/*************************************************************************/ /* gd_parser.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "gd_parser.h" #include "gd_script.h" #include "io/resource_loader.h" #include "os/file_access.h" #include "print_string.h" #include "script_language.h" template T *GDParser::alloc_node() { T *t = memnew(T); t->next = list; list = t; if (!head) head = t; t->line = tokenizer->get_token_line(); t->column = tokenizer->get_token_column(); return t; } bool GDParser::_end_statement() { if (tokenizer->get_token() == GDTokenizer::TK_SEMICOLON) { tokenizer->advance(); return true; //handle next } else if (tokenizer->get_token() == GDTokenizer::TK_NEWLINE || tokenizer->get_token() == GDTokenizer::TK_EOF) { return true; //will be handled properly } return false; } bool GDParser::_enter_indent_block(BlockNode *p_block) { if (tokenizer->get_token() != GDTokenizer::TK_COLON) { // report location at the previous token (on the previous line) int error_line = tokenizer->get_token_line(-1); int error_column = tokenizer->get_token_column(-1); _set_error("':' expected at end of line.", error_line, error_column); return false; } tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_NEWLINE) { // be more python-like int current = tab_level.back()->get(); tab_level.push_back(current); return true; //_set_error("newline expected after ':'."); //return false; } while (true) { if (tokenizer->get_token() != GDTokenizer::TK_NEWLINE) { return false; //wtf } else if (tokenizer->get_token(1) != GDTokenizer::TK_NEWLINE) { int indent = tokenizer->get_token_line_indent(); int current = tab_level.back()->get(); if (indent <= current) { print_line("current: " + itos(current) + " indent: " + itos(indent)); print_line("less than current"); return false; } tab_level.push_back(indent); tokenizer->advance(); return true; } else if (p_block) { NewLineNode *nl = alloc_node(); nl->line = tokenizer->get_token_line(); p_block->statements.push_back(nl); } tokenizer->advance(); // go to next newline } } bool GDParser::_parse_arguments(Node *p_parent, Vector &p_args, bool p_static, bool p_can_codecomplete) { if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) { tokenizer->advance(); } else { parenthesis++; int argidx = 0; while (true) { if (tokenizer->get_token() == GDTokenizer::TK_CURSOR) { _make_completable_call(argidx); completion_node = p_parent; } else if (tokenizer->get_token() == GDTokenizer::TK_CONSTANT && tokenizer->get_token_constant().get_type() == Variant::STRING && tokenizer->get_token(1) == GDTokenizer::TK_CURSOR) { //completing a string argument.. completion_cursor = tokenizer->get_token_constant(); _make_completable_call(argidx); completion_node = p_parent; tokenizer->advance(1); return false; } Node *arg = _parse_expression(p_parent, p_static); if (!arg) return false; p_args.push_back(arg); if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) { tokenizer->advance(); break; } else if (tokenizer->get_token() == GDTokenizer::TK_COMMA) { if (tokenizer->get_token(1) == GDTokenizer::TK_PARENTHESIS_CLOSE) { _set_error("Expression expected"); return false; } tokenizer->advance(); argidx++; } else { // something is broken _set_error("Expected ',' or ')'"); return false; } } parenthesis--; } return true; } void GDParser::_make_completable_call(int p_arg) { completion_cursor = StringName(); completion_type = COMPLETION_CALL_ARGUMENTS; completion_class = current_class; completion_function = current_function; completion_line = tokenizer->get_token_line(); completion_argument = p_arg; completion_block = current_block; completion_found = true; tokenizer->advance(); } bool GDParser::_get_completable_identifier(CompletionType p_type, StringName &identifier) { identifier = StringName(); if (tokenizer->is_token_literal()) { identifier = tokenizer->get_token_literal(); tokenizer->advance(); } if (tokenizer->get_token() == GDTokenizer::TK_CURSOR) { completion_cursor = identifier; completion_type = p_type; completion_class = current_class; completion_function = current_function; completion_line = tokenizer->get_token_line(); completion_block = current_block; completion_found = true; completion_ident_is_call = false; tokenizer->advance(); if (tokenizer->is_token_literal()) { identifier = identifier.operator String() + tokenizer->get_token_literal().operator String(); tokenizer->advance(); } if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_OPEN) { completion_ident_is_call = true; } return true; } return false; } GDParser::Node *GDParser::_parse_expression(Node *p_parent, bool p_static, bool p_allow_assign, bool p_parsing_constant) { //Vector expressions; //Vector operators; Vector expression; Node *expr = NULL; int op_line = tokenizer->get_token_line(); // when operators are created at the bottom, the line might have been changed (\n found) while (true) { /*****************/ /* Parse Operand */ /*****************/ if (parenthesis > 0) { //remove empty space (only allowed if inside parenthesis while (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) { tokenizer->advance(); } } if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_OPEN) { //subexpression () tokenizer->advance(); parenthesis++; Node *subexpr = _parse_expression(p_parent, p_static, p_allow_assign, p_parsing_constant); parenthesis--; if (!subexpr) return NULL; if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) { _set_error("Expected ')' in expression"); return NULL; } tokenizer->advance(); expr = subexpr; } else if (tokenizer->get_token() == GDTokenizer::TK_DOLLAR) { tokenizer->advance(); String path; bool need_identifier = true; bool done = false; while (!done) { switch (tokenizer->get_token()) { case GDTokenizer::TK_CURSOR: { completion_cursor = StringName(); completion_type = COMPLETION_GET_NODE; completion_class = current_class; completion_function = current_function; completion_line = tokenizer->get_token_line(); completion_cursor = path; completion_argument = 0; completion_block = current_block; completion_found = true; tokenizer->advance(); } break; case GDTokenizer::TK_CONSTANT: { if (!need_identifier) { done = true; break; } if (tokenizer->get_token_constant().get_type() != Variant::STRING) { _set_error("Expected string constant or identifier after '$' or '/'."); return NULL; } path += String(tokenizer->get_token_constant()); tokenizer->advance(); need_identifier = false; } break; case GDTokenizer::TK_OP_DIV: { if (need_identifier) { done = true; break; } path += "/"; tokenizer->advance(); need_identifier = true; } break; default: { // Instead of checking for TK_IDENTIFIER, we check with is_token_literal, as this allows us to use match/sync/etc. as a name if (need_identifier && tokenizer->is_token_literal()) { path += String(tokenizer->get_token_literal()); tokenizer->advance(); need_identifier = false; } else { done = true; } break; } } } if (path == "") { _set_error("Path expected after $."); return NULL; } OperatorNode *op = alloc_node(); op->op = OperatorNode::OP_CALL; op->arguments.push_back(alloc_node()); IdentifierNode *funcname = alloc_node(); funcname->name = "get_node"; op->arguments.push_back(funcname); ConstantNode *nodepath = alloc_node(); nodepath->value = NodePath(StringName(path)); op->arguments.push_back(nodepath); expr = op; } else if (tokenizer->get_token() == GDTokenizer::TK_CURSOR) { tokenizer->advance(); continue; //no point in cursor in the middle of expression } else if (tokenizer->get_token() == GDTokenizer::TK_CONSTANT) { //constant defined by tokenizer ConstantNode *constant = alloc_node(); constant->value = tokenizer->get_token_constant(); tokenizer->advance(); expr = constant; } else if (tokenizer->get_token() == GDTokenizer::TK_CONST_PI) { //constant defined by tokenizer ConstantNode *constant = alloc_node(); constant->value = Math_PI; tokenizer->advance(); expr = constant; } else if (tokenizer->get_token() == GDTokenizer::TK_CONST_INF) { //constant defined by tokenizer ConstantNode *constant = alloc_node(); constant->value = Math_INF; tokenizer->advance(); expr = constant; } else if (tokenizer->get_token() == GDTokenizer::TK_CONST_NAN) { //constant defined by tokenizer ConstantNode *constant = alloc_node(); constant->value = Math_NAN; tokenizer->advance(); expr = constant; } else if (tokenizer->get_token() == GDTokenizer::TK_PR_PRELOAD) { //constant defined by tokenizer tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_OPEN) { _set_error("Expected '(' after 'preload'"); return NULL; } tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_CURSOR) { completion_cursor = StringName(); completion_node = p_parent; completion_type = COMPLETION_RESOURCE_PATH; completion_class = current_class; completion_function = current_function; completion_line = tokenizer->get_token_line(); completion_block = current_block; completion_argument = 0; completion_found = true; tokenizer->advance(); } String path; bool found_constant = false; bool valid = false; ConstantNode *cn; Node *subexpr = _parse_and_reduce_expression(p_parent, p_static); if (subexpr) { if (subexpr->type == Node::TYPE_CONSTANT) { cn = static_cast(subexpr); found_constant = true; } if (subexpr->type == Node::TYPE_IDENTIFIER) { IdentifierNode *in = static_cast(subexpr); Vector ce = current_class->constant_expressions; // Try to find the constant expression by the identifier for (int i = 0; i < ce.size(); ++i) { if (ce[i].identifier == in->name) { if (ce[i].expression->type == Node::TYPE_CONSTANT) { cn = static_cast(ce[i].expression); found_constant = true; } } } } if (found_constant && cn->value.get_type() == Variant::STRING) { valid = true; path = (String)cn->value; } } if (!valid) { _set_error("expected string constant as 'preload' argument."); return NULL; } if (!path.is_abs_path() && base_path != "") path = base_path + "/" + path; path = path.replace("///", "//").simplify_path(); if (path == self_path) { _set_error("Can't preload itself (use 'get_script()')."); return NULL; } Ref res; if (!validating) { //this can be too slow for just validating code if (for_completion && ScriptCodeCompletionCache::get_sigleton()) { res = ScriptCodeCompletionCache::get_sigleton()->get_cached_resource(path); } else { res = ResourceLoader::load(path); } if (!res.is_valid()) { _set_error("Can't preload resource at path: " + path); return NULL; } } else { if (!FileAccess::exists(path)) { _set_error("Can't preload resource at path: " + path); return NULL; } } if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) { _set_error("Expected ')' after 'preload' path"); return NULL; } tokenizer->advance(); ConstantNode *constant = alloc_node(); constant->value = res; expr = constant; } else if (tokenizer->get_token() == GDTokenizer::TK_PR_YIELD) { //constant defined by tokenizer tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_OPEN) { _set_error("Expected '(' after 'yield'"); return NULL; } tokenizer->advance(); OperatorNode *yield = alloc_node(); yield->op = OperatorNode::OP_YIELD; while (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) { tokenizer->advance(); } if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) { expr = yield; tokenizer->advance(); } else { parenthesis++; Node *object = _parse_and_reduce_expression(p_parent, p_static); if (!object) return NULL; yield->arguments.push_back(object); if (tokenizer->get_token() != GDTokenizer::TK_COMMA) { _set_error("Expected ',' after first argument of 'yield'"); return NULL; } tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_CURSOR) { completion_cursor = StringName(); completion_node = object; completion_type = COMPLETION_YIELD; completion_class = current_class; completion_function = current_function; completion_line = tokenizer->get_token_line(); completion_argument = 0; completion_block = current_block; completion_found = true; tokenizer->advance(); } Node *signal = _parse_and_reduce_expression(p_parent, p_static); if (!signal) return NULL; yield->arguments.push_back(signal); if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) { _set_error("Expected ')' after second argument of 'yield'"); return NULL; } parenthesis--; tokenizer->advance(); expr = yield; } } else if (tokenizer->get_token() == GDTokenizer::TK_SELF) { if (p_static) { _set_error("'self'' not allowed in static function or constant expression"); return NULL; } //constant defined by tokenizer SelfNode *self = alloc_node(); tokenizer->advance(); expr = self; } else if (tokenizer->get_token() == GDTokenizer::TK_BUILT_IN_TYPE && tokenizer->get_token(1) == GDTokenizer::TK_PERIOD) { Variant::Type bi_type = tokenizer->get_token_type(); tokenizer->advance(2); StringName identifier; if (_get_completable_identifier(COMPLETION_BUILT_IN_TYPE_CONSTANT, identifier)) { completion_built_in_constant = bi_type; } if (identifier == StringName()) { _set_error("Built-in type constant expected after '.'"); return NULL; } if (!Variant::has_numeric_constant(bi_type, identifier)) { _set_error("Static constant '" + identifier.operator String() + "' not present in built-in type " + Variant::get_type_name(bi_type) + "."); return NULL; } ConstantNode *cn = alloc_node(); cn->value = Variant::get_numeric_constant_value(bi_type, identifier); expr = cn; } else if (tokenizer->get_token(1) == GDTokenizer::TK_PARENTHESIS_OPEN && tokenizer->is_token_literal()) { // We check with is_token_literal, as this allows us to use match/sync/etc. as a name //function or constructor OperatorNode *op = alloc_node(); op->op = OperatorNode::OP_CALL; if (tokenizer->get_token() == GDTokenizer::TK_BUILT_IN_TYPE) { TypeNode *tn = alloc_node(); tn->vtype = tokenizer->get_token_type(); op->arguments.push_back(tn); tokenizer->advance(2); } else if (tokenizer->get_token() == GDTokenizer::TK_BUILT_IN_FUNC) { BuiltInFunctionNode *bn = alloc_node(); bn->function = tokenizer->get_token_built_in_func(); op->arguments.push_back(bn); tokenizer->advance(2); } else { SelfNode *self = alloc_node(); op->arguments.push_back(self); StringName identifier; if (_get_completable_identifier(COMPLETION_FUNCTION, identifier)) { } IdentifierNode *id = alloc_node(); id->name = identifier; op->arguments.push_back(id); tokenizer->advance(1); } if (tokenizer->get_token() == GDTokenizer::TK_CURSOR) { _make_completable_call(0); completion_node = op; } if (!