RID) { return ret; } return ::RID(); } else { return ::RID(); } } Variant::operator Object *() const { if (type == OBJECT) { return _get_obj().obj; } else { return nullptr; } } Object *Variant::get_validated_object_with_check(bool &r_previously_freed) const { if (type == OBJECT) { Object *instance = ObjectDB::get_instance(_get_obj().id); r_previously_freed = !instance && _get_obj().id != ObjectID(); return instance; } else { r_previously_freed = false; return nullptr; } } Object *Variant::get_validated_object() const { if (type == OBJECT) { return ObjectDB::get_instance(_get_obj().id); } else { return nullptr; } } Variant::operator Dictionary() const { if (type == DICTIONARY) { return *reinterpret_cast(_data._mem); } else { return Dictionary(); } } Variant::operator Callable() const { if (type == CALLABLE) { return *reinterpret_cast(_data._mem); } else { return Callable(); } } Variant::operator Signal() const { if (type == SIGNAL) { return *reinterpret_cast(_data._mem); } else { return Signal(); } } template inline DA _convert_array(const SA &p_array) { DA da; da.resize(p_array.size()); for (int i = 0; i < p_array.size(); i++) { da.set(i, Variant(p_array.get(i))); } return da; } template inline DA _convert_array_from_variant(const Variant &p_variant) { switch (p_variant.get_type()) { case Variant::ARRAY: { return _convert_array(p_variant.operator Array()); } case Variant::PACKED_BYTE_ARRAY: { return _convert_array(p_variant.operator PackedByteArray()); } case Variant::PACKED_INT32_ARRAY: { return _convert_array(p_variant.operator PackedInt32Array()); } case Variant::PACKED_INT64_ARRAY: { return _convert_array(p_variant.operator PackedInt64Array()); } case Variant::PACKED_FLOAT32_ARRAY: { return _convert_array(p_variant.operator PackedFloat32Array()); } case Variant::PACKED_FLOAT64_ARRAY: { return _convert_array(p_variant.operator PackedFloat64Array()); } case Variant::PACKED_STRING_ARRAY: { return _convert_array(p_variant.operator PackedStringArray()); } case Variant::PACKED_VECTOR2_ARRAY: { return _convert_array(p_variant.operator PackedVector2Array()); } case Variant::PACKED_VECTOR3_ARRAY: { return _convert_array(p_variant.operator PackedVector3Array()); } case Variant::PACKED_COLOR_ARRAY: { return _convert_array(p_variant.operator PackedColorArray()); } default: { return DA(); } } } Variant::operator Array() const { if (type == ARRAY) { return *reinterpret_cast(_data._mem); } else { return _convert_array_from_variant(*this); } } Variant::operator PackedByteArray() const { if (type == PACKED_BYTE_ARRAY) { return static_cast *>(_data.packed_array)->array; } else { return _convert_array_from_variant(*this); } } Variant::operator PackedInt32Array() const { if (type == PACKED_INT32_ARRAY) { return static_cast *>(_data.packed_array)->array; } else { return _convert_array_from_variant(*this); } } Variant::operator PackedInt64Array() const { if (type == PACKED_INT64_ARRAY) { return static_cast *>(_data.packed_array)->array; } else { return _convert_array_from_variant(*this); } } Variant::operator PackedFloat32Array() const { if (type == PACKED_FLOAT32_ARRAY) { return static_cast *>(_data.packed_array)->array; } else { return _convert_array_from_variant(*this); } } Variant::operator PackedFloat64Array() const { if (type == PACKED_FLOAT64_ARRAY) { return static_cast *>(_data.packed_array)->array; } else { return _convert_array_from_variant(*this); } } Variant::operator PackedStringArray() const { if (type == PACKED_STRING_ARRAY) { return static_cast *>(_data.packed_array)->array; } else { return _convert_array_from_variant(*this); } } Variant::operator PackedVector2Array() const { if (type == PACKED_VECTOR2_ARRAY) { return static_cast *>(_data.packed_array)->array; } else { return _convert_array_from_variant(*this); } } Variant::operator PackedVector3Array() const { if (type == PACKED_VECTOR3_ARRAY) { return static_cast *>(_data.packed_array)->array; } else { return _convert_array_from_variant(*this); } } Variant::operator PackedColorArray() const { if (type == PACKED_COLOR_ARRAY) { return static_cast *>(_data.packed_array)->array; } else { return _convert_array_from_variant(*this); } } /* helpers */ Variant::operator Vector<::RID>() const { Array va = operator Array(); Vector<::RID> rids; rids.resize(va.size()); for (int i = 0; i < rids.size(); i++) { rids.write[i] = va[i]; } return rids; } Variant::operator Vector() const { Array va = operator Array(); Vector planes; int va_size = va.size(); if (va_size == 0) { return planes; } planes.resize(va_size); Plane *w = planes.ptrw(); for (int i = 0; i < va_size; i++) { w[i] = va[i]; } return planes; } Variant::operator Vector() const { PackedVector3Array va = operator PackedVector3Array(); Vector faces; int