<?xml version="1.0" encoding="UTF-8" ?> <class name="AABB" version="4.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd"> <brief_description> Axis-Aligned Bounding Box. </brief_description> <description> [AABB] consists of a position, a size, and several utility functions. It is typically used for fast overlap tests. It uses floating-point coordinates. The 2D counterpart to [AABB] is [Rect2]. Negative values for [member size] are not supported and will not work for most methods. Use [method abs] to get an AABB with a positive size. [b]Note:[/b] Unlike [Rect2], [AABB] does not have a variant that uses integer coordinates. </description> <tutorials> <link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link> <link title="Vector math">$DOCS_URL/tutorials/math/vector_math.html</link> <link title="Advanced vector math">$DOCS_URL/tutorials/math/vectors_advanced.html</link> </tutorials> <constructors> <constructor name="AABB"> <return type="AABB" /> <description> Constructs a default-initialized [AABB] with default (zero) values of [member position] and [member size]. </description> </constructor> <constructor name="AABB"> <return type="AABB" /> <param index="0" name="from" type="AABB" /> <description> Constructs an [AABB] as a copy of the given [AABB]. </description> </constructor> <constructor name="AABB"> <return type="AABB" /> <param index="0" name="position" type="Vector3" /> <param index="1" name="size" type="Vector3" /> <description> Constructs an [AABB] from a position and size. </description> </constructor> </constructors> <methods> <method name="abs" qualifiers="const"> <return type="AABB" /> <description> Returns an AABB with equivalent position and size, modified so that the most-negative corner is the origin and the size is positive. </description> </method> <method name="encloses" qualifiers="const"> <return type="bool" /> <param index="0" name="with" type="AABB" /> <description> Returns [code]true[/code] if this [AABB] completely encloses another one. </description> </method> <method name="expand" qualifiers="const"> <return type="AABB" /> <param index="0" name="to_point" type="Vector3" /> <description> Returns a copy of this [AABB] expanded to include a given point. [b]Example:[/b] [codeblocks] [gdscript] # position (-3, 2, 0), size (1, 1, 1) var box = AABB(Vector3(-3, 2, 0), Vector3(1, 1, 1)) # position (-3, -1, 0), size (3, 4, 2), so we fit both the original AABB and Vector3(0, -1, 2) var box2 = box.expand(Vector3(0, -1, 2)) [/gdscript] [csharp] // position (-3, 2, 0), size (1, 1, 1) var box = new Aabb(new Vector3(-3, 2, 0), new Vector3(1, 1, 1)); // position (-3, -1, 0), size (3, 4, 2), so we fit both the original AABB and Vector3(0, -1, 2) var box2 = box.Expand(new Vector3(0, -1, 2)); [/csharp] [/codeblocks] </description> </method> <method name="get_center" qualifiers="const"> <return type="Vector3" /> <description> Returns the center of the [AABB], which is equal to [member position] + ([member size] / 2). </description> </method> <method name="get_endpoint" qualifiers="const"> <return type="Vector3" /> <param index="0" name="idx" type="int" /> <description> Gets the position of the 8 endpoints of the [AABB] in space. </description> </method> <method name="get_longest_axis" qualifiers="const"> <return type="Vector3" /> <description> Returns the normalized longest axis of the [AABB]. </description> </method> <method name="get_longest_axis_index" qualifiers="const"> <return type="int" /> <description> Returns the index of the longest axis of the [AABB] (according to [Vector3]'s [code]AXIS_*[/code] constants). </description> </method> <method name="get_longest_axis_size" qualifiers="const"> <return type="float" /> <description> Returns the scalar length of the longest axis of the [AABB]. </description> </method> <method name="get_shortest_axis" qualifiers="const"> <return type="Vector3" /> <description> Returns the normalized shortest axis of the [AABB]. </description> </method> <method name="get_shortest_axis_index" qualifiers="const"> <return type="int" /> <description> Returns the index of the shortest axis of the [AABB] (according to [Vector3]::AXIS* enum). </description> </method> <method name="get_shortest_axis_size" qualifiers="const"> <return type="float" /> <description> Returns the scalar length of the shortest axis of the [AABB]. </description> </method> <method name="get_support" qualifiers="const"> <return type="Vector3" /> <param index="0" name="dir" type="Vector3" /> <description> Returns the support point in a given direction. This is useful for collision detection algorithms. </description> </method> <method name="get_volume" qualifiers="const"> <return type="float" /> <description> Returns the volume of the [AABB]. </description> </method> <method