_parse_arguments(op, op->arguments, p_static, true)) return NULL; expr = op; } else if (tokenizer->is_token_literal(0, true)) { // We check with is_token_literal, as this allows us to use match/sync/etc. as a name //identifier (reference) const ClassNode *cln = current_class; bool bfn = false; StringName identifier; if (_get_completable_identifier(COMPLETION_IDENTIFIER, identifier)) { } if (p_parsing_constant) { for (int i = 0; i < cln->constant_expressions.size(); ++i) { if (cln->constant_expressions[i].identifier == identifier) { expr = cln->constant_expressions[i].expression; bfn = true; break; } } if (GDScriptLanguage::get_singleton()->get_global_map().has(identifier)) { //check from constants ConstantNode *constant = alloc_node(); constant->value = GDScriptLanguage::get_singleton()->get_global_array()[GDScriptLanguage::get_singleton()->get_global_map()[identifier]]; expr = constant; bfn = true; } } if (!bfn) { IdentifierNode *id = alloc_node(); id->name = identifier; expr = id; } } else if (tokenizer->get_token() == GDTokenizer::TK_OP_ADD || tokenizer->get_token() == GDTokenizer::TK_OP_SUB || tokenizer->get_token() == GDTokenizer::TK_OP_NOT || tokenizer->get_token() == GDTokenizer::TK_OP_BIT_INVERT) { //single prefix operators like !expr +expr -expr ++expr --expr alloc_node(); Expression e; e.is_op = true; switch (tokenizer->get_token()) { case GDTokenizer::TK_OP_ADD: e.op = OperatorNode::OP_POS; break; case GDTokenizer::TK_OP_SUB: e.op = OperatorNode::OP_NEG; break; case GDTokenizer::TK_OP_NOT: e.op = OperatorNode::OP_NOT; break; case GDTokenizer::TK_OP_BIT_INVERT: e.op = OperatorNode::OP_BIT_INVERT; break; default: {} } tokenizer->advance(); if (e.op != OperatorNode::OP_NOT && tokenizer->get_token() == GDTokenizer::TK_OP_NOT) { _set_error("Misplaced 'not'."); return NULL; } expression.push_back(e); continue; //only exception, must continue... /* Node *subexpr=_parse_expression(op,p_static); if (!subexpr) return NULL; op->arguments.push_back(subexpr); expr=op;*/ } else if (tokenizer->get_token() == GDTokenizer::TK_BRACKET_OPEN) { // array tokenizer->advance(); ArrayNode *arr = alloc_node(); bool expecting_comma = false; while (true) { if (tokenizer->get_token() == GDTokenizer::TK_EOF) { _set_error("Unterminated array"); return NULL; } else if (tokenizer->get_token() == GDTokenizer::TK_BRACKET_CLOSE) { tokenizer->advance(); break; } else if (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) { tokenizer->advance(); //ignore newline } else if (tokenizer->get_token() == GDTokenizer::TK_COMMA) { if (!expecting_comma) { _set_error("expression or ']' expected"); return NULL; } expecting_comma = false; tokenizer->advance(); //ignore newline } else { //parse expression if (expecting_comma) { _set_error("',' or ']' expected"); return NULL; } Node *n = _parse_expression(arr, p_static, p_allow_assign, p_parsing_constant); if (!n) return NULL; arr->elements.push_back(n); expecting_comma = true; } } expr = arr; } else if (tokenizer->get_token() == GDTokenizer::TK_CURLY_BRACKET_OPEN) { // array tokenizer->advance(); DictionaryNode *dict = alloc_node(); enum DictExpect { DICT_EXPECT_KEY, DICT_EXPECT_COLON, DICT_EXPECT_VALUE, DICT_EXPECT_COMMA }; Node *key = NULL; Set keys; DictExpect expecting = DICT_EXPECT_KEY; while (true) { if (tokenizer->get_token() == GDTokenizer::TK_EOF) { _set_error("Unterminated dictionary"); return NULL; } else if (tokenizer->get_token() == GDTokenizer::TK_CURLY_BRACKET_CLOSE) { if (expecting == DICT_EXPECT_COLON) { _set_error("':' expected"); return NULL; } if (expecting == DICT_EXPECT_VALUE) { _set_error("value expected"); return NULL; } tokenizer->advance(); break; } else if (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) { tokenizer->advance(); //ignore newline } else if (tokenizer->get_token() == GDTokenizer::TK_COMMA) { if (expecting == DICT_EXPECT_KEY) { _set_error("key or '}' expected"); return NULL; } if (expecting == DICT_EXPECT_VALUE) { _set_error("value expected"); return NULL; } if (expecting == DICT_EXPECT_COLON) { _set_error("':' expected"); return NULL; } expecting = DICT_EXPECT_KEY; tokenizer->advance(); //ignore newline } else if (tokenizer->get_token() == GDTokenizer::TK_COLON) { if (expecting == DICT_EXPECT_KEY) { _set_error("key or '}' expected"); return NULL; } if (expecting == DICT_EXPECT_VALUE) { _set_error("value expected"); return NULL; } if (expecting == DICT_EXPECT_COMMA) { _set_error("',' or '}' expected"); return NULL; } expecting = DICT_EXPECT_VALUE; tokenizer->advance(); //ignore newline } else { if (expecting == DICT_EXPECT_COMMA) { _set_error("',' or '}' expected"); return NULL; } if (expecting == DICT_EXPECT_COLON) { _set_error("':' expected"); return NULL; } if (expecting == DICT_EXPECT_KEY) { if (tokenizer->is_token_literal() && tokenizer->get_token(1) == GDTokenizer::TK_OP_ASSIGN) { // We check with is_token_literal, as this allows us to use match/sync/etc. as a name //lua style identifier, easier to write ConstantNode *cn = alloc_node(); cn->value = tokenizer->get_token_literal(); key = cn; tokenizer->advance(2); expecting = DICT_EXPECT_VALUE; } else { //python/js style more flexible key = _parse_expression(dict, p_static, p_allow_assign, p_parsing_constant); if (!key) return NULL; expecting = DICT_EXPECT_COLON; } } if (expecting == DICT_EXPECT_VALUE) { Node *value = _parse_expression(dict, p_static, p_allow_assign, p_parsing_constant); if (!value) return NULL; expecting = DICT_EXPECT_COMMA; if (key->type == GDParser::Node::TYPE_CONSTANT) { Variant const &keyName = static_cast(key)->value; if (keys.has(keyName)) { _set_error("Duplicate key found in Dictionary literal"); return NULL; } keys.insert(keyName); } DictionaryNode::Pair pair; pair.key = key; pair.value = value; dict->elements.push_back(pair); key = NULL; } } } expr = dict; } else if (tokenizer->get_token() == GDTokenizer::TK_PERIOD && (tokenizer->is_token_literal(1) || tokenizer->get_token(1) == GDTokenizer::TK_CURSOR) && tokenizer->get_token(2) == GDTokenizer::TK_PARENTHESIS_OPEN) { // We check with is_token_literal, as this allows us to use match/sync/etc. as a name // parent call tokenizer->advance(); //goto identifier OperatorNode *op = alloc_node(); op->op = OperatorNode::OP_PARENT_CALL; /*SelfNode *self = alloc_node(); op->arguments.push_back(self); forbidden for now */ StringName identifier; if (_get_completable_identifier(COMPLETION_PARENT_FUNCTION, identifier)) { //indexing stuff } IdentifierNode *id = alloc_node(); id->name = identifier; op->arguments.push_back(id); tokenizer->advance(1); if (!_parse_arguments(op, op->arguments, p_static)) return NULL; expr = op; } else { //find list [ or find dictionary { //print_line("found bug?"); _set_error("Error parsing expression, misplaced: " + String(tokenizer->get_token_name(tokenizer->get_token()))); return NULL; //nothing } if (!expr) { ERR_EXPLAIN("GDParser bug, couldn't figure out what expression is.."); ERR_FAIL_COND_V(!expr, NULL); } /******************/ /* Parse Indexing */ /******************/ while (true) { //expressions can be indexed any number of times if (tokenizer->get_token() == GDTokenizer::TK_PERIOD) { //indexing using "." if (tokenizer->get_token(1) != GDTokenizer::TK_CURSOR && !tokenizer->is_token_literal(1)) { // We check with is_token_literal, as this allows us to use match/sync/etc. as a name _set_error("Expected identifier as member"); return NULL; } else if (tokenizer->get_token(2) == GDTokenizer::TK_PARENTHESIS_OPEN) { //call!! OperatorNode *op = alloc_node(); op->op = OperatorNode::OP_CALL; tokenizer->advance(); IdentifierNode *id = alloc_node(); if (tokenizer->get_token() == GDTokenizer::TK_BUILT_IN_FUNC) { //small hack so built in funcs don't obfuscate methods id->name = GDFunctions::get_func_name(tokenizer->get_token_built_in_func()); tokenizer->advance(); } else { StringName identifier; if (_get_completable_identifier(COMPLETION_METHOD, identifier)) { completion_node = op; //indexing stuff } id->name = identifier; } op->arguments.push_back(expr); // call what op->arguments.push_back(id); // call func //get arguments tokenizer->advance(1); if (tokenizer->get_token() == GDTokenizer::TK_CURSOR) { _make_completable_call(0); completion_node = op; } if (!_parse_arguments(op, op->arguments, p_static, true)) return NULL; expr = op; } else { //simple indexing! OperatorNode *op = alloc_node(); op->op = OperatorNode::OP_INDEX_NAMED; tokenizer->advance(); StringName identifier; if (_get_completable_identifier(COMPLETION_INDEX, identifier)) { if (identifier == StringName()) { identifier = "@temp"; //so it parses allright } completion_node = op; //indexing stuff } IdentifierNode *id = alloc_node(); id->name = identifier; op->arguments.push_back(expr); op->arguments.push_back(id); expr = op; } } else if (tokenizer->get_token() == GDTokenizer::TK_BRACKET_OPEN) { //indexing using "[]" OperatorNode *op = alloc_node(); op->op = OperatorNode::OP_INDEX; tokenizer->advance(1); Node *subexpr = _parse_expression(op, p_static, p_allow_assign, p_parsing_constant); if (!subexpr) { return NULL; } if (tokenizer->get_token() != GDTokenizer::TK_BRACKET_CLOSE) { _set_error("Expected ']'"); return NULL; } op->arguments.push_back(expr); op->arguments.push_back(subexpr); tokenizer->advance(1); expr = op; } else break; } /******************/ /* Parse Operator */ /******************/ if (parenthesis > 0) { //remove empty space (only allowed if inside parenthesis while (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) { tokenizer->advance(); } } Expression e; e.is_op = false; e.node = expr; expression.push_back(e); // determine which operator is next OperatorNode::Operator op; bool valid = true; //assign, if allowed is only allowed on the first operator #define _VALIDATE_ASSIGN \ if (!p_allow_assign) { \ _set_error("Unexpected assign."); \ return NULL; \ } \ p_allow_assign = false; switch (tokenizer->get_token()) { //see operator case GDTokenizer::TK_OP_IN: op = OperatorNode::OP_IN; break; case GDTokenizer::TK_OP_EQUAL: op = OperatorNode::OP_EQUAL; break; case GDTokenizer::TK_OP_NOT_EQUAL: op = OperatorNode::OP_NOT_EQUAL; break; case GDTokenizer::TK_OP_LESS: op = OperatorNode::OP_LESS; break; case GDTokenizer::TK_OP_LESS_EQUAL: op = OperatorNode::OP_LESS_EQUAL; break; case GDTokenizer::TK_OP_GREATER: op = OperatorNode::OP_GREATER; break; case GDTokenizer::TK_OP_GREATER_EQUAL: op = OperatorNode::OP_GREATER_EQUAL; break; case GDTokenizer::TK_OP_AND: op = OperatorNode::OP_AND; break; case GDTokenizer::TK_OP_OR: op = OperatorNode::OP_OR; break; case GDTokenizer::TK_OP_ADD: op = OperatorNode::OP_ADD; break; case GDTokenizer::TK_OP_SUB: op = OperatorNode::OP_SUB; break; case GDTokenizer::TK_OP_MUL: op = OperatorNode::OP_MUL; break; case GDTokenizer::TK_OP_DIV: op = OperatorNode::OP_DIV; break; case GDTokenizer::TK_OP_MOD: op = OperatorNode::OP_MOD; break; //case GDTokenizer::TK_OP_NEG: op=OperatorNode::OP_NEG ; break; case GDTokenizer::TK_OP_SHIFT_LEFT: op = OperatorNode::OP_SHIFT_LEFT; break; case GDTokenizer::TK_OP_SHIFT_RIGHT: op = OperatorNode::OP_SHIFT_RIGHT; break; case GDTokenizer::TK_OP_ASSIGN: { _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN; if (tokenizer->get_token(1) == GDTokenizer::TK_CURSOR) { //code complete assignment completion_type = COMPLETION_ASSIGN; completion_node = expr; completion_class = current_class; completion_function = current_function; completion_line = tokenizer->get_token_line(); completion_block = current_block; completion_found = true; tokenizer->advance(); } } break; case GDTokenizer::TK_OP_ASSIGN_ADD: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_ADD; break; case GDTokenizer::TK_OP_ASSIGN_SUB: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_SUB; break; case GDTokenizer::TK_OP_ASSIGN_MUL: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_MUL; break; case GDTokenizer::TK_OP_ASSIGN_DIV: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_DIV; break; case GDTokenizer::TK_OP_ASSIGN_MOD: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_MOD; break; case GDTokenizer::TK_OP_ASSIGN_SHIFT_LEFT: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_SHIFT_LEFT; break; case GDTokenizer::TK_OP_ASSIGN_SHIFT_RIGHT: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_SHIFT_RIGHT; break; case