/*************************************************************************/ /* nav_map.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "nav_map.h" #include "nav_region.h" #include "rvo_agent.h" #include #define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a))) void NavMap::set_up(Vector3 p_up) { up = p_up; regenerate_polygons = true; } void NavMap::set_cell_size(float p_cell_size) { cell_size = p_cell_size; regenerate_polygons = true; } void NavMap::set_cell_height(float p_cell_height) { cell_height = p_cell_height; regenerate_polygons = true; } void NavMap::set_edge_connection_margin(float p_edge_connection_margin) { edge_connection_margin = p_edge_connection_margin; regenerate_links = true; } gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const { const int x = static_cast(Math::round(p_pos.x / cell_size)); const int y = static_cast(Math::round(p_pos.y / cell_height)); const int z = static_cast(Math::round(p_pos.z / cell_size)); gd::PointKey p; p.key = 0; p.x = x; p.y = y; p.z = z; return p; } Vector NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize, uint32_t p_navigation_layers) const { // Find the start poly and the end poly on this map. const gd::Polygon *begin_poly = nullptr; const gd::Polygon *end_poly = nullptr; Vector3 begin_point; Vector3 end_point; float begin_d = 1e20; float end_d = 1e20; // Find the initial poly and the end poly on this map. for (size_t i(0); i < polygons.size(); i++) { const gd::Polygon &p = polygons[i]; // Only consider the polygon if it in a region with compatible layers. if ((p_navigation_layers & p.owner->get_navigation_layers()) == 0) { continue; } // For each face check the distance between the origin/destination for (size_t point_id = 2; point_id < p.points.size(); point_id++) { const Face3 face(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos); Vector3 point = face.get_closest_point_to(p_origin); float distance_to_point = point.distance_to(p_origin); if (distance_to_point < begin_d) { begin_d = distance_to_point; begin_poly = &p; begin_point = point; } point = face.get_closest_point_to(p_destination); distance_to_point = point.distance_to(p_destination); if (distance_to_point < end_d) { end_d = distance_to_point; end_poly = &p; end_point = point; } } } // Check for trivial cases if (!begin_poly || !end_poly) { return Vector(); } if (begin_poly == end_poly) { Vector path; path.resize(2); path.write[0] = begin_point; path.write[1] = end_point; return path; } // List of all reachable navigation polys. std::vector navigation_polys; navigation_polys.reserve(polygons.size() * 0.75); // Add the start polygon to the reachable navigation polygons. gd::NavigationPoly begin_navigation_poly = gd::NavigationPoly(begin_poly); begin_navigation_poly.self_id = 0; begin_navigation_poly.entry = begin_point; begin_navigation_poly.back_navigation_edge_pathway_start = begin_point; begin_navigation_poly.back_navigation_edge_pathway_end = begin_point; navigation_polys.push_back(begin_navigation_poly); // List of polygon IDs to visit. List to_visit; to_visit.push_back(0); // This is an implementation of the A* algorithm. int least_cost_id = 0; bool found_route = false; const gd::Polygon *reachable_end = nullptr; float reachable_d = 1e30; bool is_reachable = true; gd::NavigationPoly *prev_least_cost_poly = nullptr; while (true) { // Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance. for (size_t i = 0; i < navigation_polys[least_cost_id].poly->edges.size(); i++) { gd::NavigationPoly *least_cost_poly = &navigation_polys[least_cost_id]; const gd::Edge &edge = least_cost_poly->poly->edges[i]; // Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon. for (int connection_index = 0; connection_index < edge.connections.size(); connection_index++) { const gd::Edge::Connection &connection = edge.connections[connection_index]; // Only consider the connection to another polygon if this polygon is in a region with compatible layers. if ((p_navigation_layers & connection.polygon->owner->get_navigation_layers()) == 0) { continue; } float region_enter_cost = 0.0; float region_travel_cost = least_cost_poly->poly->owner->get_travel_cost(); if (prev_least_cost_poly != nullptr && !