/**************************************************************************/ /* variant_converters.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef VARIANT_CONVERTERS_H #define VARIANT_CONVERTERS_H #include "core/error/error_macros.h" #include "core/variant/array.h" #include "core/variant/variant.h" #include #include template struct VariantConverterStd140 { // Generic base template for all Vector2/3/4(i) classes. static constexpr int Elements = T::AXIS_COUNT; template static void convert(const T &p_v, P *p_write, bool p_compact) { for (int i = 0; i < Elements; i++) { p_write[i] = p_v[i]; } } }; template <> struct VariantConverterStd140 { static constexpr int Elements = 1; template static void convert(float p_v, P *p_write, bool p_compact) { p_write[0] = p_v; } }; template <> struct VariantConverterStd140 { static constexpr int Elements = 1; template static void convert(int32_t p_v, P *p_write, bool p_compact) { p_write[0] = p_v; } }; template <> struct VariantConverterStd140 { static constexpr int Elements = 1; template static void convert(uint32_t p_v, P *p_write, bool p_compact) { p_write[0] = p_v; } }; template <> struct VariantConverterStd140 { static constexpr int Elements = 9; template static void convert(const Basis &p_v, P *p_write, bool p_compact) { // Basis can have compact 9 floats or std140 layout 12 floats. int i = 0; p_write[i++] = p_v.rows[0][0]; p_write[i++] = p_v.rows[1][0]; p_write[i++] = p_v.rows[2][0]; if (!p_compact) { p_write[i++] = 0; } p_write[i++] = p_v.rows[0][1]; p_write[i++] = p_v.rows[1][1]; p_write[i++] = p_v.rows[2][1]; if (!p_compact) { p_write[i++] = 0; } p_write[i++] = p_v.rows[0][2]; p_write[i++] = p_v.rows[1][2]; p_write[i++] = p_v.rows[2][2]; if (!p_compact) { p_write[i++] = 0; } } }; template <> struct VariantConverterStd140 { static constexpr int Elements = 12; template static void convert(const Transform2D &p_v, P *p_write, bool p_compact) { p_write[0] = p_v.columns[0][0]; p_write[1] = p_v.columns[0][1]; p_write[2] = 0; p_write[3] = 0; p_write[4] = p_v.columns[1][0]; p_write[5] = p_v.columns[1][1]; p_write[6] = 0; p_write[7] = 0; p_write[8] = p_v.columns[2][0]; p_write[9] = p_v.columns[2][1]; p_write[10] = 1; p_write[11] = 0; } }; template <> struct VariantConverterStd140 { static constexpr int Elements = 16; template static void convert(const Transform3D &p_v, P *p_write, bool p_compact) { p_write[0] = p_v.basis.rows[0][0]; p_write[1] = p_v.basis.rows[1][0]; p_write[2] = p_v.basis.rows[2][0]; p_write[3] = 0; p_write[4] = p_v.basis.rows[0][1]; p_write[5] = p_v.basis.rows[1][1]; p_write[6] = p_v.basis.rows[2][1]; p_write[7] = 0; p_write[8] = p_v.basis.rows[0][2]; p_write[9] = p_v.basis.rows[1][2]; p_write[10] = p_v.basis.rows[2][2]; p_write[11] = 0; p_write[12] = p_v.origin.x; p_write[13] = p_v.origin.y; p_write[14] = p_v.origin.z; p_write[15] = 1; } }; template <> struct VariantConverterStd140 { static constexpr int Elements = 16; template static void convert(const Projection &p_v, P *p_write, bool p_compact) { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { p_write[i * 4 + j] = p_v.columns[i][j]; } } } }; template T construct_vector(const std::initializer_list

&values) { T vector{}; int index = 0; for (P v : values) { vector[index++] = v; if (index >= T::AXIS_COUNT) { break; } } return vector; } // Compatibility converter, tries to convert certain Variant types into a Vector2/3/4(i). template T convert_to_vector(const Variant &p_variant, bool p_linear_color = false) { const Variant::Type type = p_variant.get_type(); if (type == Variant::QUATERNION) { Quaternion quat = p_variant; return construct_vector({ quat.x, quat.y, quat.z, quat.w }); } else if (type == Variant::PLANE) { Plane p = p_variant; return construct_vector({ p.normal.x, p.normal.y, p.normal.z, p.d }); } else if (type == Variant::RECT2 || type == Variant::RECT2I) { Rect2 r = p_variant; return construct_vector({ r.position.x, r.position.y, r.size.x, r.size.y }); } else if (type == Variant::COLOR) { Color c = p_variant; if (p_linear_color) { c = c.srgb_to_linear(); } return construct_vector({ c.r, c.g, c.b, c.a }); } else if (p_variant.is_array()) { const Array &array = p_variant; const int size = MIN(array.size(), T::AXIS_COUNT); T vector{}; for (int i = 0; i < size; i++) { vector[i] = array.get(i); } return vector; } return p_variant; // Default Variant conversion, covers all Vector2/3/4(i) types. } inline bool is_number_array(const Array &p_array) { const int size = p_array.size(); for (int i = 0; i < size; i++) { if (!p_array.get(i).is_num()) { return false; } } return true; } inline bool is_convertible_array(Variant::Type type) { return type == Variant::ARRAY || type == Variant::PACKED_VECTOR2_ARRAY || type == Variant::PACKED_VECTOR3_ARRAY || type == Variant::PACKED_COLOR_ARRAY; } template struct is_vector_type : std::false_type {}; template struct is_vector_type> : std::true_type {}; template void convert_item_std140(const T &p_item, P *p_write, bool p_compact = false) { VariantConverterStd140::template convert

(p_item, p_write, p_compact); } template Vector

convert_array_std140(const Variant &p_variant, [[maybe_unused]] bool p_linear_color = false) { if (is_convertible_array(p_variant.get_type())) { // Slow path, convert Variant arrays and some packed arrays manually into primitive types. const Array &array = p_variant; if (is_number_array(array)) { // Already flattened and converted (or empty) array, usually coming from saved resources. return p_variant; } const int items = array.size(); constexpr int elements = VariantConverterStd140::Elements; Vector

result; result.resize(items * elements); P *write = result.ptrw(); for (int i = 0; i < items; i++) { const Variant &item = array.get(i); P *offset = write + (i * elements); if constexpr (is_vector_type::value) { const T &vec = convert_to_vector(item, p_linear_color); convert_item_std140(vec, offset, true); } else { convert_item_std140(item.operator T(), offset, true); } } return result; } else if (p_variant.is_array()) { // Fast path, return the packed array directly. return p_variant; } // Not an array type. Usually happens with uninitialized null shader resource parameters. // Just return an empty array, uniforms will be default initialized later. return Vector

(); } template void write_array_std140(const Vector &p_values, To *p_write, int p_array_size, int p_stride) { constexpr int elements = VariantConverterStd140::Elements; const int src_count = p_values.size(); const int dst_count = elements * p_array_size; const int stride_count = p_stride * p_array_size; const From *read = p_values.ptr(); const T default_value{}; memset(p_write, 0, sizeof(To) * stride_count); for (int i = 0, j = 0; i < dst_count; i += elements, j += p_stride) { if (i + elements - 1 < src_count) { // Only copy full items with all elements, no partial or missing data. for (int e = 0; e < elements; e++) { DEV_ASSERT(j + e < stride_count && i + e < src_count); p_write[j + e] = read[i + e]; } } else { // If not enough source data was passed in, write default values. convert_item_std140(default_value, p_write + j); } } } #endif // VARIANT_CONVERTERS_H