#[vertex] #version 450 #VERSION_DEFINES #define MAX_VIEWS 2 #if defined(USE_MULTIVIEW) && defined(has_VK_KHR_multiview) #extension GL_EXT_multiview : enable #endif layout(location = 0) out vec2 uv_interp; layout(push_constant, std430) uniform Params { mat3 orientation; vec4 projection; // only applicable if not multiview vec3 position; float time; vec3 pad; float luminance_multiplier; } params; void main() { vec2 base_arr[3] = vec2[](vec2(-1.0, -3.0), vec2(-1.0, 1.0), vec2(3.0, 1.0)); uv_interp = base_arr[gl_VertexIndex]; gl_Position = vec4(uv_interp, 0.0, 1.0); } #[fragment] #version 450 #VERSION_DEFINES #ifdef USE_MULTIVIEW #ifdef has_VK_KHR_multiview #extension GL_EXT_multiview : enable #define ViewIndex gl_ViewIndex #else // has_VK_KHR_multiview // !BAS! This needs to become an input once we implement our fallback! #define ViewIndex 0 #endif // has_VK_KHR_multiview #else // USE_MULTIVIEW // Set to zero, not supported in non stereo #define ViewIndex 0 #endif //USE_MULTIVIEW #define M_PI 3.14159265359 #define MAX_VIEWS 2 layout(location = 0) in vec2 uv_interp; layout(push_constant, std430) uniform Params { mat3 orientation; vec4 projection; // only applicable if not multiview vec3 position; float time; vec3 pad; float luminance_multiplier; } params; #include "../samplers_inc.glsl" layout(set = 0, binding = 1, std430) restrict readonly buffer GlobalShaderUniformData { vec4 data[]; } global_shader_uniforms; layout(set = 0, binding = 2, std140) uniform SkySceneData { mat4 combined_reprojection[2]; mat4 view_inv_projections[2]; vec4 view_eye_offsets[2]; bool volumetric_fog_enabled; // 4 - 4 float volumetric_fog_inv_length; // 4 - 8 float volumetric_fog_detail_spread; // 4 - 12 float volumetric_fog_sky_affect; // 4 - 16 bool fog_enabled; // 4 - 20 float fog_sky_affect; // 4 - 24 float fog_density; // 4 - 28 float fog_sun_scatter; // 4 - 32 vec3 fog_light_color; // 12 - 44 float fog_aerial_perspective; // 4 - 48 float z_far; // 4 - 52 uint directional_light_count; // 4 - 56 uint pad1; // 4 - 60 uint pad2; // 4 - 64 } sky_scene_data; struct DirectionalLightData { vec4 direction_energy; vec4 color_size; bool enabled; }; layout(set = 0, binding = 3, std140) uniform DirectionalLights { DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS]; } directional_lights; #ifdef MATERIAL_UNIFORMS_USED layout(set = 1, binding = 0, std140) uniform MaterialUniforms{ #MATERIAL_UNIFORMS } material; #endif layout(set = 2, binding = 0) uniform textureCube radiance; #ifdef USE_CUBEMAP_PASS layout(set = 2, binding = 1) uniform textureCube half_res; layout(set = 2, binding = 2) uniform textureCube quarter_res; #elif defined(USE_MULTIVIEW) layout(set = 2, binding = 1) uniform texture2DArray half_res; layout(set = 2, binding = 2) uniform texture2DArray quarter_res; #else layout(set = 2, binding = 1) uniform texture2D half_res; layout(set = 2, binding = 2) uniform texture2D quarter_res; #endif layout(set = 3, binding = 0) uniform texture3D volumetric_fog_texture; #ifdef USE_CUBEMAP_PASS #define AT_CUBEMAP_PASS true #else #define AT_CUBEMAP_PASS false #endif #ifdef USE_HALF_RES_PASS #define AT_HALF_RES_PASS true #else #define AT_HALF_RES_PASS false #endif #ifdef USE_QUARTER_RES_PASS #define AT_QUARTER_RES_PASS true #else #define AT_QUARTER_RES_PASS false #endif #GLOBALS layout(location = 0) out vec4 frag_color; #ifdef USE_DEBANDING // https://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare vec3 interleaved_gradient_noise(vec2 pos) { const vec3 magic = vec3(0.06711056f, 0.00583715f, 52.9829189f); float res = fract(magic.z * fract(dot(pos, magic.xy))) * 2.0 - 1.0; return vec3(res, -res, res) / 255.0; } #endif vec4 volumetric_fog_process(vec2 screen_uv) { #ifdef USE_MULTIVIEW vec4 reprojected = sky_scene_data.combined_reprojection[ViewIndex] * vec4(screen_uv * 2.0 - 1.0, 0.0, 1.0); // Unproject at the far plane vec3 fog_pos = vec3(reprojected.xy / reprojected.w, 1.0) * 0.5 + 0.5; #else vec3 fog_pos = vec3(screen_uv, 1.0); #endif return texture(sampler3D(volumetric_fog_texture, SAMPLER_LINEAR_CLAMP), fog_pos); } vec4 fog_process(vec3 view, vec3 sky_color) { vec3 fog_color = mix(sky_scene_data.fog_light_color, sky_color, sky_scene_data.fog_aerial_perspective); if (sky_scene_data.fog_sun_scatter > 0.001) { vec4 sun_scatter = vec4(0.0); float sun_total = 0.0; for (uint i = 0; i < sky_scene_data.directional_light_count; i++) { vec3 light_color = directional_lights.data[i].color_size.xyz * directional_lights.data[i].direction_energy.w; float light_amount = pow(max(dot(view, directional_lights.data[i].direction_energy.xyz), 0.0), 8.0); fog_color += light_color * light_amount * sky_scene_data.fog_sun_scatter; } } return vec4(fog_color, 1.0); } void main() { vec3 cube_normal; #ifdef USE_MULTIVIEW // In multiview our projection matrices will contain positional and rotational offsets that we need to properly unproject. vec4 unproject = vec4(uv_interp.x, -uv_interp.y, 0.0, 1.0); // unproject at the far plane vec4 unprojected = sky_scene_data.view_inv_projections[ViewIndex] * unproject; cube_normal = unprojected.xyz / unprojected.w; // Unproject will give us the position between the eyes, need to re-offset cube_normal += sky_scene_data.view_eye_offsets[ViewIndex].xyz; #else cube_normal.z = -1.0; cube_normal.x = (cube_normal.z * (-uv_interp.x - params.projection.x)) / params.projection.y; cube_normal.y = -(cube_normal.z * (-uv_interp.y - params.projection.z)) / params.projection.w; #endif cube_normal = mat3(params.orientation) * cube_normal; cube_normal = normalize(cube_normal); vec2 uv = uv_interp * 0.5 + 0.5; vec2 panorama_coords = vec2(atan(cube_normal.x, -cube_normal.z), acos(cube_normal.y)); if (panorama_coords.x < 0.0) { panorama_coords.x += M_PI * 2.0; } panorama_coords /= vec2(M_PI * 2.0, M_PI); vec3 color = vec3(0.0, 0.0, 0.0); float alpha = 1.0; // Only available to subpasses vec4 half_res_color = vec4(1.0); vec4 quarter_res_color = vec4(1.0); vec4 custom_fog = vec4(0.0); #ifdef USE_CUBEMAP_PASS #ifdef USES_HALF_RES_COLOR half_res_color = texture(samplerCube(half_res, SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), cube_normal) / params.luminance_multiplier; #endif #ifdef USES_QUARTER_RES_COLOR quarter_res_color = texture(samplerCube(quarter_res, SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), cube_normal) / params.luminance_multiplier; #endif #else #ifdef USES_HALF_RES_COLOR #ifdef USE_MULTIVIEW half_res_color = textureLod(sampler2DArray(half_res, SAMPLER_LINEAR_CLAMP), vec3(uv, ViewIndex), 0.0) / params.luminance_multiplier; #else half_res_color = textureLod(sampler2D(half_res, SAMPLER_LINEAR_CLAMP), uv, 0.0) / params.luminance_multiplier; #endif // USE_MULTIVIEW #endif // USES_HALF_RES_COLOR #ifdef USES_QUARTER_RES_COLOR #ifdef USE_MULTIVIEW quarter_res_color = textureLod(sampler2DArray(quarter_res, SAMPLER_LINEAR_CLAMP), vec3(uv, ViewIndex), 0.0) / params.luminance_multiplier; #else quarter_res_color = textureLod(sampler2D(quarter_res, SAMPLER_LINEAR_CLAMP), uv, 0.0) / params.luminance_multiplier; #endif // USE_MULTIVIEW #endif // USES_QUARTER_RES_COLOR #endif //USE_CUBEMAP_PASS { #CODE : SKY } frag_color.rgb = color; frag_color.a = alpha; #if !defined(DISABLE_FOG) && !defined(USE_CUBEMAP_PASS) // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky. if (sky_scene_data.fog_enabled) { vec4 fog = fog_process(cube_normal, frag_color.rgb); frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a * sky_scene_data.fog_sky_affect); } if (sky_scene_data.volumetric_fog_enabled) { vec4 fog = volumetric_fog_process(uv); frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a * sky_scene_data.volumetric_fog_sky_affect); } if (custom_fog.a > 0.0) { frag_color.rgb = mix(frag_color.rgb, custom_fog.rgb, custom_fog.a); } #endif // DISABLE_FOG // For mobile renderer we're multiplying by 0.5 as we're using a UNORM buffer. // For both mobile and clustered, we also bake in the exposure value for the environment and camera. frag_color.rgb = frag_color.rgb * params.luminance_multiplier; // Blending is disabled for Sky, so alpha doesn't blend. // Alpha is used for subsurface scattering so make sure it doesn't get applied to Sky. if (!AT_CUBEMAP_PASS && !AT_HALF_RES_PASS && !AT_QUARTER_RES_PASS) { frag_color.a = 0.0; } #ifdef USE_DEBANDING frag_color.rgb += interleaved_gradient_noise(gl_FragCoord.xy) * params.luminance_multiplier; #endif }