(prev_least_cost_poly->poly->owner->get_self() == least_cost_poly->poly->owner->get_self())) { region_enter_cost = least_cost_poly->poly->owner->get_enter_cost(); } prev_least_cost_poly = least_cost_poly; Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end }; const Vector3 new_entry = Geometry::get_closest_point_to_segment(least_cost_poly->entry, pathway); const float new_distance = (least_cost_poly->entry.distance_to(new_entry) * region_travel_cost) + region_enter_cost + least_cost_poly->traveled_distance; const std::vector::iterator it = std::find( navigation_polys.begin(), navigation_polys.end(), gd::NavigationPoly(connection.polygon)); if (it != navigation_polys.end()) { // Polygon already visited, check if we can reduce the travel cost. if (new_distance < it->traveled_distance) { it->back_navigation_poly_id = least_cost_id; it->back_navigation_edge = connection.edge; it->back_navigation_edge_pathway_start = connection.pathway_start; it->back_navigation_edge_pathway_end = connection.pathway_end; it->traveled_distance = new_distance; it->entry = new_entry; } } else { // Add the neighbour polygon to the reachable ones. gd::NavigationPoly new_navigation_poly = gd::NavigationPoly(connection.polygon); new_navigation_poly.self_id = navigation_polys.size(); new_navigation_poly.back_navigation_poly_id = least_cost_id; new_navigation_poly.back_navigation_edge = connection.edge; new_navigation_poly.back_navigation_edge_pathway_start = connection.pathway_start; new_navigation_poly.back_navigation_edge_pathway_end = connection.pathway_end; new_navigation_poly.traveled_distance = new_distance; new_navigation_poly.entry = new_entry; navigation_polys.push_back(new_navigation_poly); // Add the neighbour polygon to the polygons to visit. to_visit.push_back(navigation_polys.size() - 1); } } } // Removes the least cost polygon from the list of polygons to visit so we can advance. to_visit.erase(least_cost_id); // When the list of polygons to visit is empty at this point it means the End Polygon is not reachable if (to_visit.size() == 0) { // Thus use the further reachable polygon ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons"); is_reachable = false; if (reachable_end == nullptr) { // The path is not found and there is not a way out. break; } // Set as end point the furthest reachable point. end_poly = reachable_end; end_d = 1e20; for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) { Face3 f(end_poly->points[0].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos); Vector3 spoint = f.get_closest_point_to(p_destination); float dpoint = spoint.distance_to(p_destination); if (dpoint < end_d) { end_point = spoint; end_d = dpoint; } } // Reset open and navigation_polys gd::NavigationPoly np = navigation_polys[0]; navigation_polys.clear(); navigation_polys.push_back(np); to_visit.clear(); to_visit.push_back(0); least_cost_id = 0; reachable_end = nullptr; continue; } // Find the polygon with the minimum cost from the list of polygons to visit. least_cost_id = -1; float least_cost = 1e30; for (List::Element *element = to_visit.front(); element != nullptr; element = element->next()) { gd::NavigationPoly *np = &navigation_polys[element->get()]; float cost = np->traveled_distance; cost += (np->entry.distance_to(end_point) * np->poly->owner->get_travel_cost()); if (cost < least_cost) { least_cost_id = np->self_id; least_cost = cost; } } ERR_BREAK(least_cost_id == -1); // Stores the further reachable end polygon, in case our goal is not reachable. if (is_reachable) { float d = navigation_polys[least_cost_id].entry.distance_to(p_destination) * navigation_polys[least_cost_id].poly->owner->get_travel_cost(); if (reachable_d > d) { reachable_d = d; reachable_end = navigation_polys[least_cost_id].poly; } } // Check if we reached the end if (navigation_polys[least_cost_id].poly == end_poly) { found_route = true; break; } } // If we did not find a route, return an empty path. if (!found_route) { return Vector(); } Vector path; // Optimize the path. if (p_optimize) { // Set the apex poly/point to the end point gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id]; Vector3 apex_point = end_point; gd::NavigationPoly *left_poly = apex_poly; Vector3 left_portal = apex_point; gd::NavigationPoly *right_poly = apex_poly; Vector3 right_portal = apex_point; gd::NavigationPoly *p = apex_poly; path.push_back(end_point); while (p) { // Set left and right points of the pathway between polygons. Vector3 left = p->back_navigation_edge_pathway_start; Vector3 right = p->back_navigation_edge_pathway_end; if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(up) < 0) { SWAP(left, right); } bool skip = false; if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(up) >= 0) { //process if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(up) > 0) { left_poly = p; left_portal = left; } else { clip_path(navigation_polys, path, apex_poly, right_portal, right_poly); apex_point = right_portal; p = right_poly; left_poly = p; apex_poly = p; left_portal = apex_point; right_portal = apex_point; path.push_back(apex_point); skip = true; } } if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(up) <= 0) { //process if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(up) < 0) { right_poly = p; right_portal = right; } else { clip_path(navigation_polys, path, apex_poly, left_portal, left_poly); apex_point = left_portal; p = left_poly; right_poly = p; apex_poly = p; right_portal = apex_point; left_portal = apex_point; path.push_back(apex_point); } } // Go to the previous polygon. if (p->back_navigation_poly_id != -1) { p = &navigation_polys[p->back_navigation_poly_id]; } else { // The end p = nullptr; } } // If the last point is not the begin point, add it to the list. if (path[path.size() - 1] != begin_point) { path.push_back(begin_point); } path.invert(); } else { path.push_back(end_point); // Add mid points int np_id = least_cost_id; while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) { int prev = navigation_polys[np_id].back_navigation_edge; int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size(); Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5; path.push_back(point); np_id = navigation_polys[np_id].back_navigation_poly_id; } path.push_back(begin_point); path.invert(); } return path; } Vector3 NavMap::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) const { bool use_collision = p_use_collision; Vector3 closest_point; real_t closest_point_d = 1e20; for (size_t i(0); i < polygons.size(); i++) { const gd::Polygon &p = polygons[i]; // For each face check the distance to the segment for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) { const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos); Vector3 inters; if (f.intersects_segment(p_from, p_to, &inters)) { const real_t d = closest_point_d = p_from.distance_to(inters); if (use_collision == false) { closest_point = inters; use_collision = true; closest_point_d = d; } else if (closest_point_d > d) { closest_point = inters; closest_point_d = d; } } } if (use_collision == false) { for (size_t point_id = 0; point_id < p.points.size(); point_id += 1) { Vector3 a, b; Geometry::get_closest_points_between_segments( p_from, p_to, p.points[point_id].pos, p.points[(point_id + 1) % p.points.size()].pos, a, b); const real_t d = a.distance_to(b); if (d < closest_point_d) { closest_point_d = d; closest_point = b; } } } } return closest_point; } Vector3 NavMap::get_closest_point(const Vector3 &p_point) const { gd::ClosestPointQueryResult cp = get_closest_point_info(p_point); return cp.point; } Vector3 NavMap::get_closest_point_normal(const Vector3 &p_point) const { gd::ClosestPointQueryResult cp = get_closest_point_info(p_point); return cp.normal; } RID NavMap::get_closest_point_owner(const Vector3 &p_point) const { gd::ClosestPointQueryResult cp = get_closest_point_info(p_point); return cp.owner; } gd::ClosestPointQueryResult NavMap::get_closest_point_info(const Vector3 &p_point) const { gd::ClosestPointQueryResult result; real_t closest_point_ds = 1e20; for (size_t i(0); i < polygons.size(); i++) { const gd::Polygon &p = polygons[i]; // For each face check the distance to the point for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) { const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos); const Vector3 inters = f.get_closest_point_to(p_point); const real_t ds = inters.distance_squared_to(p_point); if (ds < closest_point_ds) { result.point = inters; result.normal = f.get_plane().normal; result.owner = p.owner->get_self(); closest_point_ds = ds; } } } return result; } void NavMap::add_region(NavRegion *p_region) { regions.push_back(p_region); regenerate_links = true; } void NavMap::remove_region(NavRegion *p_region) { const std::vector::iterator it = std::find(regions.begin(), regions.end(), p_region); if (it != regions.end()) { regions.erase(it); regenerate_links = true; } } bool NavMap::has_agent(RvoAgent *agent) const { return std::find(agents.begin(), agents.end(), agent) != agents.end(); } void NavMap::add_agent(RvoAgent *agent) { if (!has_agent(agent)) { agents.push_back(agent); agents_dirty = true; } } void NavMap::remove_agent(RvoAgent *agent) { remove_agent_as_controlled(agent); const std::vector::iterator it = std::find(agents.begin(), agents.end(), agent); if (it != agents.end()) { agents.erase(it); agents_dirty = true; } } void NavMap::set_agent_as_controlled(RvoAgent *agent) { const bool exist = std::find(controlled_agents.begin(), controlled_agents.end(), agent) != controlled_agents.end(); if (!exist) { ERR_FAIL_COND(!has_agent(agent)); controlled_agents.push_back(agent); } } void NavMap::remove_agent_as_controlled(RvoAgent *agent) { const std::vector::iterator it = std::find(controlled_agents.begin(), controlled_agents.end(), agent); if (it != controlled_agents.end()) { controlled_agents.erase(it); } } void NavMap::sync() { // Check if we need to update the links. if (regenerate_polygons) { for (size_t r(0); r < regions.size(); r++) { regions[r]->scratch_polygons(); } regenerate_links = true; } for (size_t r(0); r < regions.size(); r++) { if (regions[r]->sync()) { regenerate_links = true; } } if (regenerate_links) { // Remove regions connections. for (size_t r(0); r < regions.size(); r++) { regions[r]->get_connections().clear(); } // Resize the polygon count. int count = 0; for (size_t r(0); r < regions.size(); r++) { count += regions[r]->get_polygons().size(); } polygons.resize(count); // Copy all region polygons in the map. count = 0; for (size_t r(0); r < regions.size(); r++) { std::copy( regions[r]->get_polygons().data(), regions[r]->get_polygons().data() + regions[r]->get_polygons().size(), polygons.begin() + count); count += regions[r]->get_polygons().size(); } // Group all edges per key. Map> connections; for (size_t poly_id(0); poly_id < polygons.size(); poly_id++) { gd::Polygon &poly(polygons[poly_id]); for (size_t p(0); p < poly.points.size(); p++) { int next_point = (p + 1) % poly.points.size(); gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key); Map>::Element *connection = connections.find(ek); if (!connection) { connections[ek] = Vector(); } if (connections[ek].size() <= 1) { // Add the polygon/edge tuple to this key. gd::Edge::Connection new_connection; new_connection.polygon = &poly; new_connection.edge = p; new_connection.pathway_start = poly.points[p].pos; new_connection.pathway_end = poly.points[next_point].pos; connections[ek].push_back(new_connection); } else { // The edge is already connected with another edge, skip. ERR_PRINT("Attempted to merge a navigation mesh triangle edge with another already-merged edge. This happens when the current `cell_size` is different from the one used to generate the navigation mesh. This will cause navigation problem."); } } } Vector free_edges; for (Map>::Element *E = connections.front(); E; E = E->next()) { if (E->get().size() == 2) { // Connect edge that are shared in different polygons. gd::Edge::Connection &c1 = E->get().write[0]; gd::Edge::Connection &c2 = E->get().write[1]; c1.polygon->edges[c1.edge].connections.push_back(c2); c2.polygon->edges[c2.edge].connections.push_back(c1); // Note: The pathway_start/end are full for those connection and do not need to be modified. } else { CRASH_COND_MSG(E->get().size() != 1, vformat("Number of connection != 1. Found: %d", E->get().size())); free_edges.push_back(E->get()[0]); } } // Find the compatible near edges. // // Note: // Considering that the edges must be compatible (for obvious reasons) // to be connected, create new polygons to remove that small gap is // not really useful and would result in wasteful computation during // connection, integration and path finding. for (int i = 0; i < free_edges.size(); i++) { const gd::Edge::Connection &free_edge = free_edges[i]; Vector3 