name="grow" qualifiers="const"> <return type="AABB" /> <param index="0" name="by" type="float" /> <description> Returns a copy of the [AABB] grown a given number of units towards all the sides. </description> </method> <method name="has_point" qualifiers="const"> <return type="bool" /> <param index="0" name="point" type="Vector3" /> <description> Returns [code]true[/code] if the [AABB] contains a point. Points on the faces of the AABB are considered included, though float-point precision errors may impact the accuracy of such checks. [b]Note:[/b] This method is not reliable for [AABB] with a [i]negative size[/i]. Use [method abs] to get a positive sized equivalent [AABB] to check for contained points. </description> </method> <method name="has_surface" qualifiers="const"> <return type="bool" /> <description> Returns [code]true[/code] if the [AABB] has a surface or a length, and [code]false[/code] if the [AABB] is empty (all components of [member size] are zero or negative). </description> </method> <method name="has_volume" qualifiers="const"> <return type="bool" /> <description> Returns [code]true[/code] if the [AABB] has a volume, and [code]false[/code] if the [AABB] is flat, empty, or has a negative [member size]. </description> </method> <method name="intersection" qualifiers="const"> <return type="AABB" /> <param index="0" name="with" type="AABB" /> <description> Returns the intersection between two [AABB]. An empty AABB (size [code](0, 0, 0)[/code]) is returned on failure. </description> </method> <method name="intersects" qualifiers="const"> <return type="bool" /> <param index="0" name="with" type="AABB" /> <description> Returns [code]true[/code] if the [AABB] overlaps with another. </description> </method> <method name="intersects_plane" qualifiers="const"> <return type="bool" /> <param index="0" name="plane" type="Plane" /> <description> Returns [code]true[/code] if the [AABB] is on both sides of a plane. </description> </method> <method name="intersects_ray" qualifiers="const"> <return type="Variant" /> <param index="0" name="from" type="Vector3" /> <param index="1" name="dir" type="Vector3" /> <description> Returns the point of intersection of the given ray with this [AABB] or [code]null[/code] if there is no intersection. Ray length is infinite. </description> </method> <method name="intersects_segment" qualifiers="const"> <return type="Variant" /> <param index="0" name="from" type="Vector3" /> <param index="1" name="to" type="Vector3" /> <description> Returns the point of intersection between [param from] and [param to] with this [AABB] or [code]null[/code] if there is no intersection. </description> </method> <method name="is_equal_approx" qualifiers="const"> <return type="bool" /> <param index="0" name="aabb" type="AABB" /> <description> Returns [code]true[/code] if this [AABB] and [param aabb] are approximately equal, by calling [method @GlobalScope.is_equal_approx] on each component. </description> </method> <method name="is_finite" qualifiers="const"> <return type="bool" /> <description> Returns [code]true[/code] if this [AABB] is finite, by calling [method @GlobalScope.is_finite] on each component. </description> </method> <method name="merge" qualifiers="const"> <return type="AABB" /> <param index="0" name="with" type="AABB" /> <description> Returns a larger [AABB] that contains both this [AABB] and [param with]. </description> </method> </methods> <members> <member name="end" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)"> Ending corner. This is calculated as [code]position + size[/code]. Setting this value will change the size. </member> <member name="position" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)"> Beginning corner. Typically has values lower than [member end]. </member> <member name="size" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)"> Size from [member position] to [member end]. Typically, all components are positive. If the size is negative, you can use [method abs] to fix it. </member> </members> <operators> <operator name="operator !="> <return type="bool" /> <param index="0" name="right" type="AABB" /> <description> Returns [code]true[/code] if the AABBs are not equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. </description> </operator> <operator name="operator *"> <return type="AABB" /> <param index="0" name="right" type="Transform3D" /> <description> Inversely transforms (multiplies) the [AABB] by the given [Transform3D] transformation matrix. </description> </operator> <operator name="operator =="> <return type="bool" /> <param index="0" name="right" type="AABB" /> <description> Returns [code]true[/code] if the AABBs are exactly equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. </description> </operator> </operators> </class>