#[compute] #version 450 #VERSION_DEFINES layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; layout(rgba16f, set = 0, binding = 0) uniform restrict readonly image2D source_diffuse; layout(r32f, set = 0, binding = 1) uniform restrict readonly image2D source_depth; layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2D ssr_image; #ifdef MODE_ROUGH layout(r8, set = 1, binding = 1) uniform restrict writeonly image2D blur_radius_image; #endif layout(rgba8, set = 2, binding = 0) uniform restrict readonly image2D source_normal_roughness; layout(set = 3, binding = 0) uniform sampler2D source_metallic; layout(push_constant, std430) uniform Params { vec4 proj_info; ivec2 screen_size; float camera_z_near; float camera_z_far; int num_steps; float depth_tolerance; float distance_fade; float curve_fade_in; bool orthogonal; float filter_mipmap_levels; bool use_half_res; uint view_index; } params; #include "screen_space_reflection_inc.glsl" vec2 view_to_screen(vec3 view_pos, out float w) { vec4 projected = scene_data.projection[params.view_index] * vec4(view_pos, 1.0); projected.xyz /= projected.w; projected.xy = projected.xy * 0.5 + 0.5; w = projected.w; return projected.xy; } #define M_PI 3.14159265359 void main() { // Pixel being shaded ivec2 ssC = ivec2(gl_GlobalInvocationID.xy); if (any(greaterThanEqual(ssC.xy, params.screen_size))) { //too large, do nothing return; } vec2 pixel_size = 1.0 / vec2(params.screen_size); vec2 uv = vec2(ssC.xy) * pixel_size; uv += pixel_size * 0.5; float base_depth = imageLoad(source_depth, ssC).r; // World space point being shaded vec3 vertex = reconstructCSPosition(uv * vec2(params.screen_size), base_depth); vec4 normal_roughness = imageLoad(source_normal_roughness, ssC); vec3 normal = normalize(normal_roughness.xyz * 2.0 - 1.0); float roughness = normal_roughness.w; if (roughness > 0.5) { roughness = 1.0 - roughness; } roughness /= (127.0 / 255.0); // The roughness cutoff of 0.6 is chosen to match the roughness fadeout from GH-69828. if (roughness > 0.6) { // Do not compute SSR for rough materials to improve performance at the cost of // subtle artifacting. #ifdef MODE_ROUGH imageStore(blur_radius_image, ssC, vec4(0.0)); #endif imageStore(ssr_image, ssC, vec4(0.0)); return; } normal = normalize(normal); normal.y = -normal.y; //because this code reads flipped vec3 view_dir; if (sc_multiview) { view_dir = normalize(vertex + scene_data.eye_offset[params.view_index].xyz); } else { view_dir = params.orthogonal ? vec3(0.0, 0.0, -1.0) : normalize(vertex); } vec3 ray_dir = normalize(reflect(view_dir, normal)); if (dot(ray_dir, normal) < 0.001) { imageStore(ssr_image, ssC, vec4(0.0)); return; } //////////////// // make ray length and clip it against the near plane (don't want to trace beyond visible) float ray_len = (vertex.z + ray_dir.z * params.camera_z_far) > -params.camera_z_near ? (-params.camera_z_near - vertex.z) / ray_dir.z : params.camera_z_far; vec3 ray_end = vertex + ray_dir * ray_len; float w_begin; vec2 vp_line_begin = view_to_screen(vertex, w_begin); float w_end; vec2 vp_line_end = view_to_screen(ray_end, w_end); vec2 vp_line_dir = vp_line_end - vp_line_begin; // we need to interpolate w along the ray, to generate perspective correct reflections w_begin = 1.0 / w_begin; w_end = 1.0 / w_end; float z_begin = vertex.z * w_begin; float z_end = ray_end.z * w_end; vec2 line_begin = vp_line_begin / pixel_size; vec2 line_dir = vp_line_dir / pixel_size; float z_dir = z_end - z_begin; float w_dir = w_end - w_begin; // clip the line to the viewport edges float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x)); float scale_max_y = min(1.0, 0.99 * (1.0 - vp_line_begin.y) / max(1e-5, vp_line_dir.y)); float scale_min_x = min(1.0, 0.99 * vp_line_begin.x / max(1e-5, -vp_line_dir.x)); float scale_min_y = min(1.0, 0.99 * vp_line_begin.y / max(1e-5, -vp_line_dir.y)); float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y); line_dir *= line_clip; z_dir *= line_clip; w_dir *= line_clip; // clip z and w advance to line advance vec2 line_advance = normalize(line_dir); // down to pixel float step_size = 1.0 / length(line_dir); float z_advance = z_dir * step_size; // adapt z advance to line advance float w_advance = w_dir * step_size; // adapt w advance to line advance // make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice) float advance_angle_adj = 1.0 / max(abs(line_advance.x), abs(line_advance.y)); line_advance *= advance_angle_adj; // adapt z advance to line advance z_advance *= advance_angle_adj; w_advance *= advance_angle_adj; vec2 pos = line_begin; float z = z_begin; float w = w_begin; float z_from = z / w; float z_to = z_from; float depth; vec2 prev_pos = pos; if (ivec2(pos + line_advance - 0.5) == ssC) { // It is possible for rounding to cause our first pixel to check to be the pixel we're reflecting. // Make sure we skip it pos += line_advance; z += z_advance; w += w_advance; } bool found = false; float steps_taken = 0.0; for (int i = 0; i < params.num_steps; i++) { pos += line_advance; z += z_advance; w += w_advance; // convert to linear depth ivec2 test_pos = ivec2(pos - 0.5); depth = imageLoad(source_depth, test_pos).r; if (sc_multiview) { depth = depth * 2.0 - 1.0; depth = 2.0 * params.camera_z_near * params.camera_z_far / (params.camera_z_far + params.camera_z_near - depth * (params.camera_z_far - params.camera_z_near)); depth = -depth; } z_from = z_to; z_to = z / w; if (depth > z_to) { // Test if our ray is hitting the "right" side of the surface, if not we're likely self reflecting and should skip. vec4 test_normal_roughness = imageLoad(source_normal_roughness, test_pos); vec3 test_normal = test_normal_roughness.xyz * 2.0 - 1.0; test_normal = normalize(test_normal); test_normal.y = -test_normal.y; // Because this code reads flipped. if (dot(ray_dir, test_normal) < 0.001) { // if depth was surpassed if (depth <= max(z_to, z_from) + params.depth_tolerance && -depth < params.camera_z_far * 0.95) { // check the depth tolerance and far clip // check that normal is valid found = true; } break; } } steps_taken += 1.0; prev_pos = pos; } if (found) { float margin_blend = 1.0; vec2 final_pos = pos; vec2 margin = vec2((params.screen_size.x + params.screen_size.y) * 0.05); // make a uniform margin if (any(bvec4(lessThan(pos, vec2(0.0, 0.0)), greaterThan(pos, params.screen_size)))) { // clip at the screen edges imageStore(ssr_image, ssC, vec4(0.0)); return; } { //blend fading out towards inner margin // 0.5 = midpoint of reflection vec2 margin_grad = mix(params.screen_size - pos, pos, lessThan(pos, params.screen_size * 0.5)); margin_blend = smoothstep(0.0, margin.x * margin.y, margin_grad.x * margin_grad.y); //margin_blend = 1.0; } // Fade In / Fade Out float grad = (steps_taken + 1.0) / float(params.num_steps); float initial_fade = params.curve_fade_in == 0.0 ? 1.0 : pow(clamp(grad, 0.0, 1.0), params.curve_fade_in); float fade = pow(clamp(1.0 - grad, 0.0, 1.0), params.distance_fade) * initial_fade; // Ensure that precision errors do not introduce any fade. Even if it is just slightly below 1.0, // strong specular light can leak through the reflection. if (fade > 0.999) { fade = 1.0; } // This is an ad-hoc term to fade out the SSR as roughness increases. Values used // are meant to match the visual appearance of a ReflectionProbe. float roughness_fade = smoothstep(0.4, 0.7, 1.0 - normal_roughness.w); // Schlick term. float metallic = texelFetch(source_metallic, ssC << 1, 0).w; // F0 is the reflectance of normally incident light (perpendicular to the surface). // Dielectric materials have a widely accepted default value of 0.04. We assume that metals reflect all light, so their F0 is 1.0. float f0 = mix(0.04, 1.0, metallic); float m = clamp(1.0 - dot(normal, -view_dir), 0.0, 1.0); float m2 = m * m; m = m2 * m2 * m; // pow(m,5) float fresnel_term = f0 + (1.0 - f0) * m; // Fresnel Schlick term. // The alpha value of final_color controls the blending with specular light in specular_merge.glsl. // Note that the Fresnel term is multiplied with the RGB color instead of being a part of the alpha value. // There is a key difference: // - multiplying a term with RGB darkens the SSR light without introducing/taking away specular light. // - combining a term into the Alpha value introduces specular light at the expense of the SSR light. vec4 final_color = vec4(imageLoad(source_diffuse, ivec2(final_pos - 0.5)).rgb * fresnel_term, fade * margin_blend * roughness_fade); imageStore(ssr_image, ssC, final_color); #ifdef MODE_ROUGH // if roughness is enabled, do screen space cone tracing float blur_radius = 0.0; if (roughness > 0.001) { float cone_angle = min(roughness, 0.999) * M_PI * 0.5; float cone_len = length(final_pos - line_begin); float op_len = 2.0 * tan(cone_angle) * cone_len; // opposite side of iso triangle { // fit to sphere inside cone (sphere ends at end of cone), something like this: // ___ // \O/ // V // // as it avoids bleeding from beyond the reflection as much as possible. As a plus // it also makes the rough reflection more elongated. float a = op_len; float h = cone_len; float a2 = a * a; float fh2 = 4.0f * h * h; blur_radius = (a * (sqrt(a2 + fh2) - a)) / (4.0f * h); } } imageStore(blur_radius_image, ssC, vec4(blur_radius / 255.0)); //stored in r8 #endif // MODE_ROUGH } else { #ifdef MODE_ROUGH imageStore(blur_radius_image, ssC, vec4(0.0)); #endif imageStore(ssr_image, ssC, vec4(0.0)); } }