GDTokenizer::TK_OP_ASSIGN_BIT_AND: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_BIT_AND; break; case GDTokenizer::TK_OP_ASSIGN_BIT_OR: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_BIT_OR; break; case GDTokenizer::TK_OP_ASSIGN_BIT_XOR: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_BIT_XOR; break; case GDTokenizer::TK_OP_BIT_AND: op = OperatorNode::OP_BIT_AND; break; case GDTokenizer::TK_OP_BIT_OR: op = OperatorNode::OP_BIT_OR; break; case GDTokenizer::TK_OP_BIT_XOR: op = OperatorNode::OP_BIT_XOR; break; case GDTokenizer::TK_PR_IS: op = OperatorNode::OP_IS; break; case GDTokenizer::TK_CF_IF: op = OperatorNode::OP_TERNARY_IF; break; case GDTokenizer::TK_CF_ELSE: op = OperatorNode::OP_TERNARY_ELSE; break; default: valid = false; break; } if (valid) { e.is_op = true; e.op = op; expression.push_back(e); tokenizer->advance(); } else { break; } } /* Reduce the set set of expressions and place them in an operator tree, respecting precedence */ while (expression.size() > 1) { int next_op = -1; int min_priority = 0xFFFFF; bool is_unary = false; bool is_ternary = false; for (int i = 0; i < expression.size(); i++) { if (!expression[i].is_op) { continue; } int priority; bool unary = false; bool ternary = false; bool error = false; switch (expression[i].op) { case OperatorNode::OP_IS: priority = -1; break; //before anything case OperatorNode::OP_BIT_INVERT: priority = 0; unary = true; break; case OperatorNode::OP_NEG: priority = 1; unary = true; break; case OperatorNode::OP_POS: priority = 1; unary = true; break; case OperatorNode::OP_MUL: priority = 2; break; case OperatorNode::OP_DIV: priority = 2; break; case OperatorNode::OP_MOD: priority = 2; break; case OperatorNode::OP_ADD: priority = 3; break; case OperatorNode::OP_SUB: priority = 3; break; case OperatorNode::OP_SHIFT_LEFT: priority = 4; break; case OperatorNode::OP_SHIFT_RIGHT: priority = 4; break; case OperatorNode::OP_BIT_AND: priority = 5; break; case OperatorNode::OP_BIT_XOR: priority = 6; break; case OperatorNode::OP_BIT_OR: priority = 7; break; case OperatorNode::OP_LESS: priority = 8; break; case OperatorNode::OP_LESS_EQUAL: priority = 8; break; case OperatorNode::OP_GREATER: priority = 8; break; case OperatorNode::OP_GREATER_EQUAL: priority = 8; break; case OperatorNode::OP_EQUAL: priority = 8; break; case OperatorNode::OP_NOT_EQUAL: priority = 8; break; case OperatorNode::OP_IN: priority = 10; break; case OperatorNode::OP_NOT: priority = 11; unary = true; break; case OperatorNode::OP_AND: priority = 12; break; case OperatorNode::OP_OR: priority = 13; break; case OperatorNode::OP_TERNARY_IF: priority = 14; ternary = true; break; case OperatorNode::OP_TERNARY_ELSE: priority = 14; error = true; break; // Errors out when found without IF (since IF would consume it) case OperatorNode::OP_ASSIGN: priority = 15; break; case OperatorNode::OP_ASSIGN_ADD: priority = 15; break; case OperatorNode::OP_ASSIGN_SUB: priority = 15; break; case OperatorNode::OP_ASSIGN_MUL: priority = 15; break; case OperatorNode::OP_ASSIGN_DIV: priority = 15; break; case OperatorNode::OP_ASSIGN_MOD: priority = 15; break; case OperatorNode::OP_ASSIGN_SHIFT_LEFT: priority = 15; break; case OperatorNode::OP_ASSIGN_SHIFT_RIGHT: priority = 15; break; case OperatorNode::OP_ASSIGN_BIT_AND: priority = 15; break; case OperatorNode::OP_ASSIGN_BIT_OR: priority = 15; break; case OperatorNode::OP_ASSIGN_BIT_XOR: priority = 15; break; default: { _set_error("GDParser bug, invalid operator in expression: " + itos(expression[i].op)); return NULL; } } if (priority < min_priority) { if (error) { _set_error("Unexpected operator"); return NULL; } // < is used for left to right (default) // <= is used for right to left next_op = i; min_priority = priority; is_unary = unary; is_ternary = ternary; } } if (next_op == -1) { _set_error("Yet another parser bug...."); ERR_FAIL_COND_V(next_op == -1, NULL); } // OK! create operator.. if (is_unary) { int expr_pos = next_op; while (expression[expr_pos].is_op) { expr_pos++; if (expr_pos == expression.size()) { //can happen.. _set_error("Unexpected end of expression.."); return NULL; } } //consecutively do unary opeators for (int i = expr_pos - 1; i >= next_op; i--) { OperatorNode *op = alloc_node(); op->op = expression[i].op; op->arguments.push_back(expression[i + 1].node); op->line = op_line; //line might have been changed from a \n expression[i].is_op = false; expression[i].node = op; expression.remove(i + 1); } } else if (is_ternary) { if (next_op < 1 || next_op >= (expression.size() - 1)) { _set_error("Parser bug.."); ERR_FAIL_V(NULL); } if (next_op >= (expression.size() - 2) || expression[next_op + 2].op != OperatorNode::OP_TERNARY_ELSE) { _set_error("Expected else after ternary if."); ERR_FAIL_V(NULL); } if (next_op >= (expression.size() - 3)) { _set_error("Expected value after ternary else."); ERR_FAIL_V(NULL); } OperatorNode *op = alloc_node(); op->op = expression[next_op].op; op->line = op_line; //line might have been changed from a \n if (expression[next_op - 1].is_op) { _set_error("Parser bug.."); ERR_FAIL_V(NULL); } if (expression[next_op + 1].is_op) { // this is not invalid and can really appear // but it becomes invalid anyway because no binary op // can be followed by an unary op in a valid combination, // due to how precedence works, unaries will always disappear first _set_error("Unexpected two consecutive operators after ternary if."); return NULL; } if (expression[next_op + 3].is_op) { // this is not invalid and can really appear // but it becomes invalid anyway because no binary op // can be followed by an unary op in a valid combination, // due to how precedence works, unaries will always disappear first _set_error("Unexpected two consecutive operators after ternary else."); return NULL; } op->arguments.push_back(expression[next_op + 1].node); //next expression goes as first op->arguments.push_back(expression[next_op - 1].node); //left expression goes as when-true op->arguments.push_back(expression[next_op + 3].node); //expression after next goes as when-false //replace all 3 nodes by this operator and make it an expression expression[next_op - 1].node = op; expression.remove(next_op); expression.remove(next_op); expression.remove(next_op); expression.remove(next_op); } else { if (next_op < 1 || next_op >= (expression.size() - 1)) { _set_error("Parser bug.."); ERR_FAIL_V(NULL); } OperatorNode *op = alloc_node(); op->op = expression[next_op].op; op->line = op_line; //line might have been changed from a \n if (expression[next_op - 1].is_op) { _set_error("Parser bug.."); ERR_FAIL_V(NULL); } if (expression[next_op + 1].is_op) { // this is not invalid and can really appear // but it becomes invalid anyway because no binary op // can be followed by an unary op in a valid combination, // due to how precedence works, unaries will always disappear first _set_error("Unexpected two consecutive operators."); return NULL; } op->arguments.push_back(expression[next_op - 1].node); //expression goes as left op->arguments.push_back(expression[next_op + 1].node); //next expression goes as right //replace all 3 nodes by this operator and make it an expression expression[next_op - 1].node = op; expression.remove(next_op); expression.remove(next_op); } } return expression[0].node; } GDParser::Node *GDParser::_reduce_expression(Node *p_node, bool p_to_const) { switch (p_node->type) { case Node::TYPE_BUILT_IN_FUNCTION: { //many may probably be optimizable return p_node; } break; case Node::TYPE_ARRAY: { ArrayNode *an = static_cast(p_node); bool all_constants = true; for (int i = 0; i < an->elements.size(); i++) { an->elements[i] = _reduce_expression(an->elements[i], p_to_const); if (an->elements[i]->type != Node::TYPE_CONSTANT) all_constants = false; } if (all_constants && p_to_const) { //reduce constant array expression ConstantNode *cn = alloc_node(); Array arr; //print_line("mk array "+itos(!p_to_const)); arr.resize(an->elements.size()); for (int i = 0; i < an->elements.size(); i++) { ConstantNode *acn = static_cast(an->elements[i]); arr[i] = acn->value; } cn->value = arr; return cn; } return an; } break; case Node::TYPE_DICTIONARY: { DictionaryNode *dn = static_cast(p_node); bool all_constants = true; for (int i = 0; i < dn->elements.size(); i++) { dn->elements[i].key = _reduce_expression(dn->elements[i].key, p_to_const); if (dn->elements[i].key->type != Node::TYPE_CONSTANT) all_constants = false; dn->elements[i].value = _reduce_expression(dn->elements[i].value, p_to_const); if (dn->elements[i].value->type != Node::TYPE_CONSTANT) all_constants = false; } if (all_constants && p_to_const) { //reduce constant array expression ConstantNode *cn = alloc_node(); Dictionary dict; for (int i = 0; i < dn->elements.size(); i++) { ConstantNode *key_c = static_cast(dn->elements[i].key); ConstantNode *value_c = static_cast(dn->elements[i].value); dict[key_c->value] = value_c->value; } cn->value = dict; return cn; } return dn; } break; case Node::TYPE_OPERATOR: { OperatorNode *op = static_cast(p_node); bool all_constants = true; int last_not_constant = -1; for (int i = 0; i < op->arguments.size(); i++) { op->arguments[i] = _reduce_expression(op->arguments[i], p_to_const); if (op->arguments[i]->type != Node::TYPE_CONSTANT) { all_constants = false; last_not_constant = i; } } if (op->op == OperatorNode::OP_IS) { //nothing much return op; } if (op->op == OperatorNode::OP_PARENT_CALL) { //nothing much return op; } else if (op->op == OperatorNode::OP_CALL) { //can reduce base type constructors if ((op->arguments[0]->type == Node::TYPE_TYPE || (op->arguments[0]->type == Node::TYPE_BUILT_IN_FUNCTION && GDFunctions::is_deterministic(static_cast(op->arguments[0])->function))) && last_not_constant == 0) { //native type constructor or intrinsic function const Variant **vptr = NULL; Vector ptrs; if (op->arguments.size() > 1) { ptrs.resize(op->arguments.size() - 1); for (int i = 0; i < ptrs.size(); i++) { ConstantNode *cn = static_cast(op->arguments[i + 1]); ptrs[i] = &cn->value; } vptr = (const Variant **)&ptrs[0]; } Variant::CallError ce; Variant v; if (op->arguments[0]->type == Node::TYPE_TYPE) { TypeNode *tn = static_cast(op->arguments[0]); v = Variant::construct(tn->vtype, vptr, ptrs.size(), ce); } else { GDFunctions::Function func = static_cast(op->arguments[0])->function; GDFunctions::call(func, vptr, ptrs.size(), v, ce); } if (ce.error != Variant::CallError::CALL_OK) { String errwhere; if (op->arguments[0]->type == Node::TYPE_TYPE) { TypeNode *tn = static_cast(op->arguments[0]); errwhere = "'" + Variant::get_type_name(tn->vtype) + "'' constructor"; } else { GDFunctions::Function func = static_cast(op->arguments[0])->function; errwhere = String("'") + GDFunctions::get_func_name(func) + "'' intrinsic function"; } switch (ce.error) { case Variant::CallError::CALL_ERROR_INVALID_ARGUMENT: { _set_error("Invalid argument (#" + itos(ce.argument + 1) + ") for " + errwhere + "."); } break; case Variant::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS: { _set_error("Too many arguments for " + errwhere + "."); } break; case Variant::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS: { _set_error("Too few arguments for " + errwhere + "."); } break; default: { _set_error("Invalid arguments for " + errwhere + "."); } break; } error_line = op->line; return p_node; } ConstantNode *cn = alloc_node(); cn->value = v; return cn; } else if (op->arguments[0]->type == Node::TYPE_BUILT_IN_FUNCTION && last_not_constant == 0) { } return op; //don't reduce yet } else if (op->op == OperatorNode::OP_YIELD) { return op; } else if (op->op == OperatorNode::OP_INDEX) { //can reduce indices into constant arrays or dictionaries if (all_constants) { ConstantNode *ca = static_cast(op->arguments[0]); ConstantNode *cb = static_cast(op->arguments[1]); bool valid; Variant v = ca->value.get(cb->value, &valid); if (!valid) { _set_error("invalid index in constant expression"); error_line = op->line; return op; } ConstantNode *cn = alloc_node(); cn->value = v; return cn; } /*else if (op->arguments[0]->type==Node::TYPE_CONSTANT && op->arguments[1]->type==Node::TYPE_IDENTIFIER) { ConstantNode *ca = static_cast(op->arguments[0]); IdentifierNode *ib = static_cast(op->arguments[1]); bool valid; Variant v = ca->value.get_named(ib->name,&valid); if (!valid) { _set_error("invalid index '"+String(ib->name)+"' in constant expression"); return op; } ConstantNode *cn = alloc_node(); cn->value=v; return cn; }*/ return op; } else if (op->op == OperatorNode::OP_INDEX_NAMED) { if (op->arguments[0]->type == Node::TYPE_CONSTANT && op->arguments[1]->type == Node::TYPE_IDENTIFIER) { ConstantNode *ca = static_cast(op->arguments[0]); IdentifierNode *ib = static_cast(op->arguments[1]); bool valid; Variant v = ca->value.get_named(ib->name, &valid); if (!valid) { _set_error("invalid index '" + String(ib->name) + "' in constant expression"); error_line = op->line; return op; } ConstantNode *cn = alloc_node(); cn->value = v; return cn; } return op; } //validate assignment (don't assign to cosntant expression switch (op->op) { case OperatorNode::OP_ASSIGN: case OperatorNode::OP_ASSIGN_ADD: case OperatorNode::OP_ASSIGN_SUB: case OperatorNode::OP_ASSIGN_MUL: case OperatorNode::OP_ASSIGN_DIV: case