/*************************************************************************/
/*  image.cpp                                                            */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md)    */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#include "image.h"

#include "core/hash_map.h"
#include "core/io/image_loader.h"
#include "core/io/resource_loader.h"
#include "core/math/math_funcs.h"
#include "core/os/copymem.h"
#include "core/print_string.h"

#include "thirdparty/misc/hq2x.h"

#include <stdio.h>

const char *Image::format_names[Image::FORMAT_MAX] = {
	"Lum8", //luminance
	"LumAlpha8", //luminance-alpha
	"Red8",
	"RedGreen",
	"RGB8",
	"RGBA8",
	"RGBA4444",
	"RGBA5551",
	"RFloat", //float
	"RGFloat",
	"RGBFloat",
	"RGBAFloat",
	"RHalf", //half float
	"RGHalf",
	"RGBHalf",
	"RGBAHalf",
	"RGBE9995",
	"DXT1 RGB8", //s3tc
	"DXT3 RGBA8",
	"DXT5 RGBA8",
	"RGTC Red8",
	"RGTC RedGreen8",
	"BPTC_RGBA",
	"BPTC_RGBF",
	"BPTC_RGBFU",
	"PVRTC2", //pvrtc
	"PVRTC2A",
	"PVRTC4",
	"PVRTC4A",
	"ETC", //etc1
	"ETC2_R11", //etc2
	"ETC2_R11S", //signed", NOT srgb.
	"ETC2_RG11",
	"ETC2_RG11S",
	"ETC2_RGB8",
	"ETC2_RGBA8",
	"ETC2_RGB8A1",

};

SavePNGFunc Image::save_png_func = NULL;

void Image::_put_pixelb(int p_x, int p_y, uint32_t p_pixelsize, uint8_t *p_data, const uint8_t *p_pixel) {

	uint32_t ofs = (p_y * width + p_x) * p_pixelsize;

	for (uint32_t i = 0; i < p_pixelsize; i++) {
		p_data[ofs + i] = p_pixel[i];
	}
}

void Image::_get_pixelb(int p_x, int p_y, uint32_t p_pixelsize, const uint8_t *p_data, uint8_t *p_pixel) {

	uint32_t ofs = (p_y * width + p_x) * p_pixelsize;

	for (uint32_t i = 0; i < p_pixelsize; i++) {
		p_pixel[i] = p_data[ofs + i];
	}
}

int Image::get_format_pixel_size(Format p_format) {

	switch (p_format) {
		case FORMAT_L8:
			return 1; //luminance
		case FORMAT_LA8:
			return 2; //luminance-alpha
		case FORMAT_R8: return 1;
		case FORMAT_RG8: return 2;
		case FORMAT_RGB8: return 3;
		case FORMAT_RGBA8: return 4;
		case FORMAT_RGBA4444: return 2;
		case FORMAT_RGBA5551: return 2;
		case FORMAT_RF:
			return 4; //float
		case FORMAT_RGF: return 8;
		case FORMAT_RGBF: return 12;
		case FORMAT_RGBAF: return 16;
		case FORMAT_RH:
			return 2; //half float
		case FORMAT_RGH: return 4;
		case FORMAT_RGBH: return 6;
		case FORMAT_RGBAH: return 8;
		case FORMAT_RGBE9995: return 4;
		case FORMAT_DXT1:
			return 1; //s3tc bc1
		case FORMAT_DXT3:
			return 1; //bc2
		case FORMAT_DXT5:
			return 1; //bc3
		case FORMAT_RGTC_R:
			return 1; //bc4
		case FORMAT_RGTC_RG:
			return 1; //bc5
		case FORMAT_BPTC_RGBA:
			return 1; //btpc bc6h
		case FORMAT_BPTC_RGBF:
			return 1; //float /
		case FORMAT_BPTC_RGBFU:
			return 1; //unsigned float
		case FORMAT_PVRTC2:
			return 1; //pvrtc
		case FORMAT_PVRTC2A: return 1;
		case FORMAT_PVRTC4: return 1;
		case FORMAT_PVRTC4A: return 1;
		case FORMAT_ETC:
			return 1; //etc1
		case FORMAT_ETC2_R11:
			return 1; //etc2
		case FORMAT_ETC2_R11S:
			return 1; //signed: return 1; NOT srgb.
		case FORMAT_ETC2_RG11: return 1;
		case FORMAT_ETC2_RG11S: return 1;
		case FORMAT_ETC2_RGB8: return 1;
		case FORMAT_ETC2_RGBA8: return 1;
		case FORMAT_ETC2_RGB8A1: return 1;
		case FORMAT_MAX: {
		}
	}
	return 0;
}

