/**************************************************************************/ /* mesh_storage.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef MESH_STORAGE_GLES3_H #define MESH_STORAGE_GLES3_H #ifdef GLES3_ENABLED #include "core/templates/local_vector.h" #include "core/templates/rid_owner.h" #include "core/templates/self_list.h" #include "drivers/gles3/shaders/skeleton.glsl.gen.h" #include "servers/rendering/storage/mesh_storage.h" #include "servers/rendering/storage/utilities.h" #include "platform_gl.h" namespace GLES3 { struct MeshInstance; struct Mesh { struct Surface { struct Attrib { bool enabled; bool integer; GLint size; GLenum type; GLboolean normalized; GLsizei stride; uint32_t offset; }; RS::PrimitiveType primitive = RS::PRIMITIVE_POINTS; uint64_t format = 0; GLuint vertex_buffer = 0; GLuint attribute_buffer = 0; GLuint skin_buffer = 0; uint32_t vertex_count = 0; uint32_t vertex_buffer_size = 0; uint32_t attribute_buffer_size = 0; uint32_t skin_buffer_size = 0; // Cache vertex arrays so they can be created struct Version { uint32_t input_mask = 0; GLuint vertex_array = 0; Attrib attribs[RS::ARRAY_MAX]; }; SpinLock version_lock; //needed to access versions Version *versions = nullptr; //allocated on demand uint32_t version_count = 0; GLuint index_buffer = 0; uint32_t index_count = 0; uint32_t index_buffer_size = 0; struct Wireframe { GLuint index_buffer = 0; uint32_t index_count = 0; uint32_t index_buffer_size = 0; }; Wireframe *wireframe = nullptr; struct LOD { float edge_length = 0.0; uint32_t index_count = 0; uint32_t index_buffer_size = 0; GLuint index_buffer = 0; }; LOD *lods = nullptr; uint32_t lod_count = 0; AABB aabb; Vector bone_aabbs; // Transform used in runtime bone AABBs compute. // As bone AABBs are saved in Mesh space, but bones animation is in Skeleton space. Transform3D mesh_to_skeleton_xform; Vector4 uv_scale; struct BlendShape { GLuint vertex_buffer = 0; GLuint vertex_array = 0; }; BlendShape *blend_shapes = nullptr; GLuint skeleton_vertex_array = 0; RID material; }; uint32_t blend_shape_count = 0; RS::BlendShapeMode blend_shape_mode = RS::BLEND_SHAPE_MODE_NORMALIZED; Surface **surfaces = nullptr; uint32_t surface_count = 0; bool has_bone_weights = false; AABB aabb; AABB custom_aabb; uint64_t skeleton_aabb_version = 0; Vector material_cache; List instances; RID shadow_mesh; HashSet shadow_owners; String path; Dependency dependency; }; /* Mesh Instance */ struct MeshInstance { Mesh *mesh = nullptr; RID skeleton; struct Surface { GLuint vertex_buffers[2] = { 0, 0 }; GLuint vertex_arrays[2] = { 0, 0 }; GLuint vertex_buffer = 0; int vertex_stride_cache = 0; int vertex_size_cache = 0; int vertex_normal_offset_cache = 0; int vertex_tangent_offset_cache = 0; uint64_t format_cache = 0; Mesh::Surface::Version *versions = nullptr; //allocated on demand uint32_t version_count = 0; }; LocalVector surfaces; LocalVector blend_weights; List::Element *I = nullptr; //used to erase itself uint64_t skeleton_version = 0; bool dirty = false; bool weights_dirty = false; SelfList weight_update_list; SelfList array_update_list; Transform2D canvas_item_transform_2d; MeshInstance() : weight_update_list(this), array_update_list(this) {} }; /* MultiMesh */ struct MultiMesh { RID mesh; int instances = 0; RS::MultimeshTransformFormat xform_format = RS::MULTIMESH_TRANSFORM_3D; bool uses_colors = false; bool uses_custom_data = false; int visible_instances = -1; AABB aabb; bool aabb_dirty = false; bool buffer_set = false; uint32_t stride_cache = 0; uint32_t color_offset_cache = 0; uint32_t custom_data_offset_cache = 0; Vector data_cache; //used if individual setting is used bool *data_cache_dirty_regions = nullptr; uint32_t data_cache_used_dirty_regions = 0; GLuint buffer = 0; bool dirty = false; MultiMesh *dirty_list = nullptr; Dependency dependency; }; struct Skeleton { bool use_2d = false; int size = 0; int height = 0; Vector data; bool dirty = false; Skeleton *dirty_list = nullptr; Transform2D base_transform_2d; GLuint transforms_texture = 0; uint64_t version = 1; Dependency dependency; }; class MeshStorage : public RendererMeshStorage { private: static MeshStorage *singleton; struct { SkeletonShaderGLES3 shader; RID shader_version; } skeleton_shader; /* Mesh */ mutable RID_Owner mesh_owner; void _mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint64_t p_input_mask, MeshInstance::Surface *mis = nullptr); /* Mesh Instance API */ mutable RID_Owner mesh_instance_owner; void _mesh_instance_clear(MeshInstance *mi); void _mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface); void _blend_shape_bind_mesh_instance_buffer(MeshInstance *p_mi, uint32_t p_surface); SelfList::List dirty_mesh_instance_weights; SelfList::List dirty_mesh_instance_arrays; /* MultiMesh */ mutable RID_Owner multimesh_owner; MultiMesh *multimesh_dirty_list = nullptr; _FORCE_INLINE_ void _multimesh_make_local(MultiMesh *multimesh) const; _FORCE_INLINE_ void _multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb); _FORCE_INLINE_ void _multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb); _FORCE_INLINE_ void _multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances); /* Skeleton */ mutable RID_Owner skeleton_owner; _FORCE_INLINE_ void _skeleton_make_dirty(Skeleton *skeleton); void _compute_skeleton(MeshInstance *p_mi, Skeleton *p_sk, uint32_t p_surface); Skeleton *skeleton_dirty_list = nullptr; public: static MeshStorage *get_singleton(); MeshStorage(); virtual ~MeshStorage(); /* MESH API */ Mesh *get_mesh(RID p_rid) { return mesh_owner.get_or_null(p_rid); }; bool owns_mesh(RID p_rid) { return mesh_owner.owns(p_rid); }; virtual RID mesh_allocate() override; virtual void mesh_initialize(RID p_rid) override; virtual void mesh_free(RID p_rid) override; virtual void mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) override; virtual bool mesh_needs_instance(RID p_mesh, bool p_has_skeleton) override; virtual void mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) override; virtual int mesh_get_blend_shape_count(RID p_mesh) const override; virtual void mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) override; virtual RS::BlendShapeMode mesh_get_blend_shape_mode(RID p_mesh) const override; virtual void mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector &p_data) override; virtual void mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector &p_data) override; virtual void mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector &p_data) override; virtual void mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) override; virtual RID mesh_surface_get_material(RID p_mesh, int p_surface) const override; virtual RS::SurfaceData mesh_get_surface(RID p_mesh, int p_surface) const override; virtual int mesh_get_surface_count(RID p_mesh) const override; virtual void mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) override; virtual AABB mesh_get_custom_aabb(RID p_mesh) const override; virtual AABB mesh_get_aabb(RID p_mesh, RID p_skeleton = RID()) override; virtual void mesh_set_path(RID p_mesh, const String &p_path) override; virtual String mesh_get_path(RID p_mesh) const override; virtual void mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) override; virtual void mesh_clear(RID p_mesh) override; _FORCE_INLINE_ const RID *mesh_get_surface_count_and_materials(RID p_mesh, uint32_t &r_surface_count) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL_V(mesh, nullptr); r_surface_count = mesh->surface_count; if (r_surface_count == 0) { return nullptr; } if (mesh->material_cache.is_empty()) { mesh->material_cache.resize(mesh->surface_count); for (uint32_t i = 0; i < r_surface_count; i++) { mesh->material_cache.write[i] = mesh->surfaces[i]->material; } } return mesh->material_cache.ptr(); } _FORCE_INLINE_ void *mesh_get_surface(RID p_mesh, uint32_t p_surface_index) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL_V(mesh, nullptr); ERR_FAIL_UNSIGNED_INDEX_V(p_surface_index, mesh->surface_count, nullptr); return mesh->surfaces[p_surface_index]; } _FORCE_INLINE_ RID mesh_get_shadow_mesh(RID p_mesh) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL_V(mesh, RID()); return mesh->shadow_mesh; } _FORCE_INLINE_ RS::PrimitiveType mesh_surface_get_primitive(void *p_surface) { Mesh::Surface *surface = reinterpret_cast(p_surface); return surface->primitive; } _FORCE_INLINE_ bool mesh_surface_has_lod(void *p_surface) const { Mesh::Surface *s = reinterpret_cast(p_surface); return s->lod_count > 0; } _FORCE_INLINE_ uint32_t mesh_surface_get_vertices_drawn_count(void *p_surface) const { Mesh::Surface *s = reinterpret_cast(p_surface); return s->index_count ? s->index_count : s->vertex_count; } _FORCE_INLINE_ uint32_t mesh_surface_get_lod(void *p_surface, float p_model_scale, float p_distance_threshold, float p_mesh_lod_threshold, uint32_t &r_index_count) const { Mesh::Surface *s = reinterpret_cast(p_surface); ERR_FAIL_NULL_V(s, 0); int32_t current_lod = -1; r_index_count = s->index_count; for (uint32_t i = 0; i < s->lod_count; i++) { float screen_size = s->lods[i].edge_length * p_model_scale / p_distance_threshold; if (screen_size > p_mesh_lod_threshold) { break; } current_lod = i; } if (current_lod == -1) { return 0; } else { r_index_count = s->lods[current_lod].index_count; return current_lod + 1; } } _FORCE_INLINE_ GLuint mesh_surface_get_index_buffer(void *p_surface, uint32_t p_lod) const { Mesh::Surface *s = reinterpret_cast(p_surface); if (p_lod == 0) { return s->index_buffer; } else { return s->lods[p_lod - 1].index_buffer; } } _FORCE_INLINE_ GLuint mesh_surface_get_index_buffer_wireframe(void *p_surface) const { Mesh::Surface *s = reinterpret_cast(p_surface); if (s->wireframe) { return s->wireframe->index_buffer; } return 0; } _FORCE_INLINE_ GLenum mesh_surface_get_index_type(void *p_surface) const { Mesh::Surface *s = reinterpret_cast(p_surface); return (s->vertex_count <= 65536 && s->vertex_count > 0) ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT; } // Use this to cache Vertex Array Objects so they are only generated once _FORCE_INLINE_ void mesh_surface_get_vertex_arrays_and_format(void *p_surface, uint64_t p_input_mask, GLuint &r_vertex_array_gl) { Mesh::Surface *s = reinterpret_cast(p_surface); s->version_lock.lock(); // There will never be more than 3 or 4 versions, so iterating is the fastest way. for (uint32_t i = 0; i < s->version_count; i++) { if (s->versions[i].input_mask != p_input_mask) { continue; } // We have this version, hooray. r_vertex_array_gl = s->versions[i].vertex_array; s->version_lock.unlock(); return; } uint32_t version = s->version_count; s->version_count++; s->versions = (Mesh::Surface::Version *)memrealloc(s->versions, sizeof(Mesh::Surface::Version) * s->version_count); _mesh_surface_generate_version_for_input_mask(s->versions[version], s, p_input_mask); r_vertex_array_gl = s->versions[version].vertex_array; s->version_lock.unlock(); } /* MESH INSTANCE API */ MeshInstance *get_mesh_instance(RID p_rid) { return mesh_instance_owner.get_or_null(p_rid); }; bool owns_mesh_instance(RID p_rid) { return mesh_instance_owner.owns(p_rid); }; virtual RID mesh_instance_create(RID p_base) override; virtual void mesh_instance_free(RID p_rid) override; virtual void mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) override; virtual void mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) override; virtual void mesh_instance_check_for_update(RID p_mesh_instance) override; virtual void mesh_instance_set_canvas_item_transform(RID p_mesh_instance, const Transform2D &p_transform) override; virtual void update_mesh_instances() override; // TODO: considering hashing versions with multimesh buffer RID. // Doing so would allow us to avoid specifying multimesh buffer pointers every frame and may improve performance. _FORCE_INLINE_ void mesh_instance_surface_get_vertex_arrays_and_format(RID p_mesh_instance, uint32_t p_surface_index, uint64_t p_input_mask, GLuint &r_vertex_array_gl) { MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance); ERR_FAIL_NULL(mi); Mesh *mesh = mi->mesh; ERR_FAIL_UNSIGNED_INDEX(p_surface_index, mesh->surface_count); MeshInstance::Surface *mis = &mi->surfaces[p_surface_index]; Mesh::Surface *s = mesh->surfaces[p_surface_index]; s->version_lock.lock(); //there will never be more than, at much, 3 or 4 versions, so iterating is the fastest way for (uint32_t i = 0; i < mis->version_count; i++) { if (mis->versions[i].input_mask != p_input_mask) { continue; } //we have this version, hooray r_vertex_array_gl = mis->versions[i].vertex_array; s->version_lock.unlock(); return; } uint32_t version = mis->version_count; mis->version_count++; mis->versions = (Mesh::Surface::Version *)memrealloc(mis->versions, sizeof(Mesh::Surface::Version) * mis->version_count); _mesh_surface_generate_version_for_input_mask(mis->versions[version], s, p_input_mask, mis); r_vertex_array_gl = mis->versions[version].vertex_array; s->version_lock.unlock(); } /* MULTIMESH API */ MultiMesh *get_multimesh(RID p_rid) { return multimesh_owner.get_or_null(p_rid); }; bool owns_multimesh(RID p_rid) { return multimesh_owner.owns(p_rid); }; virtual RID multimesh_allocate() override; virtual void multimesh_initialize(RID p_rid) override; virtual void multimesh_free(RID p_rid) override; virtual void multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors = false, bool p_use_custom_data = false) override; virtual int multimesh_get_instance_count(RID p_multimesh) const override; virtual void multimesh_set_mesh(RID p_multimesh, RID p_mesh) override; virtual void multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) override; virtual void multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) override; virtual void multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) override; virtual void multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) override; virtual RID multimesh_get_mesh(RID p_multimesh) const override; virtual AABB multimesh_get_aabb(RID p_multimesh) const override; virtual Transform3D multimesh_instance_get_transform(RID p_multimesh, int p_index) const override; virtual Transform2D multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const override; virtual Color multimesh_instance_get_color(RID p_multimesh, int p_index) const override; virtual Color multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const override; virtual void multimesh_set_buffer(RID p_multimesh, const Vector &p_buffer) override; virtual Vector multimesh_get_buffer(RID p_multimesh) const override; virtual void multimesh_set_visible_instances(RID p_multimesh, int p_visible) override; virtual int multimesh_get_visible_instances(RID p_multimesh) const override; void _update_dirty_multimeshes(); _FORCE_INLINE_ RS::MultimeshTransformFormat multimesh_get_transform_format(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); return multimesh->xform_format; } _FORCE_INLINE_ bool multimesh_uses_colors(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); return multimesh->uses_colors; } _FORCE_INLINE_ bool multimesh_uses_custom_data(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); return multimesh->uses_custom_data; } _FORCE_INLINE_ uint32_t multimesh_get_instances_to_draw(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); if (multimesh->visible_instances >= 0) { return multimesh->visible_instances; } return multimesh->instances; } _FORCE_INLINE_ GLuint multimesh_get_gl_buffer(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); return multimesh->buffer; } _FORCE_INLINE_ uint32_t multimesh_get_stride(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); return multimesh->stride_cache; } _FORCE_INLINE_ uint32_t multimesh_get_color_offset(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); return multimesh->color_offset_cache; } _FORCE_INLINE_ uint32_t multimesh_get_custom_data_offset(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); return multimesh->custom_data_offset_cache; } /* SKELETON API */ Skeleton *get_skeleton(RID p_rid) { return skeleton_owner.get_or_null(p_rid); }; bool owns_skeleton(RID p_rid) { return skeleton_owner.owns(p_rid); }; virtual RID skeleton_allocate() override; virtual void skeleton_initialize(RID p_rid) override; virtual void skeleton_free(RID p_rid) override; virtual void skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton = false) override; virtual void skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) override; virtual int skeleton_get_bone_count(RID p_skeleton) const override; virtual void skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) override; virtual Transform3D skeleton_bone_get_transform(RID p_skeleton, int p_bone) const override; virtual void skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) override; virtual Transform2D skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const override; virtual void skeleton_update_dependency(RID p_base, DependencyTracker *p_instance) override; void _update_dirty_skeletons(); _FORCE_INLINE_ bool skeleton_is_valid(RID p_skeleton) { return skeleton_owner.get_or_null(p_skeleton) != nullptr; } }; } // namespace GLES3 #endif // GLES3_ENABLED #endif // MESH_STORAGE_GLES3_H