OperatorNode::OP_ASSIGN_MOD: case OperatorNode::OP_ASSIGN_SHIFT_LEFT: case OperatorNode::OP_ASSIGN_SHIFT_RIGHT: case OperatorNode::OP_ASSIGN_BIT_AND: case OperatorNode::OP_ASSIGN_BIT_OR: case OperatorNode::OP_ASSIGN_BIT_XOR: { if (op->arguments[0]->type == Node::TYPE_CONSTANT) { _set_error("Can't assign to constant", tokenizer->get_token_line() - 1); error_line = op->line; return op; } if (op->arguments[0]->type == Node::TYPE_OPERATOR) { OperatorNode *on = static_cast(op->arguments[0]); if (on->op != OperatorNode::OP_INDEX && on->op != OperatorNode::OP_INDEX_NAMED) { _set_error("Can't assign to an expression", tokenizer->get_token_line() - 1); error_line = op->line; return op; } } } break; default: { break; } } //now se if all are constants if (!all_constants) return op; //nothing to reduce from here on #define _REDUCE_UNARY(m_vop) \ bool valid = false; \ Variant res; \ Variant::evaluate(m_vop, static_cast(op->arguments[0])->value, Variant(), res, valid); \ if (!valid) { \ _set_error("Invalid operand for unary operator"); \ error_line = op->line; \ return p_node; \ } \ ConstantNode *cn = alloc_node(); \ cn->value = res; \ return cn; #define _REDUCE_BINARY(m_vop) \ bool valid = false; \ Variant res; \ Variant::evaluate(m_vop, static_cast(op->arguments[0])->value, static_cast(op->arguments[1])->value, res, valid); \ if (!valid) { \ _set_error("Invalid operands for operator"); \ error_line = op->line; \ return p_node; \ } \ ConstantNode *cn = alloc_node(); \ cn->value = res; \ return cn; switch (op->op) { //unary operators case OperatorNode::OP_NEG: { _REDUCE_UNARY(Variant::OP_NEGATE); } break; case OperatorNode::OP_POS: { _REDUCE_UNARY(Variant::OP_POSITIVE); } break; case OperatorNode::OP_NOT: { _REDUCE_UNARY(Variant::OP_NOT); } break; case OperatorNode::OP_BIT_INVERT: { _REDUCE_UNARY(Variant::OP_BIT_NEGATE); } break; //binary operators (in precedence order) case OperatorNode::OP_IN: { _REDUCE_BINARY(Variant::OP_IN); } break; case OperatorNode::OP_EQUAL: { _REDUCE_BINARY(Variant::OP_EQUAL); } break; case OperatorNode::OP_NOT_EQUAL: { _REDUCE_BINARY(Variant::OP_NOT_EQUAL); } break; case OperatorNode::OP_LESS: { _REDUCE_BINARY(Variant::OP_LESS); } break; case OperatorNode::OP_LESS_EQUAL: { _REDUCE_BINARY(Variant::OP_LESS_EQUAL); } break; case OperatorNode::OP_GREATER: { _REDUCE_BINARY(Variant::OP_GREATER); } break; case OperatorNode::OP_GREATER_EQUAL: { _REDUCE_BINARY(Variant::OP_GREATER_EQUAL); } break; case OperatorNode::OP_AND: { _REDUCE_BINARY(Variant::OP_AND); } break; case OperatorNode::OP_OR: { _REDUCE_BINARY(Variant::OP_OR); } break; case OperatorNode::OP_ADD: { _REDUCE_BINARY(Variant::OP_ADD); } break; case OperatorNode::OP_SUB: { _REDUCE_BINARY(Variant::OP_SUBSTRACT); } break; case OperatorNode::OP_MUL: { _REDUCE_BINARY(Variant::OP_MULTIPLY); } break; case OperatorNode::OP_DIV: { _REDUCE_BINARY(Variant::OP_DIVIDE); } break; case OperatorNode::OP_MOD: { _REDUCE_BINARY(Variant::OP_MODULE); } break; case OperatorNode::OP_SHIFT_LEFT: { _REDUCE_BINARY(Variant::OP_SHIFT_LEFT); } break; case OperatorNode::OP_SHIFT_RIGHT: { _REDUCE_BINARY(Variant::OP_SHIFT_RIGHT); } break; case OperatorNode::OP_BIT_AND: { _REDUCE_BINARY(Variant::OP_BIT_AND); } break; case OperatorNode::OP_BIT_OR: { _REDUCE_BINARY(Variant::OP_BIT_OR); } break; case OperatorNode::OP_BIT_XOR: { _REDUCE_BINARY(Variant::OP_BIT_XOR); } break; default: { ERR_FAIL_V(op); } } ERR_FAIL_V(op); } break; default: { return p_node; } break; } } GDParser::Node *GDParser::_parse_and_reduce_expression(Node *p_parent, bool p_static, bool p_reduce_const, bool p_allow_assign) { Node *expr = _parse_expression(p_parent, p_static, p_allow_assign, p_reduce_const); if (!expr || error_set) return NULL; expr = _reduce_expression(expr, p_reduce_const); if (!expr || error_set) return NULL; return expr; } bool GDParser::_recover_from_completion() { if (!completion_found) { return false; //can't recover if no completion } //skip stuff until newline while (tokenizer->get_token() != GDTokenizer::TK_NEWLINE && tokenizer->get_token() != GDTokenizer::TK_EOF && tokenizer->get_token() != GDTokenizer::TK_ERROR) { tokenizer->advance(); } completion_found = false; error_set = false; if (tokenizer->get_token() == GDTokenizer::TK_ERROR) { error_set = true; } return true; } GDParser::PatternNode *GDParser::_parse_pattern(bool p_static) { PatternNode *pattern = alloc_node(); GDTokenizer::Token token = tokenizer->get_token(); if (error_set) return NULL; if (token == GDTokenizer::TK_EOF) { return NULL; } switch (token) { // array case GDTokenizer::TK_BRACKET_OPEN: { tokenizer->advance(); pattern->pt_type = GDParser::PatternNode::PT_ARRAY; while (true) { if (tokenizer->get_token() == GDTokenizer::TK_BRACKET_CLOSE) { tokenizer->advance(); break; } if (tokenizer->get_token() == GDTokenizer::TK_PERIOD && tokenizer->get_token(1) == GDTokenizer::TK_PERIOD) { // match everything tokenizer->advance(2); PatternNode *sub_pattern = alloc_node(); sub_pattern->pt_type = GDParser::PatternNode::PT_IGNORE_REST; pattern->array.push_back(sub_pattern); if (tokenizer->get_token() == GDTokenizer::TK_COMMA && tokenizer->get_token(1) == GDTokenizer::TK_BRACKET_CLOSE) { tokenizer->advance(2); break; } else if (tokenizer->get_token() == GDTokenizer::TK_BRACKET_CLOSE) { tokenizer->advance(1); break; } else { _set_error("'..' pattern only allowed at the end of an array pattern"); return NULL; } } PatternNode *sub_pattern = _parse_pattern(p_static); if (!sub_pattern) { return NULL; } pattern->array.push_back(sub_pattern); if (tokenizer->get_token() == GDTokenizer::TK_COMMA) { tokenizer->advance(); continue; } else if (tokenizer->get_token() == GDTokenizer::TK_BRACKET_CLOSE) { tokenizer->advance(); break; } else { _set_error("Not a valid pattern"); return NULL; } } } break; // bind case GDTokenizer::TK_PR_VAR: { tokenizer->advance(); pattern->pt_type = GDParser::PatternNode::PT_BIND; pattern->bind = tokenizer->get_token_identifier(); tokenizer->advance(); } break; // dictionary case GDTokenizer::TK_CURLY_BRACKET_OPEN: { tokenizer->advance(); pattern->pt_type = GDParser::PatternNode::PT_DICTIONARY; while (true) { if (tokenizer->get_token() == GDTokenizer::TK_CURLY_BRACKET_CLOSE) { tokenizer->advance(); break; } if (tokenizer->get_token() == GDTokenizer::TK_PERIOD && tokenizer->get_token(1) == GDTokenizer::TK_PERIOD) { // match everything tokenizer->advance(2); PatternNode *sub_pattern = alloc_node(); sub_pattern->pt_type = PatternNode::PT_IGNORE_REST; pattern->array.push_back(sub_pattern); if (tokenizer->get_token() == GDTokenizer::TK_COMMA && tokenizer->get_token(1) == GDTokenizer::TK_CURLY_BRACKET_CLOSE) { tokenizer->advance(2); break; } else if (tokenizer->get_token() == GDTokenizer::TK_CURLY_BRACKET_CLOSE) { tokenizer->advance(1); break; } else { _set_error("'..' pattern only allowed at the end of an dictionary pattern"); return NULL; } } Node *key = _parse_and_reduce_expression(pattern, p_static); if (!key) { _set_error("Not a valid key in pattern"); return NULL; } if (key->type != GDParser::Node::TYPE_CONSTANT) { _set_error("Not a constant expression as key"); return NULL; } if (tokenizer->get_token() == GDTokenizer::TK_COLON) { tokenizer->advance(); PatternNode *value = _parse_pattern(p_static); if (!value) { _set_error("Expected pattern in dictionary value"); return NULL; } pattern->dictionary.insert(static_cast(key), value); } else { pattern->dictionary.insert(static_cast(key), NULL); } if (tokenizer->get_token() == GDTokenizer::TK_COMMA) { tokenizer->advance(); continue; } else if (tokenizer->get_token() == GDTokenizer::TK_CURLY_BRACKET_CLOSE) { tokenizer->advance(); break; } else { _set_error("Not a valid pattern"); return NULL; } } } break; case GDTokenizer::TK_WILDCARD: { tokenizer->advance(); pattern->pt_type = PatternNode::PT_WILDCARD; } break; // all the constants like strings and numbers default: { Node *value = _parse_and_reduce_expression(pattern, p_static); if (error_set) { return NULL; } if (value->type == Node::TYPE_OPERATOR) { // Maybe it's SomeEnum.VALUE Node *current_value = value; while (current_value->type == Node::TYPE_OPERATOR) { OperatorNode *op_node = static_cast(current_value); if (op_node->op != OperatorNode::OP_INDEX_NAMED) { _set_error("Invalid operator in pattern. Only index (`A.B`) is allowed"); return NULL; } current_value = op_node->arguments[0]; } if (current_value->type != Node::TYPE_IDENTIFIER) { _set_error("Only constant expression or variables allowed in a pattern"); return NULL; } } else if (value->type != Node::TYPE_IDENTIFIER && value->type != Node::TYPE_CONSTANT) { _set_error("Only constant expressions or variables allowed in a pattern"); return NULL; } pattern->pt_type = PatternNode::PT_CONSTANT; pattern->constant = value; } break; } return pattern; } void GDParser::_parse_pattern_block(BlockNode *p_block, Vector &p_branches, bool p_static) { int indent_level = tab_level.back()->get(); while (true) { while (tokenizer->get_token() == GDTokenizer::TK_NEWLINE && _parse_newline()) ; // GDTokenizer::Token token = tokenizer->get_token(); if (error_set) return; if (indent_level > tab_level.back()->get()) { return; // go back a level } if (pending_newline != -1) { pending_newline = -1; } PatternBranchNode *branch = alloc_node(); branch->patterns.push_back(_parse_pattern(p_static)); if (!branch->patterns[0]) { return; } while (tokenizer->get_token() == GDTokenizer::TK_COMMA) { tokenizer->advance(); branch->patterns.push_back(_parse_pattern(p_static)); if (!branch->patterns[branch->patterns.size() - 1]) { return; } } if (!_enter_indent_block()) { _set_error("Expected block in pattern branch"); return; } branch->body = alloc_node(); branch->body->parent_block = p_block; p_block->sub_blocks.push_back(branch->body); current_block = branch->body; _parse_block(branch->body, p_static); current_block = p_block; p_branches.push_back(branch); } } void GDParser::_generate_pattern(PatternNode *p_pattern, Node *p_node_to_match, Node *&p_resulting_node, Map &p_bindings) { switch (p_pattern->pt_type) { case PatternNode::PT_CONSTANT: { // typecheck BuiltInFunctionNode *typeof_node = alloc_node(); typeof_node->function = GDFunctions::TYPE_OF; OperatorNode *typeof_match_value = alloc_node(); typeof_match_value->op = OperatorNode::OP_CALL; typeof_match_value->arguments.push_back(typeof_node); typeof_match_value->arguments.push_back(p_node_to_match); OperatorNode *typeof_pattern_value = alloc_node(); typeof_pattern_value->op = OperatorNode::OP_CALL; typeof_pattern_value->arguments.push_back(typeof_node); typeof_pattern_value->arguments.push_back(p_pattern->constant); OperatorNode *type_comp = alloc_node(); type_comp->op = OperatorNode::OP_EQUAL; type_comp->arguments.push_back(typeof_match_value); type_comp->arguments.push_back(typeof_pattern_value); // comare the actual values OperatorNode *value_comp = alloc_node(); value_comp->op = OperatorNode::OP_EQUAL; value_comp->arguments.push_back(p_pattern->constant); value_comp->arguments.push_back(p_node_to_match); OperatorNode *comparison = alloc_node(); comparison->op = OperatorNode::OP_AND; comparison->arguments.push_back(type_comp); comparison->arguments.push_back(value_comp); p_resulting_node = comparison; } break; case PatternNode::PT_BIND: { p_bindings[p_pattern->bind] = p_node_to_match; // a bind always matches ConstantNode *true_value = alloc_node(); true_value->value = Variant(true); p_resulting_node = true_value; } break; case PatternNode::PT_ARRAY: { bool open_ended = false; if (p_pattern->array.size() > 0) { if (p_pattern->array[p_pattern->array.size() - 1]->pt_type == PatternNode::PT_IGNORE_REST) { open_ended = true; } } // typeof(value_to_match) == TYPE_ARRAY && value_to_match.size() >= length // typeof(value_to_match) == TYPE_ARRAY && value_to_match.size() == length { // typecheck BuiltInFunctionNode *typeof_node = alloc_node(); typeof_node->function = GDFunctions::TYPE_OF; OperatorNode *typeof_match_value = alloc_node(); typeof_match_value->op = OperatorNode::OP_CALL; typeof_match_value->arguments.push_back(typeof_node); typeof_match_value->arguments.push_back(p_node_to_match); IdentifierNode *typeof_array = alloc_node(); typeof_array->name = "TYPE_ARRAY"; OperatorNode *type_comp = alloc_node(); type_comp->op = OperatorNode::OP_EQUAL; type_comp->arguments.push_back(typeof_match_value); type_comp->arguments.push_back(typeof_array); // size ConstantNode *length = alloc_node(); length->value = Variant(open_ended ? p_pattern->array.size() - 1 : p_pattern->array.size()); OperatorNode *call = alloc_node(); call->op = OperatorNode::OP_CALL; call->arguments.push_back(p_node_to_match); IdentifierNode *size = alloc_node(); size->name = "size"; call->arguments.push_back(size); OperatorNode *length_comparison = alloc_node(); length_comparison->op = open_ended ? OperatorNode::OP_GREATER_EQUAL : OperatorNode::OP_EQUAL; length_comparison->arguments.push_back(call); length_comparison->arguments.push_back(length); OperatorNode *type_and_length_comparison = alloc_node(); type_and_length_comparison->op = OperatorNode::OP_AND; type_and_length_comparison->arguments.push_back(type_comp); type_and_length_comparison->arguments.push_back(length_comparison); p_resulting_node = type_and_length_comparison; } for (int i = 0; i < p_pattern->array.size(); i++) { PatternNode *pattern = p_pattern->array[i]; Node *condition = NULL; ConstantNode *index = alloc_node(); index->value = Variant(i); OperatorNode *indexed_value = alloc_node(); indexed_value->op = OperatorNode::OP_INDEX; indexed_value->arguments.push_back(p_node_to_match); indexed_value->arguments.push_back(index); _generate_pattern(pattern, indexed_value, condition, p_bindings); // concatenate all the patterns with && OperatorNode *and_node = alloc_node(); and_node->op = OperatorNode::OP_AND; and_node->arguments.push_back(p_resulting_node); and_node->arguments.push_back(condition); p_resulting_node = and_node; } } break; case PatternNode::PT_DICTIONARY: { bool open_ended = false; if (p_pattern->array.size() > 0) { open_ended = true; } // typeof(value_to_match) == TYPE_DICTIONARY && value_to_match.size() >= length // typeof(value_to_match) == TYPE_DICTIONARY && value_to_match.size() == length { // typecheck BuiltInFunctionNode *typeof_node = alloc_node(); typeof_node->function = GDFunctions::TYPE_OF; OperatorNode *typeof_match_value = alloc_node(); typeof_match_value->op = OperatorNode::OP_CALL; typeof_match_value->arguments.push_back(typeof_node); typeof_match_value->arguments.push_back(p_node_to_match); IdentifierNode *typeof_dictionary = alloc_node(); typeof_dictionary->name = "TYPE_DICTIONARY"; OperatorNode *type_comp = alloc_node(); type_comp->op = OperatorNode::OP_EQUAL; type_comp->arguments.push_back(typeof_match_value); type_comp->arguments.push_back(typeof_dictionary); // size ConstantNode *length = alloc_node(); length->value = Variant(open_ended ? p_pattern->dictionary.size() - 1 : p_pattern->dictionary.size()); OperatorNode *call = alloc_node(); call->op = OperatorNode::OP_CALL; call->arguments.push_back(p_node_to_match); IdentifierNode *size = alloc_node(); size->name = "size"; call->arguments.push_back(size); OperatorNode *length_comparison = alloc_node(); length_comparison->op = open_ended ? OperatorNode::OP_GREATER_EQUAL : OperatorNode::OP_EQUAL; length_comparison->arguments.push_back(call); length_comparison->arguments.push_back(length); OperatorNode *type_and_length_comparison = alloc_node(); type_and_length_comparison->op = OperatorNode::OP_AND; type_and_length_comparison->arguments.push_back(type_comp); type_and_length_comparison->arguments.push_back(length_comparison); p_resulting_node = type_and_length_comparison; } for (Map::Element *e = p_pattern->dictionary.front(); e; e = e->next()) { Node *condition = NULL; // chech for has, then for pattern IdentifierNode *has = alloc_node(); has->name = "has"; OperatorNode *has_call = alloc_node(); has_call->op = OperatorNode::OP_CALL; has_call->arguments.push_back(p_node_to_match); has_call->arguments.push_back(has); has_call->arguments.push_back(e->key()); if (e->value()) { OperatorNode *indexed_value = alloc_node(); indexed_value->op = OperatorNode::OP_INDEX; indexed_value->arguments.push_back(p_node_to_match); indexed_value->arguments.push_back(e->key()); _generate_pattern(e->value(), indexed_value, condition, p_bindings); OperatorNode *has_and_pattern = alloc_node(); has_and_pattern->op = OperatorNode::OP_AND; has_and_pattern->arguments.push_back(has_call); has_and_pattern->arguments.push_back(condition); condition = has_and_pattern; } else { condition = has_call; } // concatenate all the patterns with && OperatorNode *and_node = alloc_node(); and_node->op = OperatorNode::OP_AND; and_node->arguments.push_back(p_resulting_node); and_node->arguments.push_back(condition); p_resulting_node = and_node; } } break; case PatternNode::PT_IGNORE_REST: case PatternNode::PT_WILDCARD: { // simply generate a `true` ConstantNode *true_value = alloc_node(); true_value->value = Variant(true); p_resulting_node = true_value; } break; default: { } break; } } void GDParser::_transform_match_statment(BlockNode *p_block, MatchNode *p_match_statement) { IdentifierNode *id = alloc_node(); id->name = "#match_value"; for (int i = 0; i < p_match_statement->branches.size(); i++) { PatternBranchNode *branch = p_match_statement->branches[i]; MatchNode::CompiledPatternBranch compiled_branch; compiled_branch.compiled_pattern = NULL; Map binding; for (int j = 0; j < branch->patterns.size(); j++) { PatternNode *pattern = branch->patterns[j]; Map bindings; Node *resulting_node; _generate_pattern(pattern, id, resulting_node, bindings); if (!binding.empty() && !bindings.empty()) { _set_error("Multipatterns can't contain bindings"); return; } else { binding = bindings; } if (compiled_branch.compiled_pattern) { OperatorNode *or_node = alloc_node(); or_node->op = OperatorNode::OP_OR; or_node->arguments.push_back(compiled_branch.compiled_pattern); or_node->arguments.push_back(resulting_node); compiled_branch.compiled_pattern = or_node; } else { // single pattern | first one compiled_branch.compiled_pattern = resulting_node; } } // prepare the body ...hehe for (Map::Element *e = binding.front(); e; e = e->next()) { LocalVarNode *local_var = alloc_node(); local_var->name = e->key(); local_var->assign = e->value(); IdentifierNode *id = alloc_node(); id->name = local_var->name; OperatorNode *op = alloc_node(); op->op = OperatorNode::OP_ASSIGN; op->arguments.push_back(id); op->arguments.push_back(local_var->assign); branch->body->statements.push_front(op); branch->body->statements.push_front(local_var); } compiled_branch.body = branch->body; p_match_statement->compiled_pattern_branches.push_back(compiled_branch); } } void GDParser::_parse_block(BlockNode *p_block, bool p_static) { int indent_level = tab_level.back()->get(); #ifdef DEBUG_ENABLED NewLineNode *nl = alloc_node(); nl->line = tokenizer->get_token_line(); p_block->statements.push_back(nl); #endif bool is_first_line = true; while (true) { if (!is_first_line && tab_level.back()->prev() && tab_level.back()->prev()->get() == indent_level) { // pythonic single-line expression, don't parse future lines tab_level.pop_back(); p_block->end_line = tokenizer->get_token_line(); return; } is_first_line = false; GDTokenizer::Token token = tokenizer->get_token(); if (error_set) return; if (indent_level > tab_level.back()->get()) { p_block->end_line = tokenizer->get_token_line(); return; //go back a level } if (pending_newline != -1) { NewLineNode *nl = alloc_node(); nl->line = pending_newline; p_block->statements.push_back(nl); pending_newline = -1; } switch (token) { case GDTokenizer::TK_EOF: p_block->end_line = tokenizer->get_token_line(); case GDTokenizer::TK_ERROR: { return; //go back //end of file! } break; case GDTokenizer::TK_NEWLINE: { if (!_parse_newline()) { if (!error_set) { p_block->end_line = tokenizer->get_token_line(); pending_newline = p_block->end_line; } return; } NewLineNode *nl = alloc_node(); nl->line = tokenizer->get_token_line(); p_block->statements.push_back(nl); } break; case GDTokenizer::TK_CF_PASS: { if (tokenizer->get_token(1) != GDTokenizer::TK_SEMICOLON && tokenizer->get_token(1) != GDTokenizer::TK_NEWLINE && tokenizer->get_token(1) != GDTokenizer::TK_EOF) { _set_error("Expected ';' or ."); return; } tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_SEMICOLON) { // Ignore semicolon after 'pass' tokenizer->advance(); } } break; case GDTokenizer::TK_PR_VAR: { //variale declaration and (eventual) initialization tokenizer->advance(); if (!tokenizer->is_token_literal(0, true)) { _set_error("Expected identifier for local variable name."); return; } StringName n = tokenizer->get_token_literal(); tokenizer->advance(); if (current_function) { for (int i = 0; i < current_function->arguments.size(); i++) { if (n == current_function->arguments[i]) { _set_error("Variable '" + String(n) + "' already defined in the scope (at line: " + itos(current_function->line) + ")."); return; } } } BlockNode *check_block = p_block; while (check_block) { for (int i = 0; i < check_block->variables.size(); i++) { if (n == check_block->variables[i]) { _set_error("Variable '" + String(n) + "' already defined in the scope (at line: " + itos(check_block->variable_lines[i]) + ")."); return; } } check_block = check_block->parent_block; } int var_line = tokenizer->get_token_line(); //must know when the local variable is declared LocalVarNode *lv = alloc_node(); lv->name = n; p_block->statements.push_back(lv); Node *assigned = NULL; if (tokenizer->get_token() == GDTokenizer::TK_OP_ASSIGN) { tokenizer->advance(); Node *subexpr = _parse_and_reduce_expression(p_block, p_static); if (!subexpr) { if (_recover_from_completion()) { break; } return; } lv->assign = subexpr; assigned = subexpr; } else { ConstantNode *c = alloc_node(); c->value = Variant(); assigned = c; } //must be added later, to avoid self-referencing. p_block->variables.push_back(n); //line? p_block->variable_lines.push_back(var_line); IdentifierNode *id = alloc_node(); id->name = n; OperatorNode *op = alloc_node(); op->op = OperatorNode::OP_ASSIGN; op->arguments.push_back(id); op->arguments.push_back(assigned); p_block->statements.push_back(op); if (!_end_statement()) { _set_error("Expected end of statement (var)"); return; } } break; case GDTokenizer::TK_CF_IF: { tokenizer->advance(); Node *condition = _parse_and_reduce_expression(p_block, p_static); if (!condition) { if (_recover_from_completion()) { break; } return; } ControlFlowNode *cf_if = alloc_node(); cf_if->cf_type = ControlFlowNode::CF_IF; cf_if->arguments.push_back(condition); cf_if->body = alloc_node(); cf_if->body->parent_block = p_block; cf_if->body->if_condition = condition; //helps code completion p_block->sub_blocks.push_back(cf_if->body); if (!_enter_indent_block(cf_if->body)) { _set_error("Expected indented block after 'if'"); p_block->end_line = tokenizer->get_token_line(); return; } current_block = cf_if->body; _parse_block(cf_if->body, p_static); current_block = p_block; if (error_set) return; p_block->statements.push_back(cf_if); while (true) { while (tokenizer->get_token() == GDTokenizer::TK_NEWLINE && _parse_newline()) ; if (tab_level.back()->get() < indent_level) { //not at current indent level p_block->end_line = tokenizer->get_token_line(); return; } if (tokenizer->get_token() == GDTokenizer::TK_CF_ELIF) { if (tab_level.back()->get() > indent_level) { _set_error("Invalid indent"); return; } tokenizer->advance(); cf_if->body_else = alloc_node(); cf_if->body_else->parent_block = p_block; p_block->sub_blocks.push_back(cf_if->body_else); ControlFlowNode *cf_else = alloc_node(); cf_else->cf_type = ControlFlowNode::CF_IF; //condition Node *condition = _parse_and_reduce_expression(p_block, p_static); if (!condition) { if (_recover_from_completion()) { break; } return; } cf_else->arguments.push_back(condition); cf_else->cf_type = ControlFlowNode::CF_IF; cf_if->body_else->statements.push_back(cf_else); cf_if = cf_else; cf_if->body = alloc_node(); cf_if->body->parent_block = p_block; p_block->sub_blocks.push_back(cf_if->body); if (!_enter_indent_block(cf_if->body)) { _set_error("Expected indented block after 'elif'"); p_block->end_line = tokenizer->get_token_line(); return; } current_block = cf_else->body; _parse_block(cf_else->body, p_static); current_block = p_block; if (error_set) return; } else if (tokenizer->get_token() == GDTokenizer::TK_CF_ELSE) { if (tab_level.back()->get() > indent_level) { _set_error("Invalid indent"); return; } tokenizer->advance(); cf_if->body_else = alloc_node(); cf_if->body_else->parent_block = p_block; p_block->sub_blocks.push_back(cf_if->body_else); if (!_enter_indent_block(cf_if->body_else)) { _set_error("Expected indented block after 'else'"); p_block->end_line = tokenizer->get_token_line(); return; } current_block = cf_if->body_else; _parse_block(cf_if->body_else, p_static); current_block = p_block; if (error_set) return; break; //after else, exit } else break; } } break; case GDTokenizer::TK_CF_WHILE: { tokenizer->advance(); Node *condition = _parse_and_reduce_expression(p_block, p_static); if (!condition) { if (_recover_from_completion()) { break; } return; } ControlFlowNode *cf_while = alloc_node(); cf_while->cf_type = ControlFlowNode::CF_WHILE; cf_while->arguments.push_back(condition); cf_while->body = alloc_node(); cf_while->body->parent_block = p_block; p_block->sub_blocks.push_back(cf_while->body); if (!