void Image::get_format_min_pixel_size(Format p_format, int &r_w, int &r_h) {

	switch (p_format) {
		case FORMAT_DXT1: //s3tc bc1
		case FORMAT_DXT3: //bc2
		case FORMAT_DXT5: //bc3
		case FORMAT_RGTC_R: //bc4
		case FORMAT_RGTC_RG: { //bc5		case case FORMAT_DXT1:

			r_w = 4;
			r_h = 4;
		} break;
		case FORMAT_PVRTC2:
		case FORMAT_PVRTC2A: {

			r_w = 16;
			r_h = 8;
		} break;
		case FORMAT_PVRTC4A:
		case FORMAT_PVRTC4: {

			r_w = 8;
			r_h = 8;
		} break;
		case FORMAT_ETC: {

			r_w = 4;
			r_h = 4;
		} break;
		case FORMAT_BPTC_RGBA:
		case FORMAT_BPTC_RGBF:
		case FORMAT_BPTC_RGBFU: {

			r_w = 4;
			r_h = 4;
		} break;
		case FORMAT_ETC2_R11: //etc2
		case FORMAT_ETC2_R11S: //signed: NOT srgb.
		case FORMAT_ETC2_RG11:
		case FORMAT_ETC2_RG11S:
		case FORMAT_ETC2_RGB8:
		case FORMAT_ETC2_RGBA8:
		case FORMAT_ETC2_RGB8A1: {

			r_w = 4;
			r_h = 4;

		} break;

		default: {
			r_w = 1;
			r_h = 1;
		} break;
	}
}

int Image::get_format_pixel_rshift(Format p_format) {

	if (p_format == FORMAT_DXT1 || p_format == FORMAT_RGTC_R || p_format == FORMAT_PVRTC4 || p_format == FORMAT_PVRTC4A || p_format == FORMAT_ETC || p_format == FORMAT_ETC2_R11 || p_format == FORMAT_ETC2_R11S || p_format == FORMAT_ETC2_RGB8 || p_format == FORMAT_ETC2_RGB8A1)
		return 1;
	else if (p_format == FORMAT_PVRTC2 || p_format == FORMAT_PVRTC2A)
		return 2;
	else
		return 0;
}

int Image::get_format_block_size(Format p_format) {

	switch (p_format) {
		case FORMAT_DXT1: //s3tc bc1
		case FORMAT_DXT3: //bc2
		case FORMAT_DXT5: //bc3
		case FORMAT_RGTC_R: //bc4
		case FORMAT_RGTC_RG: { //bc5		case case FORMAT_DXT1:

			return 4;
		}
		case FORMAT_PVRTC2:
		case FORMAT_PVRTC2A: {

			return 4;
		}
		case FORMAT_PVRTC4A:
		case FORMAT_PVRTC4: {

			return 4;
		}
		case FORMAT_ETC: {

			return 4;
		}
		case FORMAT_BPTC_RGBA:
		case FORMAT_BPTC_RGBF:
		case FORMAT_BPTC_RGBFU: {

			return 4;
		}
		case FORMAT_ETC2_R11: //etc2
		case FORMAT_ETC2_R11S: //signed: NOT srgb.
		case FORMAT_ETC2_RG11:
		case FORMAT_ETC2_RG11S:
		case FORMAT_ETC2_RGB8:
		case FORMAT_ETC2_RGBA8:
		case FORMAT_ETC2_RGB8A1: {

			return 4;
		}
		default: {
		}
	}

	return 1;
}

void Image::_get_mipmap_offset_and_size(int p_mipmap, int &r_offset, int &r_width, int &r_height) const {

	int w = width;
	int h = height;
	int ofs = 0;