va_size = va.size(); if (va_size == 0) { return faces; } faces.resize(va_size / 3); Face3 *w = faces.ptrw(); const Vector3 *r = va.ptr(); for (int i = 0; i < va_size; i++) { w[i / 3].vertex[i % 3] = r[i]; } return faces; } Variant::operator Vector() const { Array va = operator Array(); Vector variants; int va_size = va.size(); if (va_size == 0) { return variants; } variants.resize(va_size); Variant *w = variants.ptrw(); for (int i = 0; i < va_size; i++) { w[i] = va[i]; } return variants; } Variant::operator Vector() const { PackedStringArray from = operator PackedStringArray(); Vector to; int len = from.size(); to.resize(len); for (int i = 0; i < len; i++) { to.write[i] = from[i]; } return to; } Variant::operator Side() const { return (Side) operator int(); } Variant::operator Orientation() const { return (Orientation) operator int(); } Variant::operator IPAddress() const { if (type == PACKED_FLOAT32_ARRAY || type == PACKED_INT32_ARRAY || type == PACKED_FLOAT64_ARRAY || type == PACKED_INT64_ARRAY || type == PACKED_BYTE_ARRAY) { Vector addr = operator Vector(); if (addr.size() == 4) { return IPAddress(addr.get(0), addr.get(1), addr.get(2), addr.get(3)); } } return IPAddress(operator String()); } Variant::Variant(bool p_bool) : type(BOOL) { _data._bool = p_bool; } Variant::Variant(int64_t p_int64) : type(INT) { _data._int = p_int64; } Variant::Variant(int32_t p_int32) : type(INT) { _data._int = p_int32; } Variant::Variant(int16_t p_int16) : type(INT) { _data._int = p_int16; } Variant::Variant(int8_t p_int8) : type(INT) { _data._int = p_int8; } Variant::Variant(uint64_t p_uint64) : type(INT) { _data._int = p_uint64; } Variant::Variant(uint32_t p_uint32) : type(INT) { _data._int = p_uint32; } Variant::Variant(uint16_t p_uint16) : type(INT) { _data._int = p_uint16; } Variant::Variant(uint8_t p_uint8) : type(INT) { _data._int = p_uint8; } Variant::Variant(float p_float) : type(FLOAT) { _data._float = p_float; } Variant::Variant(double p_double) : type(FLOAT) { _data._float = p_double; } Variant::Variant(const ObjectID &p_id) : type(INT) { _data._int = p_id; } Variant::Variant(const StringName &p_string) : type(STRING_NAME) { memnew_placement(_data._mem, StringName(p_string)); } Variant::Variant(const String &p_string) : type(STRING) { memnew_placement(_data._mem, String(p_string)); } Variant::Variant(const char *const p_cstring) : type(STRING) { memnew_placement(_data._mem, String((const char *)p_cstring)); } Variant::Variant(const char32_t *p_wstring) : type(STRING) { memnew_placement(_data._mem, String(p_wstring)); } Variant::Variant(const Vector3 &p_vector3) : type(VECTOR3) { memnew_placement(_data._mem, Vector3(p_vector3)); } Variant::Variant(const Vector3i &p_vector3i) : type(VECTOR3I) { memnew_placement(_data._mem, Vector3i(p_vector3i)); } Variant::Variant(const Vector4 &p_vector4) : type(VECTOR4) { memnew_placement(_data._mem, Vector4(p_vector4)); } Variant::Variant(const Vector4i &p_vector4i) : type(VECTOR4I) { memnew_placement(_data._mem, Vector4i(p_vector4i)); } Variant::Variant(const Vector2 &p_vector2) : type(VECTOR2) { memnew_placement(_data._mem, Vector2(p_vector2)); } Variant::Variant(const Vector2i &p_vector2i) : type(VECTOR2I) { memnew_placement(_data._mem, Vector2i(p_vector2i)); } Variant::Variant(const Rect2 &p_rect2) : type(RECT2) { memnew_placement(_data._mem, Rect2(p_rect2)); } Variant::Variant(const Rect2i &p_rect2i) : type(RECT2I) { memnew_placement(_data._mem, Rect2i(p_rect2i)); } Variant::Variant(const Plane &p_plane) : type(PLANE) { memnew_placement(_data._mem, Plane(p_plane)); } Variant::Variant(const ::AABB &p_aabb) : type(AABB) { _data._aabb = (::AABB *)Pools::_bucket_small.alloc(); memnew_placement(_data._aabb, ::AABB(p_aabb)); } Variant::Variant(const Basis &p_matrix) : type(BASIS) { _data._basis = (Basis *)Pools::_bucket_medium.alloc(); memnew_placement(_data._basis, Basis(p_matrix)); } Variant::Variant(const Quaternion &p_quaternion) : type(QUATERNION) { memnew_placement(_data._mem, Quaternion(p_quaternion)); } Variant::Variant(const Transform3D &p_transform) : type(TRANSFORM3D) { _data._transform3d = (Transform3D *)Pools::_bucket_medium.alloc(); memnew_placement(_data._transform3d, Transform3D(p_transform)); } Variant::Variant(const Projection &pp_projection) : type(PROJECTION) { _data._projection = (Projection *)Pools::_bucket_large.alloc(); memnew_placement(_data._projection, Projection(pp_projection)); } Variant::Variant(const Transform2D &p_transform) : type(TRANSFORM2D) { _data._transform2d = (Transform2D *)Pools::_bucket_small.alloc(); memnew_placement(_data._transform2d, Transform2D(p_transform)); } Variant::Variant(const Color &p_color) : type(COLOR) { memnew_placement(_data._mem, Color(p_color)); } Variant::Variant(const