_enter_indent_block(cf_while->body)) { _set_error("Expected indented block after 'while'"); p_block->end_line = tokenizer->get_token_line(); return; } current_block = cf_while->body; _parse_block(cf_while->body, p_static); current_block = p_block; if (error_set) return; p_block->statements.push_back(cf_while); } break; case GDTokenizer::TK_CF_FOR: { tokenizer->advance(); if (!tokenizer->is_token_literal(0, true)) { _set_error("identifier expected after 'for'"); } IdentifierNode *id = alloc_node(); id->name = tokenizer->get_token_identifier(); tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_OP_IN) { _set_error("'in' expected after identifier"); return; } tokenizer->advance(); Node *container = _parse_and_reduce_expression(p_block, p_static); if (!container) { if (_recover_from_completion()) { break; } return; } if (container->type == Node::TYPE_OPERATOR) { OperatorNode *op = static_cast(container); if (op->op == OperatorNode::OP_CALL && op->arguments[0]->type == Node::TYPE_BUILT_IN_FUNCTION && static_cast(op->arguments[0])->function == GDFunctions::GEN_RANGE) { //iterating a range, so see if range() can be optimized without allocating memory, by replacing it by vectors (which can work as iterable too!) Vector args; Vector constants; bool constant = false; for (int i = 1; i < op->arguments.size(); i++) { args.push_back(op->arguments[i]); if (constant && op->arguments[i]->type == Node::TYPE_CONSTANT) { ConstantNode *c = static_cast(op->arguments[i]); if (c->value.get_type() == Variant::REAL || c->value.get_type() == Variant::INT) { constants.push_back(c->value); constant = true; } } else { constant = false; } } if (args.size() > 0 && args.size() < 4) { if (constant) { ConstantNode *cn = alloc_node(); switch (args.size()) { case 1: cn->value = (int)constants[0]; break; case 2: cn->value = Vector2(constants[0], constants[1]); break; case 3: cn->value = Vector3(constants[0], constants[1], constants[2]); break; } container = cn; } else { OperatorNode *on = alloc_node(); on->op = OperatorNode::OP_CALL; TypeNode *tn = alloc_node(); on->arguments.push_back(tn); switch (args.size()) { case 1: tn->vtype = Variant::INT; break; case 2: tn->vtype = Variant::VECTOR2; break; case 3: tn->vtype = Variant::VECTOR3; break; } for (int i = 0; i < args.size(); i++) { on->arguments.push_back(args[i]); } container = on; } } } } ControlFlowNode *cf_for = alloc_node(); cf_for->cf_type = ControlFlowNode::CF_FOR; cf_for->arguments.push_back(id); cf_for->arguments.push_back(container); cf_for->body = alloc_node(); cf_for->body->parent_block = p_block; p_block->sub_blocks.push_back(cf_for->body); if (!_enter_indent_block(cf_for->body)) { _set_error("Expected indented block after 'for'"); p_block->end_line = tokenizer->get_token_line(); return; } current_block = cf_for->body; // this is for checking variable for redefining // inside this _parse_block cf_for->body->variables.push_back(id->name); cf_for->body->variable_lines.push_back(id->line); _parse_block(cf_for->body, p_static); cf_for->body->variables.remove(0); cf_for->body->variable_lines.remove(0); current_block = p_block; if (error_set) return; p_block->statements.push_back(cf_for); } break; case GDTokenizer::TK_CF_CONTINUE: { tokenizer->advance(); ControlFlowNode *cf_continue = alloc_node(); cf_continue->cf_type = ControlFlowNode::CF_CONTINUE; p_block->statements.push_back(cf_continue); if (!_end_statement()) { _set_error("Expected end of statement (continue)"); return; } } break; case GDTokenizer::TK_CF_BREAK: { tokenizer->advance(); ControlFlowNode *cf_break = alloc_node(); cf_break->cf_type = ControlFlowNode::CF_BREAK; p_block->statements.push_back(cf_break); if (!_end_statement()) { _set_error("Expected end of statement (break)"); return; } } break; case GDTokenizer::TK_CF_RETURN: { tokenizer->advance(); ControlFlowNode *cf_return = alloc_node(); cf_return->cf_type = ControlFlowNode::CF_RETURN; if (tokenizer->get_token() == GDTokenizer::TK_SEMICOLON || tokenizer->get_token() == GDTokenizer::TK_NEWLINE || tokenizer->get_token() == GDTokenizer::TK_EOF) { //expect end of statement p_block->statements.push_back(cf_return); if (!_end_statement()) { return; } } else { //expect expression Node *retexpr = _parse_and_reduce_expression(p_block, p_static); if (!retexpr) { if (_recover_from_completion()) { break; } return; } cf_return->arguments.push_back(retexpr); p_block->statements.push_back(cf_return); if (!_end_statement()) { _set_error("Expected end of statement after return expression."); return; } } } break; case GDTokenizer::TK_CF_MATCH: { tokenizer->advance(); MatchNode *match_node = alloc_node(); Node *val_to_match = _parse_and_reduce_expression(p_block, p_static); if (!val_to_match) { if (_recover_from_completion()) { break; } return; } match_node->val_to_match = val_to_match; if (!_enter_indent_block()) { _set_error("Expected indented pattern matching block after 'match'"); return; } BlockNode *compiled_branches = alloc_node(); compiled_branches->parent_block = p_block; compiled_branches->parent_class = p_block->parent_class; p_block->sub_blocks.push_back(compiled_branches); _parse_pattern_block(compiled_branches, match_node->branches, p_static); _transform_match_statment(compiled_branches, match_node); ControlFlowNode *match_cf_node = alloc_node(); match_cf_node->cf_type = ControlFlowNode::CF_MATCH; match_cf_node->match = match_node; p_block->statements.push_back(match_cf_node); _end_statement(); } break; case GDTokenizer::TK_PR_ASSERT: { tokenizer->advance(); Node *condition = _parse_and_reduce_expression(p_block, p_static); if (!condition) { if (_recover_from_completion()) { break; } return; } AssertNode *an = alloc_node(); an->condition = condition; p_block->statements.push_back(an); if (!_end_statement()) { _set_error("Expected end of statement after assert."); return; } } break; case GDTokenizer::TK_PR_BREAKPOINT: { tokenizer->advance(); BreakpointNode *bn = alloc_node(); p_block->statements.push_back(bn); if (!_end_statement()) { _set_error("Expected end of statement after breakpoint."); return; } } break; default: { Node *expression = _parse_and_reduce_expression(p_block, p_static, false, true); if (!expression) { if (_recover_from_completion()) { break; } return; } p_block->statements.push_back(expression); if (!_end_statement()) { _set_error("Expected end of statement after expression."); return; } } break; /* case GDTokenizer::TK_CF_LOCAL: { if (tokenizer->get_token(1)!=GDTokenizer::TK_SEMICOLON && tokenizer->get_token(1)!=GDTokenizer::TK_NEWLINE ) { _set_error("Expected ';' or ."); } tokenizer->advance(); } break; */ } } } bool GDParser::_parse_newline() { if (tokenizer->get_token(1) != GDTokenizer::TK_EOF && tokenizer->get_token(1) != GDTokenizer::TK_NEWLINE) { int indent = tokenizer->get_token_line_indent(); int current_indent = tab_level.back()->get(); if (indent > current_indent) { _set_error("Unexpected indent."); return false; } if (indent < current_indent) { while (indent < current_indent) { //exit block if (tab_level.size() == 1) { _set_error("Invalid indent. BUG?"); return false; } tab_level.pop_back(); if (tab_level.back()->get() < indent) { _set_error("Unindent does not match any outer indentation level."); return false; } current_indent = tab_level.back()->get(); } tokenizer->advance(); return false; } } tokenizer->advance(); return true; } void GDParser::_parse_extends(ClassNode *p_class) { if (p_class->extends_used) { _set_error("'extends' already used for this class."); return; } if (!p_class->constant_expressions.empty() || !p_class->subclasses.empty() || !p_class->functions.empty() || !p_class->variables.empty()) { _set_error("'extends' must be used before anything else."); return; } p_class->extends_used = true; tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_BUILT_IN_TYPE && tokenizer->get_token_type() == Variant::OBJECT) { p_class->extends_class.push_back(Variant::get_type_name(Variant::OBJECT)); tokenizer->advance(); return; } // see if inheritance happens from a file if (tokenizer->get_token() == GDTokenizer::TK_CONSTANT) { Variant constant = tokenizer->get_token_constant(); if (constant.get_type() != Variant::STRING) { _set_error("'extends' constant must be a string."); return; } p_class->extends_file = constant; tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_PERIOD) { return; } else tokenizer->advance(); } while (true) { if (tokenizer->get_token() != GDTokenizer::TK_IDENTIFIER) { _set_error("Invalid 'extends' syntax, expected string constant (path) and/or identifier (parent class)."); return; } StringName identifier = tokenizer->get_token_identifier(); p_class->extends_class.push_back(identifier); tokenizer->advance(1); if (tokenizer->get_token() != GDTokenizer::TK_PERIOD) return; } } void GDParser::_parse_class(ClassNode *p_class) { int indent_level = tab_level.back()->get(); while (true) { GDTokenizer::Token token = tokenizer->get_token(); if (error_set) return; if (indent_level > tab_level.back()->get()) { p_class->end_line = tokenizer->get_token_line(); return; //go back a level } switch (token) { case GDTokenizer::TK_EOF: p_class->end_line = tokenizer->get_token_line(); case GDTokenizer::TK_ERROR: { return; //go back //end of file! } break; case GDTokenizer::TK_NEWLINE: { if (!_parse_newline()) { if (!error_set) { p_class->end_line = tokenizer->get_token_line(); } return; } } break; case GDTokenizer::TK_PR_EXTENDS: { _parse_extends(p_class); if (error_set) return; if (!_end_statement()) { _set_error("Expected end of statement after extends"); return; } } break; case GDTokenizer::TK_PR_TOOL: { if (p_class->tool) { _set_error("tool used more than once"); return; } p_class->tool = true; tokenizer->advance(); } break; case GDTokenizer::TK_PR_CLASS: { //class inside class :D StringName name; StringName extends; if (tokenizer->get_token(1) != GDTokenizer::TK_IDENTIFIER) { _set_error("'class' syntax: 'class :' or 'class extends :'"); return; } name = tokenizer->get_token_identifier(1); tokenizer->advance(2); ClassNode *newclass = alloc_node(); newclass->initializer = alloc_node(); newclass->initializer->parent_class = newclass; newclass->ready = alloc_node(); newclass->ready->parent_class = newclass; newclass->name = name; newclass->owner = p_class; p_class->subclasses.push_back(newclass); if (tokenizer->get_token() == GDTokenizer::TK_PR_EXTENDS) { _parse_extends(newclass); if (error_set) return; } if (!_enter_indent_block()) { _set_error("Indented block expected."); return; } current_class = newclass; _parse_class(newclass); current_class = p_class; } break; /* this is for functions.... case GDTokenizer::TK_CF_PASS: { tokenizer->advance(1); } break; */ case GDTokenizer::TK_PR_STATIC: { tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_PR_FUNCTION) { _set_error("Expected 'func'."); return; } }; //fallthrough to function case GDTokenizer::TK_PR_FUNCTION: { bool _static = false; pending_newline = -1; if (tokenizer->get_token(-1) == GDTokenizer::TK_PR_STATIC) { _static = true; } tokenizer->advance(); StringName name; if (_get_completable_identifier(COMPLETION_VIRTUAL_FUNC, name)) { } if (name == StringName()) { _set_error("Expected identifier after 'func' (syntax: 'func ([arguments]):' )."); return; } for (int i = 0; i < p_class->functions.size(); i++) { if (p_class->functions[i]->name == name) { _set_error("Function '" + String(name) + "' already exists in this class (at line: " + itos(p_class->functions[i]->line) + ")."); } } for (int i = 0; i < p_class->static_functions.size(); i++) { if (p_class->static_functions[i]->name == name) { _set_error("Function '" + String(name) + "' already exists in this class (at line: " + itos(p_class->static_functions[i]->line) + ")."); } } if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_OPEN) { _set_error("Expected '(' after identifier (syntax: 'func ([arguments]):' )."); return; } tokenizer->advance(); Vector arguments; Vector default_values; int fnline = tokenizer->get_token_line(); if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) { //has arguments bool defaulting = false; while (true) { if (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) { tokenizer->advance(); continue; } if (tokenizer->get_token() == GDTokenizer::TK_PR_VAR) { tokenizer->advance(); //var before the identifier is allowed } if (!tokenizer->is_token_literal(0, true)) { _set_error("Expected identifier for argument."); return; } StringName argname = tokenizer->get_token_identifier(); arguments.push_back(argname); tokenizer->advance(); if (defaulting && tokenizer->get_token() != GDTokenizer::TK_OP_ASSIGN) { _set_error("Default parameter expected."); return; } //tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_OP_ASSIGN) { defaulting = true; tokenizer->advance(1); Node *defval = _parse_and_reduce_expression(p_class, _static); if (!defval || error_set) return; OperatorNode *on = alloc_node(); on->op = OperatorNode::OP_ASSIGN; IdentifierNode *in = alloc_node(); in->name = argname; on->arguments.push_back(in); on->arguments.push_back(defval); /* no .. if (defval->type!=Node::TYPE_CONSTANT) { _set_error("default argument must be constant"); } */ default_values.push_back(on); } while (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) { tokenizer->advance(); } if (tokenizer->get_token() == GDTokenizer::TK_COMMA) { tokenizer->advance(); continue; } else if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) { _set_error("Expected ',' or ')'."); return; } break; } } tokenizer->advance(); BlockNode *block = alloc_node(); block->parent_class = p_class; if (name == "_init") { if (p_class->extends_used) { OperatorNode *cparent = alloc_node(); cparent->op = OperatorNode::OP_PARENT_CALL; block->statements.push_back(cparent); IdentifierNode *id = alloc_node(); id->name = "_init"; cparent->arguments.push_back(id); if (tokenizer->get_token() == GDTokenizer::TK_PERIOD) { tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_OPEN) { _set_error("expected '(' for parent constructor arguments."); } tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) { //has arguments parenthesis++; while (true) { Node *arg = _parse_and_reduce_expression(p_class, _static); cparent->arguments.push_back(arg); if (tokenizer->get_token() == GDTokenizer::TK_COMMA) { tokenizer->advance(); continue; } else if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) { _set_error("Expected ',' or ')'."); return; } break; } parenthesis--; } tokenizer->advance(); } } else { if (tokenizer->get_token() == GDTokenizer::TK_PERIOD) { _set_error("Parent constructor call found for a class without inheritance."); return; } } } if (!