	int pixel_size = get_format_pixel_size(format);
	int pixel_rshift = get_format_pixel_rshift(format);
	int block = get_format_block_size(format);
	int minw, minh;
	get_format_min_pixel_size(format, minw, minh);

	for (int i = 0; i < p_mipmap; i++) {
		int bw = w % block != 0 ? w + (block - w % block) : w;
		int bh = h % block != 0 ? h + (block - h % block) : h;

		int s = bw * bh;

		s *= pixel_size;
		s >>= pixel_rshift;
		ofs += s;
		w = MAX(minw, w >> 1);
		h = MAX(minh, h >> 1);
	}

	r_offset = ofs;
	r_width = w;
	r_height = h;
}

int Image::get_mipmap_offset(int p_mipmap) const {

	ERR_FAIL_INDEX_V(p_mipmap, get_mipmap_count() + 1, -1);

	int ofs, w, h;
	_get_mipmap_offset_and_size(p_mipmap, ofs, w, h);
	return ofs;
}

void Image::get_mipmap_offset_and_size(int p_mipmap, int &r_ofs, int &r_size) const {

	int ofs, w, h;
	_get_mipmap_offset_and_size(p_mipmap, ofs, w, h);
	int ofs2;
	_get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w, h);
	r_ofs = ofs;
	r_size = ofs2 - ofs;
}

void Image::get_mipmap_offset_size_and_dimensions(int p_mipmap, int &r_ofs, int &r_size, int &w, int &h) const {

	int ofs;
	_get_mipmap_offset_and_size(p_mipmap, ofs, w, h);
	int ofs2, w2, h2;
	_get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w2, h2);
	r_ofs = ofs;
	r_size = ofs2 - ofs;
}

int Image::get_width() const {

	return width;
}

int Image::get_height() const {

	return height;
}

Vector2 Image::get_size() const {

	return Vector2(width, height);
}

bool Image::has_mipmaps() const {

	return mipmaps;
}

int Image::get_mipmap_count() const {

	if (mipmaps)
		return get_image_required_mipmaps(width, height, format);
	else
		return 0;
}

//using template generates perfectly optimized code due to constant expression reduction and unused variable removal present in all compilers
template <uint32_t read_bytes, bool read_alpha, uint32_t write_bytes, bool write_alpha, bool read_gray, bool write_gray>
static void _convert(int p_width, int p_height, const uint8_t *p_src, uint8_t *p_dst) {

	uint32_t max_bytes = MAX(read_bytes, write_bytes);

	for (int y = 0; y < p_height; y++) {
		for (int x = 0; x < p_width; x++) {

			const uint8_t *rofs = &p_src[((y * p_width) + x) * (read_bytes + (read_alpha ? 1 : 0))];
			uint8_t *wofs = &p_dst[((y * p_width) + x) * (write_bytes + (write_alpha ? 1 : 0))];

			uint8_t rgba[4];

			if (read_gray) {
				rgba[0] = rofs[0];
				rgba[1] = rofs[0];
				rgba[2] = rofs[0];
			} else {

				for (uint32_t i = 0; i < max_bytes; i++) {

					rgba[i] = (i < read_bytes) ? rofs[i] : 0;
				}
			}

			if (read_alpha || write_alpha) {
				rgba[3] = read_alpha ? rofs[read_bytes] : 255;
			}

			if (write_gray) {
				//TODO: not correct grayscale, should use fixed point version of actual weights
				wofs[0] = uint8_t((uint16_t(rofs[0]) + uint16_t(rofs[1]) + uint16_t(rofs[2])) / 3);
			} else {
				for (uint32_t i = 0; i < write_bytes; i++) {

					wofs[i] = rgba[i];
				}
			}

			if (write_alpha) {
				wofs[write_bytes] = rgba[3];
			}
		}
	}
}

void Image::convert(Format p_new_format) {

	if (data.size() == 0)
		return;

	if (p_new_format == format)
		return;

	if (format > FORMAT_RGBE9995 || p_new_format > FORMAT_RGBE9995) {

		ERR_EXPLAIN("Cannot convert to <-> from compressed formats. Use compress() and decompress() instead.");
		ERR_FAIL();