edge_p1 = free_edge.polygon->points[free_edge.edge].pos; Vector3 edge_p2 = free_edge.polygon->points[(free_edge.edge + 1) % free_edge.polygon->points.size()].pos; for (int j = 0; j < free_edges.size(); j++) { const gd::Edge::Connection &other_edge = free_edges[j]; if (i == j || free_edge.polygon->owner == other_edge.polygon->owner) { continue; } Vector3 other_edge_p1 = other_edge.polygon->points[other_edge.edge].pos; Vector3 other_edge_p2 = other_edge.polygon->points[(other_edge.edge + 1) % other_edge.polygon->points.size()].pos; // Compute the projection of the opposite edge on the current one Vector3 edge_vector = edge_p2 - edge_p1; float projected_p1_ratio = edge_vector.dot(other_edge_p1 - edge_p1) / (edge_vector.length_squared()); float projected_p2_ratio = edge_vector.dot(other_edge_p2 - edge_p1) / (edge_vector.length_squared()); if ((projected_p1_ratio < 0.0 && projected_p2_ratio < 0.0) || (projected_p1_ratio > 1.0 && projected_p2_ratio > 1.0)) { continue; } // Check if the two edges are close to each other enough and compute a pathway between the two regions. Vector3 self1 = edge_vector * CLAMP(projected_p1_ratio, 0.0, 1.0) + edge_p1; Vector3 other1; if (projected_p1_ratio >= 0.0 && projected_p1_ratio <= 1.0) { other1 = other_edge_p1; } else { other1 = other_edge_p1.linear_interpolate(other_edge_p2, (1.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio)); } if (other1.distance_to(self1) > edge_connection_margin) { continue; } Vector3 self2 = edge_vector * CLAMP(projected_p2_ratio, 0.0, 1.0) + edge_p1; Vector3 other2; if (projected_p2_ratio >= 0.0 && projected_p2_ratio <= 1.0) { other2 = other_edge_p2; } else { other2 = other_edge_p1.linear_interpolate(other_edge_p2, (0.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio)); } if (other2.distance_to(self2) > edge_connection_margin) { continue; } // The edges can now be connected. gd::Edge::Connection new_connection = other_edge; new_connection.pathway_start = (self1 + other1) / 2.0; new_connection.pathway_end = (self2 + other2) / 2.0; free_edge.polygon->edges[free_edge.edge].connections.push_back(new_connection); // Add the connection to the region_connection map. free_edge.polygon->owner->get_connections().push_back(new_connection); } } // Update the update ID. map_update_id = (map_update_id + 1) % 9999999; } // Update agents tree. if (agents_dirty) { std::vector raw_agents; raw_agents.reserve(agents.size()); for (size_t i(0); i < agents.size(); i++) { raw_agents.push_back(agents[i]->get_agent()); } rvo.buildAgentTree(raw_agents); } regenerate_polygons = false; regenerate_links = false; agents_dirty = false; } void NavMap::compute_single_step(uint32_t index, RvoAgent **agent) { (*(agent + index))->get_agent()->computeNeighbors(&rvo); (*(agent + index))->get_agent()->computeNewVelocity(deltatime); } void NavMap::step(real_t p_deltatime) { deltatime = p_deltatime; if (controlled_agents.size() > 0) { if (step_work_pool.get_thread_count() == 0) { step_work_pool.init(); } step_work_pool.do_work( controlled_agents.size(), this, &NavMap::compute_single_step, controlled_agents.data()); } } void NavMap::dispatch_callbacks() { for (int i(0); i < static_cast(controlled_agents.size()); i++) { controlled_agents[i]->dispatch_callback(); } } void NavMap::clip_path(const std::vector &p_navigation_polys, Vector &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly) const { Vector3 from = path[path.size() - 1]; if (from.is_equal_approx(p_to_point)) { return; } Plane cut_plane; cut_plane.normal = (from - p_to_point).cross(up); if (cut_plane.normal == Vector3()) { return; } cut_plane.normal.normalize(); cut_plane.d = cut_plane.normal.dot(from); while (from_poly != p_to_poly) { Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start; Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end; ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1); from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id]; if (!pathway_start.is_equal_approx(pathway_end)) { Vector3 inters; if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) { if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(path[path.size() - 1])) { path.push_back(inters); } } } } } NavMap::NavMap() { } NavMap::~NavMap() { step_work_pool.finish(); }