_enter_indent_block(block)) { _set_error("Indented block expected."); return; } FunctionNode *function = alloc_node(); function->name = name; function->arguments = arguments; function->default_values = default_values; function->_static = _static; function->line = fnline; function->rpc_mode = rpc_mode; rpc_mode = ScriptInstance::RPC_MODE_DISABLED; if (_static) p_class->static_functions.push_back(function); else p_class->functions.push_back(function); current_function = function; function->body = block; current_block = block; _parse_block(block, _static); current_block = NULL; //arguments } break; case GDTokenizer::TK_PR_SIGNAL: { tokenizer->advance(); if (!tokenizer->is_token_literal()) { _set_error("Expected identifier after 'signal'."); return; } ClassNode::Signal sig; sig.name = tokenizer->get_token_identifier(); tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_OPEN) { tokenizer->advance(); while (true) { if (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) { tokenizer->advance(); continue; } if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) { tokenizer->advance(); break; } if (!tokenizer->is_token_literal(0, true)) { _set_error("Expected identifier in signal argument."); return; } sig.arguments.push_back(tokenizer->get_token_identifier()); tokenizer->advance(); while (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) { tokenizer->advance(); } if (tokenizer->get_token() == GDTokenizer::TK_COMMA) { tokenizer->advance(); } else if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) { _set_error("Expected ',' or ')' after signal parameter identifier."); return; } } } p_class->_signals.push_back(sig); if (!_end_statement()) { _set_error("Expected end of statement (signal)"); return; } } break; case GDTokenizer::TK_PR_EXPORT: { tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_OPEN) { tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_BUILT_IN_TYPE) { Variant::Type type = tokenizer->get_token_type(); if (type == Variant::NIL) { _set_error("Can't export null type."); return; } current_export.type = type; current_export.usage |= PROPERTY_USAGE_SCRIPT_VARIABLE; tokenizer->advance(); String hint_prefix = ""; if (type == Variant::ARRAY && tokenizer->get_token() == GDTokenizer::TK_COMMA) { tokenizer->advance(); while (tokenizer->get_token() == GDTokenizer::TK_BUILT_IN_TYPE) { type = tokenizer->get_token_type(); tokenizer->advance(); if (type == Variant::ARRAY) { hint_prefix += itos(Variant::ARRAY) + ":"; if (tokenizer->get_token() == GDTokenizer::TK_COMMA) { tokenizer->advance(); } } else { hint_prefix += itos(type); break; } } } if (tokenizer->get_token() == GDTokenizer::TK_COMMA) { // hint expected next! tokenizer->advance(); switch (type) { case Variant::INT: { if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER && tokenizer->get_token_identifier() == "FLAGS") { //current_export.hint=PROPERTY_HINT_ALL_FLAGS; tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) { break; } if (tokenizer->get_token() != GDTokenizer::TK_COMMA) { _set_error("Expected ')' or ',' in bit flags hint."); return; } current_export.hint = PROPERTY_HINT_FLAGS; tokenizer->advance(); bool first = true; while (true) { if (tokenizer->get_token() != GDTokenizer::TK_CONSTANT || tokenizer->get_token_constant().get_type() != Variant::STRING) { current_export = PropertyInfo(); _set_error("Expected a string constant in named bit flags hint."); return; } String c = tokenizer->get_token_constant(); if (!first) current_export.hint_string += ","; else first = false; current_export.hint_string += c.xml_escape(); tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) break; if (tokenizer->get_token() != GDTokenizer::TK_COMMA) { current_export = PropertyInfo(); _set_error("Expected ')' or ',' in named bit flags hint."); return; } tokenizer->advance(); } break; } if (tokenizer->get_token() == GDTokenizer::TK_CONSTANT && tokenizer->get_token_constant().get_type() == Variant::STRING) { //enumeration current_export.hint = PROPERTY_HINT_ENUM; bool first = true; while (true) { if (tokenizer->get_token() != GDTokenizer::TK_CONSTANT || tokenizer->get_token_constant().get_type() != Variant::STRING) { current_export = PropertyInfo(); _set_error("Expected a string constant in enumeration hint."); return; } String c = tokenizer->get_token_constant(); if (!first) current_export.hint_string += ","; else first = false; current_export.hint_string += c.xml_escape(); tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) break; if (tokenizer->get_token() != GDTokenizer::TK_COMMA) { current_export = PropertyInfo(); _set_error("Expected ')' or ',' in enumeration hint."); return; } tokenizer->advance(); } break; } }; //fallthrough to use the same case Variant::REAL: { if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER && tokenizer->get_token_identifier() == "EASE") { current_export.hint = PROPERTY_HINT_EXP_EASING; tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) { _set_error("Expected ')' in hint."); return; } break; } // range if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER && tokenizer->get_token_identifier() == "EXP") { current_export.hint = PROPERTY_HINT_EXP_RANGE; tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) break; else if (tokenizer->get_token() != GDTokenizer::TK_COMMA) { _set_error("Expected ')' or ',' in exponential range hint."); return; } tokenizer->advance(); } else current_export.hint = PROPERTY_HINT_RANGE; float sign = 1.0; if (tokenizer->get_token() == GDTokenizer::TK_OP_SUB) { sign = -1; tokenizer->advance(); } if (tokenizer->get_token() != GDTokenizer::TK_CONSTANT || !tokenizer->get_token_constant().is_num()) { current_export = PropertyInfo(); _set_error("Expected a range in numeric hint."); return; } current_export.hint_string = rtos(sign * double(tokenizer->get_token_constant())); tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) { current_export.hint_string = "0," + current_export.hint_string; break; } if (tokenizer->get_token() != GDTokenizer::TK_COMMA) { current_export = PropertyInfo(); _set_error("Expected ',' or ')' in numeric range hint."); return; } tokenizer->advance(); sign = 1.0; if (tokenizer->get_token() == GDTokenizer::TK_OP_SUB) { sign = -1; tokenizer->advance(); } if (tokenizer->get_token() != GDTokenizer::TK_CONSTANT || !tokenizer->get_token_constant().is_num()) { current_export = PropertyInfo(); _set_error("Expected a number as upper bound in numeric range hint."); return; } current_export.hint_string += "," + rtos(sign * double(tokenizer->get_token_constant())); tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) break; if (tokenizer->get_token() != GDTokenizer::TK_COMMA) { current_export = PropertyInfo(); _set_error("Expected ',' or ')' in numeric range hint."); return; } tokenizer->advance(); sign = 1.0; if (tokenizer->get_token() == GDTokenizer::TK_OP_SUB) { sign = -1; tokenizer->advance(); } if (tokenizer->get_token() != GDTokenizer::TK_CONSTANT || !tokenizer->get_token_constant().is_num()) { current_export = PropertyInfo(); _set_error("Expected a number as step in numeric range hint."); return; } current_export.hint_string += "," + rtos(sign * double(tokenizer->get_token_constant())); tokenizer->advance(); } break; case Variant::STRING: { if (tokenizer->get_token() == GDTokenizer::TK_CONSTANT && tokenizer->get_token_constant().get_type() == Variant::STRING) { //enumeration current_export.hint = PROPERTY_HINT_ENUM; bool first = true; while (true) { if (tokenizer->get_token() != GDTokenizer::TK_CONSTANT || tokenizer->get_token_constant().get_type() != Variant::STRING) { current_export = PropertyInfo(); _set_error("Expected a string constant in enumeration hint."); return; } String c = tokenizer->get_token_constant(); if (!first) current_export.hint_string += ","; else first = false; current_export.hint_string += c.xml_escape(); tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) break; if (tokenizer->get_token() != GDTokenizer::TK_COMMA) { current_export = PropertyInfo(); _set_error("Expected ')' or ',' in enumeration hint."); return; } tokenizer->advance(); } break; } if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER && tokenizer->get_token_identifier() == "DIR") { tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) current_export.hint = PROPERTY_HINT_DIR; else if (tokenizer->get_token() == GDTokenizer::TK_COMMA) { tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_IDENTIFIER || !(tokenizer->get_token_identifier() == "GLOBAL")) { _set_error("Expected 'GLOBAL' after comma in directory hint."); return; } if (!p_class->tool) { _set_error("Global filesystem hints may only be used in tool scripts."); return; } current_export.hint = PROPERTY_HINT_GLOBAL_DIR; tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) { _set_error("Expected ')' in hint."); return; } } else { _set_error("Expected ')' or ',' in hint."); return; } break; } if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER && tokenizer->get_token_identifier() == "FILE") { current_export.hint = PROPERTY_HINT_FILE; tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_COMMA) { tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER && tokenizer->get_token_identifier() == "GLOBAL") { if (!p_class->tool) { _set_error("Global filesystem hints may only be used in tool scripts."); return; } current_export.hint = PROPERTY_HINT_GLOBAL_FILE; tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) break; else if (tokenizer->get_token() == GDTokenizer::TK_COMMA) tokenizer->advance(); else { _set_error("Expected ')' or ',' in hint."); return; } } if (tokenizer->get_token() != GDTokenizer::TK_CONSTANT || tokenizer->get_token_constant().get_type() != Variant::STRING) { if (current_export.hint == PROPERTY_HINT_GLOBAL_FILE) _set_error("Expected string constant with filter"); else _set_error("Expected 'GLOBAL' or string constant with filter"); return; } current_export.hint_string = tokenizer->get_token_constant(); tokenizer->advance(); } if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) { _set_error("Expected ')' in hint."); return; } break; } if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER && tokenizer->get_token_identifier() == "MULTILINE") { current_export.hint = PROPERTY_HINT_MULTILINE_TEXT; tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) { _set_error("Expected ')' in hint."); return; } break; } } break; case Variant::COLOR: { if (tokenizer->get_token() != GDTokenizer::TK_IDENTIFIER) { current_export = PropertyInfo(); _set_error("Color type hint expects RGB or RGBA as hints"); return; } String identifier = tokenizer->get_token_identifier(); if (identifier == "RGB") { current_export.hint = PROPERTY_HINT_COLOR_NO_ALPHA; } else if (identifier == "RGBA") { //none } else { current_export = PropertyInfo(); _set_error("Color type hint expects RGB or RGBA as hints"); return; } tokenizer->advance(); } break; default: { current_export = PropertyInfo(); _set_error("Type '" + Variant::get_type_name(type) + "' can't take hints."); return; } break; } } if (current_export.type == Variant::ARRAY && !hint_prefix.empty()) { if (current_export.hint) { hint_prefix += "/" + itos(current_export.hint); } current_export.hint_string = hint_prefix + ":" + current_export.hint_string; current_export.hint = PROPERTY_HINT_NONE; } } else if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER) { String identifier = tokenizer->get_token_identifier(); if (!ClassDB::is_parent_class(identifier, "Resource")) { current_export = PropertyInfo(); _set_error("Export hint not a type or resource."); } current_export.type = Variant::OBJECT; current_export.hint = PROPERTY_HINT_RESOURCE_TYPE; current_export.usage |= PROPERTY_USAGE_SCRIPT_VARIABLE; current_export.hint_string = identifier; tokenizer->advance(); } if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) { current_export = PropertyInfo(); _set_error("Expected ')' or ',' after export hint."); return; } tokenizer->advance(); } if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR && tokenizer->get_token() != GDTokenizer::TK_PR_ONREADY && tokenizer->get_token() != GDTokenizer::TK_PR_REMOTE && tokenizer->get_token() != GDTokenizer::TK_PR_MASTER && tokenizer->get_token() != GDTokenizer::TK_PR_SLAVE && tokenizer->get_token() != GDTokenizer::TK_PR_SYNC) { current_export = PropertyInfo(); _set_error("Expected 'var', 'onready', 'remote', 'master', 'slave' or 'sync'."); return; } continue; } break; case GDTokenizer::TK_PR_ONREADY: { //may be fallthrough from export, ignore if so tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR) { _set_error("Expected 'var'."); return; } continue; } break; case GDTokenizer::TK_PR_REMOTE: { //may be fallthrough from export, ignore if so tokenizer->advance(); if (current_export.type) { if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR) { _set_error("Expected 'var'."); return; } } else { if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR && tokenizer->get_token() != GDTokenizer::TK_PR_FUNCTION) { _set_error("Expected 