	} else if (format > FORMAT_RGBA8 || p_new_format > FORMAT_RGBA8) {

		//use put/set pixel which is slower but works with non byte formats
		Image new_img(width, height, 0, p_new_format);
		lock();
		new_img.lock();

		for (int i = 0; i < width; i++) {
			for (int j = 0; j < height; j++) {

				new_img.set_pixel(i, j, get_pixel(i, j));
			}
		}

		unlock();
		new_img.unlock();

		if (has_mipmaps()) {
			new_img.generate_mipmaps();
		}

		_copy_internals_from(new_img);

		return;
	}

	Image new_img(width, height, 0, p_new_format);

	PoolVector<uint8_t>::Read r = data.read();
	PoolVector<uint8_t>::Write w = new_img.data.write();

	const uint8_t *rptr = r.ptr();
	uint8_t *wptr = w.ptr();

	int conversion_type = format | p_new_format << 8;

	switch (conversion_type) {

		case FORMAT_L8 | (FORMAT_LA8 << 8): _convert<1, false, 1, true, true, true>(width, height, rptr, wptr); break;
		case FORMAT_L8 | (FORMAT_R8 << 8): _convert<1, false, 1, false, true, false>(width, height, rptr, wptr); break;
		case FORMAT_L8 | (FORMAT_RG8 << 8): _convert<1, false, 2, false, true, false>(width, height, rptr, wptr); break;
		case FORMAT_L8 | (FORMAT_RGB8 << 8): _convert<1, false, 3, false, true, false>(width, height, rptr, wptr); break;
		case FORMAT_L8 | (FORMAT_RGBA8 << 8): _convert<1, false, 3, true, true, false>(width, height, rptr, wptr); break;
		case FORMAT_LA8 | (FORMAT_L8 << 8): _convert<1, true, 1, false, true, true>(width, height, rptr, wptr); break;
		case FORMAT_LA8 | (FORMAT_R8 << 8): _convert<1, true, 1, false, true, false>(width, height, rptr, wptr); break;
		case FORMAT_LA8 | (FORMAT_RG8 << 8): _convert<1, true, 2, false, true, false>(width, height, rptr, wptr); break;
		case FORMAT_LA8 | (FORMAT_RGB8 << 8): _convert<1, true, 3, false, true, false>(width, height, rptr, wptr); break;
		case FORMAT_LA8 | (FORMAT_RGBA8 << 8): _convert<1, true, 3, true, true, false>(width, height, rptr, wptr); break;
		case FORMAT_R8 | (FORMAT_L8 << 8): _convert<1, false, 1, false, false, true>(width, height, rptr, wptr); break;
		case FORMAT_R8 | (FORMAT_LA8 << 8): _convert<1, false, 1, true, false, true>(width, height, rptr, wptr); break;
		case FORMAT_R8 | (FORMAT_RG8 << 8): _convert<1, false, 2, false, false, false>(width, height, rptr, wptr); break;
		case FORMAT_R8 | (FORMAT_RGB8 << 8): _convert<1, false, 3, false, false, false>(width, height, rptr, wptr); break;
		case FORMAT_R8 | (FORMAT_RGBA8 << 8): _convert<1, false, 3, true, false, false>(width, height, rptr, wptr); break;
		case FORMAT_RG8 | (FORMAT_L8 << 8): _convert<2, false, 1, false, false, true>(width, height, rptr, wptr); break;
		case FORMAT_RG8 | (FORMAT_LA8 << 8): _convert<2, false, 1, true, false, true>(width, height, rptr, wptr); break;
		case FORMAT_RG8 | (FORMAT_R8 << 8): _convert<2, false, 1, false, false, false>(width, height, rptr, wptr); break;
		case FORMAT_RG8 | (FORMAT_RGB8 << 8): _convert<2, false, 3, false, false, false>(width, height, rptr, wptr); break;
		case FORMAT_RG8 | (FORMAT_RGBA8 << 8): _convert<2, false, 3, true, false, false>(width, height, rptr, wptr); break;
		case FORMAT_RGB8 | (FORMAT_L8 << 8): _convert<3, false, 1, false, false, true>(width, height, rptr, wptr); break;
		case FORMAT_RGB8 | (FORMAT_LA8 << 8): _convert<3, false, 1, true, false, true>(width, height, rptr, wptr); break;
		case FORMAT_RGB8 | (FORMAT_R8 << 8): _convert<3, false, 1, false, false, false>(width, height, rptr, wptr); break;
		case FORMAT_RGB8 | (FORMAT_RG8 << 8): _convert<3, false, 2, false, false, false>(width, height, rptr, wptr); break;
		case FORMAT_RGB8 | (FORMAT_RGBA8 << 8): _convert<3, false, 3, true, false, false>(width, height, rptr, wptr); break;
		case FORMAT_RGBA8 | (FORMAT_L8 << 8): _convert<3, true, 1, false, false, true>(width, height, rptr, wptr); break;
		case FORMAT_RGBA8 | (FORMAT_LA8 << 8): _convert<3, true, 1, true, false, true>(width, height, rptr, wptr); break;
		case FORMAT_RGBA8 | (FORMAT_R8 << 8): _convert<3, true, 1, false, false, false>(width, height, rptr, wptr); break;
		case FORMAT_RGBA8 | (FORMAT_RG8 << 8): _convert<3, true, 2, false, false, false>(width, height, rptr, wptr); break;
		case FORMAT_RGBA8 | (FORMAT_RGB8 << 8): _convert<3, true, 3, false, false, false>(width, height, rptr, wptr); break;
	}