NodePath &p_node_path) : type(NODE_PATH) { memnew_placement(_data._mem, NodePath(p_node_path)); } Variant::Variant(const ::RID &p_rid) : type(RID) { memnew_placement(_data._mem, ::RID(p_rid)); } Variant::Variant(const Object *p_object) : type(OBJECT) { memnew_placement(_data._mem, ObjData); if (p_object) { if (p_object->is_ref_counted()) { RefCounted *ref_counted = const_cast(static_cast(p_object)); if (!ref_counted->init_ref()) { _get_obj().obj = nullptr; _get_obj().id = ObjectID(); return; } } _get_obj().obj = const_cast(p_object); _get_obj().id = p_object->get_instance_id(); } else { _get_obj().obj = nullptr; _get_obj().id = ObjectID(); } } Variant::Variant(const Callable &p_callable) : type(CALLABLE) { memnew_placement(_data._mem, Callable(p_callable)); } Variant::Variant(const Signal &p_callable) : type(SIGNAL) { memnew_placement(_data._mem, Signal(p_callable)); } Variant::Variant(const Dictionary &p_dictionary) : type(DICTIONARY) { memnew_placement(_data._mem, Dictionary(p_dictionary)); } Variant::Variant(const Array &p_array) : type(ARRAY) { memnew_placement(_data._mem, Array(p_array)); } Variant::Variant(const PackedByteArray &p_byte_array) : type(PACKED_BYTE_ARRAY) { _data.packed_array = PackedArrayRef::create(p_byte_array); } Variant::Variant(const PackedInt32Array &p_int32_array) : type(PACKED_INT32_ARRAY) { _data.packed_array = PackedArrayRef::create(p_int32_array); } Variant::Variant(const PackedInt64Array &p_int64_array) : type(PACKED_INT64_ARRAY) { _data.packed_array = PackedArrayRef::create(p_int64_array); } Variant::Variant(const PackedFloat32Array &p_float32_array) : type(PACKED_FLOAT32_ARRAY) { _data.packed_array = PackedArrayRef::create(p_float32_array); } Variant::Variant(const PackedFloat64Array &p_float64_array) : type(PACKED_FLOAT64_ARRAY) { _data.packed_array = PackedArrayRef::create(p_float64_array); } Variant::Variant(const PackedStringArray &p_string_array) : type(PACKED_STRING_ARRAY) { _data.packed_array = PackedArrayRef::create(p_string_array); } Variant::Variant(const PackedVector2Array &p_vector2_array) : type(PACKED_VECTOR2_ARRAY) { _data.packed_array = PackedArrayRef::create(p_vector2_array); } Variant::Variant(const PackedVector3Array &p_vector3_array) : type(PACKED_VECTOR3_ARRAY) { _data.packed_array = PackedArrayRef::create(p_vector3_array); } Variant::Variant(const PackedColorArray &p_color_array) : type(PACKED_COLOR_ARRAY) { _data.packed_array = PackedArrayRef::create(p_color_array); } /* helpers */ Variant::Variant(const Vector<::RID> &p_array) : type(ARRAY) { Array *rid_array = memnew_placement(_data._mem, Array); rid_array->resize(p_array.size()); for (int i = 0; i < p_array.size(); i++) { rid_array->set(i, Variant(p_array[i])); } } Variant::Variant(const Vector &p_array) : type(ARRAY) { Array *plane_array = memnew_placement(_data._mem, Array); plane_array->resize(p_array.size()); for (int i = 0; i < p_array.size(); i++) { plane_array->operator[](i) = Variant(p_array[i]); } } Variant::Variant(const Vector &p_face_array) : type(NIL) { PackedVector3Array vertices; int face_count = p_face_array.size(); vertices.resize(face_count * 3); if (face_count) { const Face3 *r = p_face_array.ptr(); Vector3 *w = vertices.ptrw(); for (int i = 0; i < face_count; i++) { for (int j = 0; j < 3; j++) { w[i * 3 + j] = r[i].vertex[j]; } } } *this = vertices; } Variant::Variant(const Vector &p_array) : type(NIL) { Array arr; arr.resize(p_array.size()); for (int i = 0; i < p_array.size(); i++) { arr[i] = p_array[i]; } *this = arr; } Variant::Variant(const Vector &p_array) : type(NIL) { PackedStringArray v; int len = p_array.size(); v.resize(len); for (int i = 0; i < len; i++) { v.set(i, p_array[i]); } *this = v; } void Variant::operator=(const Variant &p_variant) { if (unlikely(this == &p_variant)) { return; } if (unlikely(type != p_variant.type)) { reference(p_variant); return; } switch (p_variant.type) { case NIL: { // none } break; // atomic types case BOOL: { _data._bool = p_variant._data._bool; } break; case INT: { _data._int = p_variant._data._int; } break; case FLOAT: { _data._float = p_variant._data._float; } break; case STRING: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; // math types case VECTOR2: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case VECTOR2I: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case RECT2: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case RECT2I: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case TRANSFORM2D: { *_data._transform2d = *(p_variant._data._transform2d); } break; case VECTOR3: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case VECTOR3I: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case VECTOR4: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case