'var' or 'func'."); return; } } rpc_mode = ScriptInstance::RPC_MODE_REMOTE; continue; } break; case GDTokenizer::TK_PR_MASTER: { //may be fallthrough from export, ignore if so tokenizer->advance(); if (current_export.type) { if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR) { _set_error("Expected 'var'."); return; } } else { if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR && tokenizer->get_token() != GDTokenizer::TK_PR_FUNCTION) { _set_error("Expected 'var' or 'func'."); return; } } rpc_mode = ScriptInstance::RPC_MODE_MASTER; continue; } break; case GDTokenizer::TK_PR_SLAVE: { //may be fallthrough from export, ignore if so tokenizer->advance(); if (current_export.type) { if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR) { _set_error("Expected 'var'."); return; } } else { if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR && tokenizer->get_token() != GDTokenizer::TK_PR_FUNCTION) { _set_error("Expected 'var' or 'func'."); return; } } rpc_mode = ScriptInstance::RPC_MODE_SLAVE; continue; } break; case GDTokenizer::TK_PR_SYNC: { //may be fallthrough from export, ignore if so tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR && tokenizer->get_token() != GDTokenizer::TK_PR_FUNCTION) { if (current_export.type) _set_error("Expected 'var'."); else _set_error("Expected 'var' or 'func'."); return; } rpc_mode = ScriptInstance::RPC_MODE_SYNC; continue; } break; case GDTokenizer::TK_PR_VAR: { //variale declaration and (eventual) initialization ClassNode::Member member; bool autoexport = tokenizer->get_token(-1) == GDTokenizer::TK_PR_EXPORT; if (current_export.type != Variant::NIL) { member._export = current_export; current_export = PropertyInfo(); } bool onready = tokenizer->get_token(-1) == GDTokenizer::TK_PR_ONREADY; tokenizer->advance(); if (!tokenizer->is_token_literal(0, true)) { _set_error("Expected identifier for member variable name."); return; } member.identifier = tokenizer->get_token_literal(); member.expression = NULL; member._export.name = member.identifier; member.line = tokenizer->get_token_line(); member.rpc_mode = rpc_mode; tokenizer->advance(); rpc_mode = ScriptInstance::RPC_MODE_DISABLED; if (tokenizer->get_token() == GDTokenizer::TK_OP_ASSIGN) { #ifdef DEBUG_ENABLED int line = tokenizer->get_token_line(); #endif tokenizer->advance(); Node *subexpr = _parse_and_reduce_expression(p_class, false, autoexport); if (!subexpr) { if (_recover_from_completion()) { break; } return; } //discourage common error if (!onready && subexpr->type == Node::TYPE_OPERATOR) { OperatorNode *op = static_cast(subexpr); if (op->op == OperatorNode::OP_CALL && op->arguments[0]->type == Node::TYPE_SELF && op->arguments[1]->type == Node::TYPE_IDENTIFIER) { IdentifierNode *id = static_cast(op->arguments[1]); if (id->name == "get_node") { _set_error("Use 'onready var " + String(member.identifier) + " = get_node(..)' instead"); return; } } } member.expression = subexpr; if (autoexport) { if (1) /*(subexpr->type==Node::TYPE_ARRAY) { member._export.type=Variant::ARRAY; } else if (subexpr->type==Node::TYPE_DICTIONARY) { member._export.type=Variant::DICTIONARY; } else*/ { if (subexpr->type != Node::TYPE_CONSTANT) { _set_error("Type-less export needs a constant expression assigned to infer type."); return; } ConstantNode *cn = static_cast(subexpr); if (cn->value.get_type() == Variant::NIL) { _set_error("Can't accept a null constant expression for infering export type."); return; } member._export.type = cn->value.get_type(); member._export.usage |= PROPERTY_USAGE_SCRIPT_VARIABLE; if (cn->value.get_type() == Variant::OBJECT) { Object *obj = cn->value; Resource *res = Object::cast_to(obj); if (res == NULL) { _set_error("Exported constant not a type or resource."); return; } member._export.hint = PROPERTY_HINT_RESOURCE_TYPE; member._export.hint_string = res->get_class(); } } } #ifdef TOOLS_ENABLED if (subexpr->type == Node::TYPE_CONSTANT && member._export.type != Variant::NIL) { ConstantNode *cn = static_cast(subexpr); if (cn->value.get_type() != Variant::NIL) { member.default_value = cn->value; } } #endif IdentifierNode *id = alloc_node(); id->name = member.identifier; OperatorNode *op = alloc_node(); op->op = OperatorNode::OP_INIT_ASSIGN; op->arguments.push_back(id); op->arguments.push_back(subexpr); #ifdef DEBUG_ENABLED NewLineNode *nl = alloc_node(); nl->line = line; if (onready) p_class->ready->statements.push_back(nl); else p_class->initializer->statements.push_back(nl); #endif if (onready) p_class->ready->statements.push_back(op); else p_class->initializer->statements.push_back(op); } else { if (autoexport) { _set_error("Type-less export needs a constant expression assigned to infer type."); return; } } if (tokenizer->get_token() == GDTokenizer::TK_PR_SETGET) { tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_COMMA) { //just comma means using only getter if (!tokenizer->is_token_literal()) { _set_error("Expected identifier for setter function after 'setget'."); } member.setter = tokenizer->get_token_literal(); tokenizer->advance(); } if (tokenizer->get_token() == GDTokenizer::TK_COMMA) { //there is a getter tokenizer->advance(); if (!tokenizer->is_token_literal()) { _set_error("Expected identifier for getter function after ','."); } member.getter = tokenizer->get_token_literal(); tokenizer->advance(); } } p_class->variables.push_back(member); if (!_end_statement()) { _set_error("Expected end of statement (continue)"); return; } } break; case GDTokenizer::TK_PR_CONST: { //variale declaration and (eventual) initialization ClassNode::Constant constant; tokenizer->advance(); if (!tokenizer->is_token_literal(0, true)) { _set_error("Expected name (identifier) for constant."); return; } constant.identifier = tokenizer->get_token_literal(); tokenizer->advance(); if (tokenizer->get_token() != GDTokenizer::TK_OP_ASSIGN) { _set_error("Constant expects assignment."); return; } tokenizer->advance(); Node *subexpr = _parse_and_reduce_expression(p_class, true, true); if (!subexpr) { if (_recover_from_completion()) { break; } return; } if (subexpr->type != Node::TYPE_CONSTANT) { _set_error("Expected constant expression"); } constant.expression = subexpr; p_class->constant_expressions.push_back(constant); if (!_end_statement()) { _set_error("Expected end of statement (constant)"); return; } } break; case GDTokenizer::TK_PR_ENUM: { //mutiple constant declarations.. int last_assign = -1; // Incremented by 1 right before the assingment. String enum_name; Dictionary enum_dict; tokenizer->advance(); if (tokenizer->is_token_literal(0, true)) { enum_name = tokenizer->get_token_literal(); tokenizer->advance(); } if (tokenizer->get_token() != GDTokenizer::TK_CURLY_BRACKET_OPEN) { _set_error("Expected '{' in enum declaration"); return; } tokenizer->advance(); while (true) { if (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) { tokenizer->advance(); // Ignore newlines } else if (tokenizer->get_token() == GDTokenizer::TK_CURLY_BRACKET_CLOSE) { tokenizer->advance(); break; // End of enum } else if (!tokenizer->is_token_literal(0, true)) { if (tokenizer->get_token() == GDTokenizer::TK_EOF) { _set_error("Unexpected end of file."); } else { _set_error(String("Unexpected ") + GDTokenizer::get_token_name(tokenizer->get_token()) + ", expected identifier"); } return; } else { // tokenizer->is_token_literal(0, true) ClassNode::Constant constant; constant.identifier = tokenizer->get_token_literal(); tokenizer->advance(); if (tokenizer->get_token() == GDTokenizer::TK_OP_ASSIGN) { tokenizer->advance(); Node *subexpr = _parse_and_reduce_expression(p_class, true, true); if (!subexpr) { if (_recover_from_completion()) { break; } return; } if (subexpr->type != Node::TYPE_CONSTANT) { _set_error("Expected constant expression"); } const ConstantNode *subexpr_const = static_cast(subexpr); if (subexpr_const->value.get_type() != Variant::INT) { _set_error("Expected an int value for enum"); } last_assign = subexpr_const->value; constant.expression = subexpr; } else { last_assign = last_assign + 1; ConstantNode *cn = alloc_node(); cn->value = last_assign; constant.expression = cn; } if (tokenizer->get_token() == GDTokenizer::TK_COMMA) { tokenizer->advance(); } if (enum_name != "") { const ConstantNode *cn = static_cast(constant.expression); enum_dict[constant.identifier] = cn->value; } p_class->constant_expressions.push_back(constant); } } if (enum_name != "") { ClassNode::Constant enum_constant; enum_constant.identifier = enum_name; ConstantNode *cn = alloc_node(); cn->value = enum_dict; enum_constant.expression = cn; p_class->constant_expressions.push_back(enum_constant); } if (!_end_statement()) { _set_error("Expected end of statement (enum)"); return; } } break; case GDTokenizer::TK_CONSTANT: { if (tokenizer->get_token_constant().get_type() == Variant::STRING) { tokenizer->advance(); // Ignore } else { _set_error(String() + "Unexpected constant of type: " + Variant::get_type_name(tokenizer->get_token_constant().get_type())); return; } } break; default: { _set_error(String() + "Unexpected token: " + tokenizer->get_token_name(tokenizer->get_token()) + ":" + tokenizer->get_token_identifier()); return; } break; } } } void GDParser::_set_error(const String &p_error, int p_line, int p_column) { if (error_set) return; //allow no further errors error = p_error; error_line = p_line < 0 ? tokenizer->get_token_line() : p_line; error_column = p_column < 0 ? tokenizer->get_token_column() : p_column; error_set = true; } String GDParser::get_error() const { return error; } int GDParser::get_error_line() const { return error_line; } int GDParser::get_error_column() const { return error_column; } Error GDParser::_parse(const String &p_base_path) { base_path = p_base_path; clear(); //assume class ClassNode *main_class = alloc_node(); main_class->initializer = alloc_node(); main_class->initializer->parent_class = main_class; main_class->ready = alloc_node(); main_class->ready->parent_class = main_class; current_class = main_class; _parse_class(main_class); if (tokenizer->get_token() == GDTokenizer::TK_ERROR) { error_set = false; _set_error("Parse Error: " + tokenizer->get_token_error()); } if (error_set) { return ERR_PARSE_ERROR; } return OK; } Error GDParser::parse_bytecode(const Vector &p_bytecode, const String &p_base_path, const String &p_self_path) { for_completion = false; validating = false; completion_type = COMPLETION_NONE; completion_node = NULL; completion_class = NULL; completion_function = NULL; completion_block = NULL; completion_found = false; current_block = NULL; current_class = NULL; current_function = NULL; self_path = p_self_path; GDTokenizerBuffer *tb = memnew(GDTokenizerBuffer); tb->set_code_buffer(p_bytecode); tokenizer = tb; Error ret = _parse(p_base_path); memdelete(tb); tokenizer = NULL; return ret; } Error GDParser::parse(const String &p_code, const String &p_base_path, bool p_just_validate, const String &p_self_path, bool p_for_completion) { completion_type = COMPLETION_NONE; completion_node = NULL; completion_class = NULL; completion_function = NULL; completion_block = NULL; completion_found = false; current_block = NULL; current_class = NULL; current_function = NULL; self_path = p_self_path; GDTokenizerText *tt = memnew(GDTokenizerText); tt->set_code(p_code); validating = p_just_validate; for_completion = p_for_completion; tokenizer = tt; Error ret = _parse(p_base_path); memdelete(tt); tokenizer = NULL; return ret; } bool GDParser::is_tool_script() const { return (head && head->type == Node::TYPE_CLASS && static_cast(head)->tool); } const GDParser::Node *GDParser::get_parse_tree() const { return head; } void GDParser::clear() { while (list) { Node *l = list; list = list->next; memdelete(l); } head = NULL; list = NULL; completion_type = COMPLETION_NONE; completion_node = NULL; completion_class = NULL; completion_function = NULL; completion_block = NULL; current_block = NULL; current_class = NULL; completion_found = false; rpc_mode = ScriptInstance::RPC_MODE_DISABLED; current_function = NULL; validating = false; for_completion = false; error_set = false; tab_level.clear(); tab_level.push_back(0); error_line = 0; error_column = 0; pending_newline = -1; parenthesis = 0; current_export.type = Variant::NIL; error = ""; } GDParser::CompletionType GDParser::get_completion_type() { return completion_type; } StringName GDParser::get_completion_cursor() { return completion_cursor; } int GDParser::get_completion_line() { return completion_line; } Variant::Type GDParser::get_completion_built_in_constant() { return completion_built_in_constant; } GDParser::Node *GDParser::get_completion_node() { return completion_node; } GDParser::BlockNode *GDParser::get_completion_block() { return completion_block; } GDParser::ClassNode *GDParser::get_completion_class() { return completion_class; } GDParser::FunctionNode *GDParser::get_completion_function() { return completion_function; } int GDParser::get_completion_argument_index() { return completion_argument; } int GDParser::get_completion_identifier_is_function() { return completion_ident_is_call; } GDParser::GDParser() { head = NULL; list = NULL; tokenizer = NULL; pending_newline = -1; clear(); } GDParser::~GDParser() { clear(); }