	r.release();
	w.release();

	bool gen_mipmaps = mipmaps;

	_copy_internals_from(new_img);

	if (gen_mipmaps)
		generate_mipmaps();
}

Image::Format Image::get_format() const {

	return format;
}

static double _bicubic_interp_kernel(double x) {

	x = ABS(x);

	double bc = 0;

	if (x <= 1)
		bc = (1.5 * x - 2.5) * x * x + 1;
	else if (x < 2)
		bc = ((-0.5 * x + 2.5) * x - 4) * x + 2;

	return bc;
}

template <int CC, class T>
static void _scale_cubic(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {

	// get source image size
	int width = p_src_width;
	int height = p_src_height;
	double xfac = (double)width / p_dst_width;
	double yfac = (double)height / p_dst_height;
	// coordinates of source points and coefficients
	double ox, oy, dx, dy, k1, k2;
	int ox1, oy1, ox2, oy2;
	// destination pixel values
	// width and height decreased by 1
	int ymax = height - 1;
	int xmax = width - 1;
	// temporary pointer

	for (uint32_t y = 0; y < p_dst_height; y++) {
		// Y coordinates
		oy = (double)y * yfac - 0.5f;
		oy1 = (int)oy;
		dy = oy - (double)oy1;

		for (uint32_t x = 0; x < p_dst_width; x++) {
			// X coordinates
			ox = (double)x * xfac - 0.5f;
			ox1 = (int)ox;
			dx = ox - (double)ox1;

			// initial pixel value

			T *__restrict dst = ((T *)p_dst) + (y * p_dst_width + x) * CC;

			double color[CC];
			for (int i = 0; i < CC; i++) {
				color[i] = 0;
			}

			for (int n = -1; n < 3; n++) {
				// get Y coefficient
				k1 = _bicubic_interp_kernel(dy - (double)n);

				oy2 = oy1 + n;
				if (oy2 < 0)
					oy2 = 0;
				if (oy2 > ymax)
					oy2 = ymax;

				for (int m = -1; m < 3; m++) {
					// get X coefficient
					k2 = k1 * _bicubic_interp_kernel((double)m - dx);

					ox2 = ox1 + m;
					if (ox2 < 0)
						ox2 = 0;
					if (ox2 > xmax)
						ox2 = xmax;