VECTOR4I: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case PLANE: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case AABB: { *_data._aabb = *(p_variant._data._aabb); } break; case QUATERNION: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case BASIS: { *_data._basis = *(p_variant._data._basis); } break; case TRANSFORM3D: { *_data._transform3d = *(p_variant._data._transform3d); } break; case PROJECTION: { *_data._projection = *(p_variant._data._projection); } break; // misc types case COLOR: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case RID: { *reinterpret_cast<::RID *>(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case OBJECT: { if (_get_obj().id.is_ref_counted()) { //we are safe that there is a reference here RefCounted *ref_counted = static_cast(_get_obj().obj); if (ref_counted->unreference()) { memdelete(ref_counted); } } if (p_variant._get_obj().obj && p_variant._get_obj().id.is_ref_counted()) { RefCounted *ref_counted = static_cast(p_variant._get_obj().obj); if (!ref_counted->reference()) { _get_obj().obj = nullptr; _get_obj().id = ObjectID(); break; } } _get_obj().obj = const_cast(p_variant._get_obj().obj); _get_obj().id = p_variant._get_obj().id; } break; case CALLABLE: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case SIGNAL: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case STRING_NAME: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case NODE_PATH: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case DICTIONARY: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; case ARRAY: { *reinterpret_cast(_data._mem) = *reinterpret_cast(p_variant._data._mem); } break; // arrays case PACKED_BYTE_ARRAY: { _data.packed_array = PackedArrayRef::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_INT32_ARRAY: { _data.packed_array = PackedArrayRef::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_INT64_ARRAY: { _data.packed_array = PackedArrayRef::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_FLOAT32_ARRAY: { _data.packed_array = PackedArrayRef::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_FLOAT64_ARRAY: { _data.packed_array = PackedArrayRef::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_STRING_ARRAY: { _data.packed_array = PackedArrayRef::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_VECTOR2_ARRAY: { _data.packed_array = PackedArrayRef::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_VECTOR3_ARRAY: { _data.packed_array = PackedArrayRef::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_COLOR_ARRAY: { _data.packed_array = PackedArrayRef::reference_from(_data.packed_array, p_variant._data.packed_array); } break; default: { } } } Variant::Variant(const IPAddress &p_address) : type(STRING) { memnew_placement(_data._mem, String(p_address)); } Variant::Variant(const Variant &p_variant) : type(NIL) { reference(p_variant); } uint32_t Variant::hash() const { return recursive_hash(0); } uint32_t Variant::recursive_hash(int recursion_count) const { switch (type) { case NIL: { return 0; } break; case BOOL: { return _data._bool ? 1 : 0; } break; case INT: { return hash_one_uint64((uint64_t)_data._int); } break; case FLOAT: { return hash_murmur3_one_double(_data._float); } break; case STRING: { return reinterpret_cast(_data._mem)->hash(); } break; // math types case VECTOR2: { return HashMapHasherDefault::hash(*reinterpret_cast(_data._mem)); } break; case VECTOR2I: { return HashMapHasherDefault::hash(*reinterpret_cast(_data._mem)); } break; case RECT2: { return HashMapHasherDefault::hash(*reinterpret_cast(_data._mem)); } break; case RECT2I: { return HashMapHasherDefault::hash(*reinterpret_cast(_data._mem)); } break; case TRANSFORM2D: { uint32_t h = HASH_MURMUR3_SEED; const Transform2D &t = *_data._transform2d; h = hash_murmur3_one_real(t[0].x, h); h = hash_murmur3_one_real(t[0].y, h); h = hash_murmur3_one_real(t[1].x, h); h = hash_murmur3_one_real(t[1].y, h); h = hash_murmur3_one_real(t[2].x, h); h = hash_murmur3_one_real(t[2].y, h); return hash_fmix32(h); } break; case VECTOR3: { return HashMapHasherDefault::hash(*reinterpret_cast(_data._mem)); } break; case VECTOR3I: { return HashMapHasherDefault::hash(*reinterpret_cast(_data._mem)); } break; case VECTOR4: { return HashMapHasherDefault::hash(*reinterpret_cast(_data._mem)); } break; case VECTOR4I: { return HashMapHasherDefault::hash(*reinterpret_cast(_data._mem)); } break; case PLANE: { uint32_t h = HASH_MURMUR3_SEED; const Plane &p = *reinterpret_cast(_data._mem); h = hash_murmur3_one_real(p.normal.x, h); h = hash_murmur3_one_real(p.normal.y, h); h = hash_murmur3_one_real(p.normal.z, h); h = hash_murmur3_one_real(p.d, h); return hash_fmix32(h); } break; case AABB: { return HashMapHasherDefault::hash(*_data._aabb); } break; case QUATERNION: { uint32_t h = HASH_MURMUR3_SEED; const Quaternion &q = *reinterpret_cast(_data._mem); h = hash_murmur3_one_real(q.x, h); h = hash_murmur3_one_real(q.y, h); h = hash_murmur3_one_real(q.z, h); h = hash_murmur3_one_real(q.w, h); return hash_fmix32(h); } break; case BASIS: { uint32_t h = HASH_MURMUR3_SEED; const Basis &b = *_data._basis; h = hash_murmur3_one_real(b[0].x, h); h = hash_murmur3_one_real(b[0].y, h); h = hash_murmur3_one_real(b[0].z, h); h = hash_murmur3_one_real(b[1].x, h); h = hash_murmur3_one_real(b[1].y, h); h = hash_murmur3_one_real(b[1].z, h); h = hash_murmur3_one_real(b[2].x, h); h = hash_murmur3_one_real(b[2].y, h); h = hash_murmur3_one_real(b[2].z, h); return hash_fmix32(h); } break; case TRANSFORM3D: { uint32_t h = HASH_MURMUR3_SEED; const Transform3D &t = *_data._transform3d; h = hash_murmur3_one_real(t.basis[0].x, h); h = hash_murmur3_one_real(t.basis[0].y, h); h = hash_murmur3_one_real(t.basis[0].z, h); h = hash_murmur3_one_real(t.basis[1].x, h); h = hash_murmur3_one_real(t.basis[1].y, h); h = hash_murmur3_one_real(t.basis[1].z, h); h = hash_murmur3_one_real(t.basis[2].x, h); h = hash_murmur3_one_real(t.basis[2].y, h); h = hash_murmur3_one_real(t.basis[2].z, h); h = hash_murmur3_one_real(t.origin.x, h); h = hash_murmur3_one_real(t.origin.y, h); h = hash_murmur3_one_real(t.origin.z, h); return hash_fmix32(h); } break; case PROJECTION: { uint32_t h = HASH_MURMUR3_SEED; const Projection &t = *_data._projection; h = hash_murmur3_one_real(t.columns[0].x, h); h = hash_murmur3_one_real(t.columns[0].y, h); h = hash_murmur3_one_real(t.columns[0].z, h); h = hash_murmur3_one_real(t.columns[0].w, h); h = hash_murmur3_one_real(t.columns[1].x, h); h = hash_murmur3_one_real(t.columns[1].y, h); h = hash_murmur3_one_real(t.columns[1].z, h); h = hash_murmur3_one_real(t.columns[1].w, h); h = hash_murmur3_one_real(t.columns[2].x, h); h = hash_murmur3_one_real(t.columns[2].y, h); h = hash_murmur3_one_real(t.columns[2].z, h); h = hash_murmur3_one_real(t.columns[2].w, h); h = hash_murmur3_one_real(t.columns[3].x, h); h = hash_murmur3_one_real(t.columns[3].y, h); h = hash_murmur3_one_real(t.columns[3].z, h); h = hash_murmur3_one_real(t.columns[3].w, h); return hash_fmix32(h); } break; // misc types case COLOR: { uint32_t h = HASH_MURMUR3_SEED; const Color &c = *reinterpret_cast(_data._mem); h = hash_murmur3_one_float(c.r, h); h = hash_murmur3_one_float(c.g, h); h = hash_murmur3_one_float(c.b, h); h = hash_murmur3_one_float(c.a, h); return hash_fmix32(h); } break; case RID: { return hash_one_uint64(reinterpret_cast(_data._mem)->get_id()); } break; case OBJECT: { return hash_one_uint64(hash_make_uint64_t(_get_obj().obj)); } break; case STRING_NAME: { return reinterpret_cast(_data._mem)->hash(); } break; case NODE_PATH: { return reinterpret_cast(_data._mem)->hash(); } break; case DICTIONARY: { return reinterpret_cast(_data._mem)->recursive_hash(recursion_count); } break; case CALLABLE: { return reinterpret_cast(_data._mem)->hash(); } break; case SIGNAL: { const Signal &s = *reinterpret_cast(_data._mem); uint32_t hash = s.get_name().hash(); return hash_murmur3_one_64(s.get_object_id(), hash); } break; case ARRAY: { const Array &arr = *reinterpret_cast(_data._mem); return arr.recursive_hash(recursion_count); } break; case PACKED_BYTE_ARRAY: { const PackedByteArray &arr = PackedArrayRef::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const uint8_t *r = arr.ptr(); return hash_murmur3_buffer((uint8_t *)&r[0], len); } else { return hash_murmur3_one_64(0); } } break; case PACKED_INT32_ARRAY: { const PackedInt32Array &arr = PackedArrayRef::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const int32_t *r = arr.ptr(); return hash_murmur3_buffer((uint8_t *)&r[0], len * sizeof(int32_t)); } else { return hash_murmur3_one_64(0); } } break; case PACKED_INT64_ARRAY: { const PackedInt64Array &arr = PackedArrayRef::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const int64_t *r = arr.ptr(); return hash_murmur3_buffer((uint8_t *)&r[0], len * sizeof(int64_t)); } else { return hash_murmur3_one_64(0); } } break; case PACKED_FLOAT32_ARRAY: { const PackedFloat32Array &arr = PackedArrayRef::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const float *r = arr.ptr(); uint32_t h = HASH_MURMUR3_SEED; for (int32_t i = 0; i < len; i++) { h = hash_murmur3_one_float(r[i], h); } return hash_fmix32(h); } else { return hash_murmur3_one_float(0.0); } } break; case PACKED_FLOAT64_ARRAY: { const PackedFloat64Array &arr = PackedArrayRef::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const double *r = arr.ptr(); uint32_t h = HASH_MURMUR3_SEED; for (int32_t i = 0; i < len; i++) { h = hash_murmur3_one_double(r[i], h); } return hash_fmix32(h); } else { return hash_murmur3_one_double(0.0); } } break; case PACKED_STRING_ARRAY: { uint32_t hash = HASH_MURMUR3_SEED; const PackedStringArray &arr = PackedArrayRef::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const String *r = arr.ptr(); for (int i = 0; i < len; i++) { hash = hash_murmur3_one_32(r[i].hash(), hash); } hash = hash_fmix32(hash); } return hash; } break; case PACKED_VECTOR2_ARRAY: { uint32_t hash = HASH_MURMUR3_SEED; const PackedVector2Array &arr = PackedArrayRef::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const Vector2 *r = arr.ptr(); for (int i = 0; i < len; i++) { hash = hash_murmur3_one_real(r[i].x, hash); hash = hash_murmur3_one_real(r[i].y, hash); } hash = hash_fmix32(hash); } return hash; } break; case PACKED_VECTOR3_ARRAY: { uint32_t hash = HASH_MURMUR3_SEED; const PackedVector3Array &arr = PackedArrayRef::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const Vector3 *r = arr.ptr(); for (int i = 0; i < len; i++) { hash = hash_murmur3_one_real(r[i].x, hash); hash = hash_murmur3_one_real(r[i].y, hash); hash = hash_murmur3_one_real(r[i].z, hash); } hash = hash_fmix32(hash); } return hash; } break; case PACKED_COLOR_ARRAY: { uint32_t hash = HASH_MURMUR3_SEED; const PackedColorArray &arr = PackedArrayRef::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const Color *r = arr.ptr(); for (int i = 0; i < len; i++) { hash = hash_murmur3_one_float(r[i].r, hash); hash = hash_murmur3_one_float(r[i].g, hash); hash = hash_murmur3_one_float(r[i].b, hash); hash = hash_murmur3_one_float(r[i].a, hash); } hash = hash_fmix32(hash); } return hash; } break; default: { } } return 0; } #define hash_compare_scalar_base(p_lhs, p_rhs, semantic_comparison) \ (((p_lhs) == (p_rhs)) || (semantic_comparison && Math::is_nan(p_lhs) && Math::is_nan(p_rhs))) #define hash_compare_scalar(p_lhs, p_rhs) \ (hash_compare_scalar_base(p_lhs, p_rhs, true)) #define hash_compare_vector2(p_lhs, p_rhs) \ (hash_compare_scalar((p_lhs).x, (p_rhs).x) && \ hash_compare_scalar((p_lhs).y, (p_rhs).y)) #define hash_compare_vector3(p_lhs, p_rhs) \ (hash_compare_scalar((p_lhs).x, (p_rhs).x) && \ hash_compare_scalar((p_lhs).y, (p_rhs).y) && \ hash_compare_scalar((p_lhs).z, (p_rhs).z)) #define hash_compare_vector4(p_lhs, p_rhs) \ (hash_compare_scalar((p_lhs).x, (p_rhs).x) && \ hash_compare_scalar((p_lhs).y, (p_rhs).y) && \ hash_compare_scalar((p_lhs).z, (p_rhs).z) && \ hash_compare_scalar((p_lhs).w, (p_rhs).w)) #define hash_compare_quaternion(p_lhs, p_rhs) \ (hash_compare_scalar((p_lhs).x, (p_rhs).x) && \ hash_compare_scalar((p_lhs).y, (p_rhs).y) && \ hash_compare_scalar((p_lhs).z, (p_rhs).z) && \ hash_compare_scalar((p_lhs).w, (p_rhs).w)) #define hash_compare_color(p_lhs, p_rhs) \ (hash_compare_scalar((p_lhs).r, (p_rhs).r) && \ hash_compare_scalar((p_lhs).g, (p_rhs).g) && \ hash_compare_scalar((p_lhs).b, (p_rhs).b) && \ hash_compare_scalar((p_lhs).a, (p_rhs).a)) #define hash_compare_packed_array(p_lhs, p_rhs, p_type, p_compare_func) \ const Vector &l = PackedArrayRef::get_array(p_lhs); \ const Vector &r = PackedArrayRef::get_array(p_rhs); \ \ if (l.size() != r.size()) \ return false; \ \ const p_type *lr = l.ptr(); \ const p_type *rr = r.ptr(); \ \ for (int i = 0; i < l.size(); ++i) { \ if (!p_compare_func((lr[i]), (rr[i]))) \ return false; \ } \ \ return true bool Variant::hash_compare(const Variant &p_variant, int recursion_count, bool semantic_comparison) const { if (type != p_variant.type) { return false; } switch (type) { case INT: { return _data._int == p_variant._data._int; } break; case FLOAT: { return hash_compare_scalar_base(_data._float, p_variant._data._float, semantic_comparison); } break; case STRING: { return *reinterpret_cast(_data._mem) == *reinterpret_cast(p_variant._data._mem); } break; case STRING_NAME: { return *reinterpret_cast(_data._mem) == *reinterpret_cast(p_variant._data._mem); } break; case VECTOR2: { const Vector2 *l = reinterpret_cast(_data._mem); const Vector2 *r = reinterpret_cast(p_variant._data._mem); return hash_compare_vector2(*l, *r); } break; case VECTOR2I: { const Vector2i *l = reinterpret_cast(_data._mem); const Vector2i *r = reinterpret_cast(p_variant._data._mem); return *l == *r; } break; case RECT2: { const Rect2 *l = reinterpret_cast(_data._mem); const Rect2 *r = reinterpret_cast(p_variant._data._mem); return hash_compare_vector2(l->position, r->position) && hash_compare_vector2(l->size, r->size); } break; case RECT2I: { const Rect2i *l = reinterpret_cast(_data._mem); const Rect2i *r = reinterpret_cast(p_variant._data._mem); return *l == *r; } break; case TRANSFORM2D: { Transform2D *l = _data._transform2d; Transform2D *r = p_variant._data._transform2d; for (int i = 0; i < 3; i++) { if (!hash_compare_vector2(l->columns[i], r->columns[i])) { return false; } } return true; } break; case VECTOR3: { const Vector3 *l = reinterpret_cast(_data._mem); const Vector3 *r = reinterpret_cast(p_variant._data._mem); return hash_compare_vector3(*l, *r); } break; case VECTOR3I: { const Vector3i *l = reinterpret_cast(_data._mem); const Vector3i *r = reinterpret_cast(p_variant._data._mem); return *l == *r; } break; case VECTOR4: { const Vector4 *l = reinterpret_cast(_data._mem); const Vector4 *r = reinterpret_cast(p_variant._data._mem); return hash_compare_vector4(*l, *r); } break; case VECTOR4I: { const Vector4i *l = reinterpret_cast(_data._mem); const Vector4i *r = reinterpret_cast(p_variant._data._mem); return *l == *r; } break; case PLANE: { const Plane *l = reinterpret_cast(_data._mem); const Plane *r = reinterpret_cast(p_variant._data._mem); return hash_compare_vector3(l->normal, r->normal) && hash_compare_scalar(l->d, r->d); } break; case AABB: { const ::AABB *l = _data._aabb; const ::AABB *r = p_variant._data._aabb; return hash_compare_vector3(l->position, r->position) && hash_compare_vector3(l->size, r->size); } break; case QUATERNION: { const Quaternion *l = reinterpret_cast(_data._mem); const Quaternion *r = reinterpret_cast(p_variant._data._mem); return hash_compare_quaternion(*l, *r); } break; case BASIS: { const Basis *l = _data._basis; const Basis *r = p_variant._data._basis; for (int i = 0; i < 3; i++) { if (!hash_compare_vector3(l->rows[i], r->rows[i])) { return false; } } return true; } break; case TRANSFORM3D: { const Transform3D *l = _data._transform3d; const Transform3D *r = p_variant._data._transform3d; for (int i = 0; i < 3; i++) { if (!hash_compare_vector3(l->basis.rows[i], r->basis.rows[i])) { return false; } } return hash_compare_vector3(l->origin, r->origin); } break; case PROJECTION: { const Projection *l = _data._projection; const Projection *r = p_variant._data._projection; for (int i = 0; i < 4; i++) { if (!hash_compare_vector4(l->columns[i], r->columns[i])) { return false; } } return true; } break; case COLOR: { const Color *l = reinterpret_cast(_data._mem); const Color *r = reinterpret_cast(p_variant._data._mem); return hash_compare_color(*l, *r); } break; case ARRAY: { const Array &l = *(reinterpret_cast(_data._mem)); const Array &r = *(reinterpret_cast(p_variant._data._mem)); if (!l.recursive_equal(r, recursion_count + 1)) { return false; } return true; } break; case DICTIONARY: { const Dictionary &l = *(reinterpret_cast(_data._mem)); const Dictionary &r = *(reinterpret_cast(p_variant._data._mem)); if (!l.recursive_equal(r, recursion_count + 1)) { return false; } return true; } break; // This is for floating point comparisons only. case PACKED_FLOAT32_ARRAY: { hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, float, hash_compare_scalar); } break; case PACKED_FLOAT64_ARRAY: { hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, double, hash_compare_scalar); } break; case PACKED_VECTOR2_ARRAY: { hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Vector2, hash_compare_vector2); } break; case PACKED_VECTOR3_ARRAY: { hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Vector3, hash_compare_vector3); } break; case PACKED_COLOR_ARRAY: { hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Color, hash_compare_color); } break; default: bool v; Variant r; evaluate(OP_EQUAL, *this, p_variant, r, v); return r; } } bool Variant::identity_compare(const Variant &p_variant) const { if (type != p_variant.type) { return false; } switch (type) { case OBJECT: { return _get_obj().id == p_variant._get_obj().id; } break; case DICTIONARY: { const Dictionary &l = *(reinterpret_cast(_data._mem)); const Dictionary &r = *(reinterpret_cast(p_variant._data._mem)); return l.id() == r.id(); } break; case ARRAY: { const Array &l = *(reinterpret_cast(_data._mem)); const Array &r = *(reinterpret_cast(p_variant._data._mem)); return l.id() == r.id(); } break; case PACKED_BYTE_ARRAY: case PACKED_INT32_ARRAY: case PACKED_INT64_ARRAY: case PACKED_FLOAT32_ARRAY: case PACKED_FLOAT64_ARRAY: case PACKED_STRING_ARRAY: case PACKED_VECTOR2_ARRAY: case PACKED_VECTOR3_ARRAY: case PACKED_COLOR_ARRAY: { return _data.packed_array == p_variant._data.packed_array; } break; default: { return hash_compare(p_variant); } } } bool StringLikeVariantComparator::compare(const Variant &p_lhs, const Variant &p_rhs) { if (p_lhs.hash_compare(p_rhs)) { return true; } if (p_lhs.get_type() == Variant::STRING && p_rhs.get_type() == Variant::STRING_NAME) { return *VariantInternal::get_string(&p_lhs) == *VariantInternal::get_string_name(&p_rhs); } if (p_lhs.get_type() == Variant::STRING_NAME && p_rhs.get_type() == Variant::STRING) { return *VariantInternal::get_string_name(&p_lhs) == *VariantInternal::get_string(&p_rhs); } return false; } bool Variant::is_ref_counted() const { return type == OBJECT && _get_obj().id.is_ref_counted(); } void Variant::static_assign(const Variant &p_variant) { } bool Variant::is_type_shared(Variant::Type p_type) { switch (p_type) { case OBJECT: case ARRAY: case DICTIONARY: return true; default: { } } return false; } bool Variant::is_shared() const { return is_type_shared(type); } bool Variant::is_read_only() const { switch (type) { case ARRAY: return reinterpret_cast(_data._mem)->is_read_only(); case DICTIONARY: return reinterpret_cast(_data._mem)->is_read_only(); default: return false; } } void Variant::_variant_call_error(const String &p_method, Callable::CallError &error) { switch (error.error) { case Callable::CallError::CALL_ERROR_INVALID_ARGUMENT: { String err = "Invalid type for argument #" + itos(error.argument) + ", expected '" + Variant::get_type_name(Variant::Type(error.expected)) + "'."; ERR_PRINT(err.utf8().get_data()); } break; case Callable::CallError::CALL_ERROR_INVALID_METHOD: { String err = "Invalid method '" + p_method + "' for type '" + Variant::get_type_name(type) + "'."; ERR_PRINT(err.utf8().get_data()); } break; case Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS: { String err = "Too many arguments for method '" + p_method + "'"; ERR_PRINT(err.utf8().get_data()); } break; default: { } } } void Variant::construct_from_string(const String &p_string, Variant &r_value, ObjectConstruct p_obj_construct, void *p_construct_ud) { r_value = Variant(); } String Variant::get_construct_string() const { String vars; VariantWriter::write_to_string(*this, vars); return vars; } String Variant::get_call_error_text(const StringName &p_method, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) { return get_call_error_text(nullptr, p_method, p_argptrs, p_argcount, ce); } String Variant::get_call_error_text(Object *p_base, const StringName &p_method, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) { String err_text; if (ce.error == Callable::CallError::CALL_ERROR_INVALID_ARGUMENT) { int errorarg = ce.argument; if (p_argptrs) { err_text = "Cannot convert argument " + itos(errorarg + 1) + " from " + Variant::get_type_name(p_argptrs[errorarg]->get_type()) + " to " + Variant::get_type_name(Variant::Type(ce.expected)); } else { err_text = "Cannot convert argument " + itos(errorarg + 1) + " from [missing argptr, type unknown] to " + Variant::get_type_name(Variant::Type(ce.expected)); } } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS) { err_text = "Method expected " + itos(ce.expected) + " arguments, but called with " + itos(p_argcount); } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS) { err_text = "Method expected " + itos(ce.expected) + " arguments, but called with " + itos(p_argcount); } else if (ce.error == Callable::CallError::CALL_ERROR_INVALID_METHOD) { err_text = "Method not found"; } else if (ce.error == Callable::CallError::CALL_ERROR_INSTANCE_IS_NULL) { err_text = "Instance is null"; } else if (ce.error == Callable::CallError::CALL_ERROR_METHOD_NOT_CONST) { err_text = "Method not const in const instance"; } else if (ce.error == Callable::CallError::CALL_OK) { return "Call OK"; } String base_text; if (p_base) { base_text = p_base->get_class(); Ref script = p_base->get_script(); if (script.is_valid() && script->get_path().is_resource_file()) { base_text += "(" + script->get_path().get_file() + ")"; } base_text += "::"; } return "'" + base_text + String(p_method) + "': " + err_text; } String Variant::get_callable_error_text(const Callable &p_callable, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) { Vector binds; int args_bound; p_callable.get_bound_arguments_ref(binds, args_bound); if (args_bound <= 0) { return get_call_error_text(p_callable.get_object(), p_callable.get_method(), p_argptrs, MAX(0, p_argcount + args_bound), ce); } else { Vector argptrs; argptrs.resize(p_argcount + binds.size()); for (int i = 0; i < p_argcount; i++) { argptrs.write[i] = p_argptrs[i]; } for (int i = 0; i < binds.size(); i++) { argptrs.write[i + p_argcount] = &binds[i]; } return get_call_error_text(p_callable.get_object(), p_callable.get_method(), (const Variant **)argptrs.ptr(), argptrs.size(), ce); } } void Variant::register_types() { _register_variant_operators(); _register_variant_methods(); _register_variant_setters_getters(); _register_variant_constructors(); _register_variant_destructors(); _register_variant_utility_functions(); } void Variant::unregister_types() { _unregister_variant_operators(); _unregister_variant_methods(); _unregister_variant_setters_getters(); _unregister_variant_destructors(); _unregister_variant_utility_functions(); }