					// get pixel of original image
					const T *__restrict p = ((T *)p_src) + (oy2 * p_src_width + ox2) * CC;

					for (int i = 0; i < CC; i++) {
						if (sizeof(T) == 2) { //half float
							color[i] = Math::half_to_float(p[i]);
						} else {
							color[i] += p[i] * k2;
						}
					}
				}
			}

			for (int i = 0; i < CC; i++) {
				if (sizeof(T) == 1) { //byte
					dst[i] = CLAMP(Math::fast_ftoi(color[i]), 0, 255);
				} else if (sizeof(T) == 2) { //half float
					dst[i] = Math::make_half_float(color[i]);
				} else {
					dst[i] = color[i];
				}
			}
		}
	}
}

template <int CC, class T>
static void _scale_bilinear(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {

	enum {
		FRAC_BITS = 8,
		FRAC_LEN = (1 << FRAC_BITS),
		FRAC_MASK = FRAC_LEN - 1

	};

	for (uint32_t i = 0; i < p_dst_height; i++) {

		uint32_t src_yofs_up_fp = (i * p_src_height * FRAC_LEN / p_dst_height);
		uint32_t src_yofs_frac = src_yofs_up_fp & FRAC_MASK;
		uint32_t src_yofs_up = src_yofs_up_fp >> FRAC_BITS;

		uint32_t src_yofs_down = (i + 1) * p_src_height / p_dst_height;
		if (src_yofs_down >= p_src_height)
			src_yofs_down = p_src_height - 1;

		//src_yofs_up*=CC;
		//src_yofs_down*=CC;

		uint32_t y_ofs_up = src_yofs_up * p_src_width * CC;
		uint32_t y_ofs_down = src_yofs_down * p_src_width * CC;

		for (uint32_t j = 0; j < p_dst_width; j++) {

			uint32_t src_xofs_left_fp = (j * p_src_width * FRAC_LEN / p_dst_width);
			uint32_t src_xofs_frac = src_xofs_left_fp & FRAC_MASK;
			uint32_t src_xofs_left = src_xofs_left_fp >> FRAC_BITS;
			uint32_t src_xofs_right = (j + 1) * p_src_width / p_dst_width;
			if (src_xofs_right >= p_src_width)
				src_xofs_right = p_src_width - 1;

			src_xofs_left *= CC;
			src_xofs_right *= CC;

			for (uint32_t l = 0; l < CC; l++) {

				if (sizeof(T) == 1) { //uint8
					uint32_t p00 = p_src[y_ofs_up + src_xofs_left + l] << FRAC_BITS;
					uint32_t p10 = p_src[y_ofs_up + src_xofs_right + l] << FRAC_BITS;
					uint32_t p01 = p_src[y_ofs_down + src_xofs_left + l] << FRAC_BITS;
					uint32_t p11 = p_src[y_ofs_down + src_xofs_right + l] << FRAC_BITS;

					uint32_t interp_up = p00 + (((p10 - p00) * src_xofs_frac) >> FRAC_BITS);
					uint32_t interp_down = p01 + (((p11 - p01) * src_xofs_frac) >> FRAC_BITS);
					uint32_t interp = interp_up + (((interp_down - interp_up) * src_yofs_frac) >> FRAC_BITS);
					interp >>= FRAC_BITS;
					p_dst[i * p_dst_width * CC + j * CC + l] = interp;
				} else if (sizeof(T) == 2) { //half float

					float xofs_frac = float(src_xofs_frac) / (1 << FRAC_BITS);
					float yofs_frac = float(src_yofs_frac) / (1 << FRAC_BITS);
					const T *src = ((const T *)p_src);
					T *dst = ((T *)p_dst);

					float p00 = Math::half_to_float(src[y_ofs_up + src_xofs_left + l]);
					float p10 = Math::half_to_float(src[y_ofs_up + src_xofs_right + l]);
					float p01 = Math::half_to_float(src[y_ofs_down + src_xofs_left + l]);
					float p11 = Math::half_to_float(src[y_ofs_down + src_xofs_right + l]);

					float interp_up = p00 + (p10 - p00) * xofs_frac;
					float interp_down = p01 + (p11 - p01) * xofs_frac;
					float interp = interp_up + ((interp_down - interp_up) * yofs_frac);

					dst[i * p_dst_width * CC + j * CC + l] = Math::make_half_float(interp);
				} else if (sizeof(T) == 4) { //float

					float xofs_frac = float(src_xofs_frac) / (1 << FRAC_BITS);
					float yofs_frac = float(src_yofs_frac) / (1 << FRAC_BITS);
					const T *src = ((const T *)p_src);
					T *dst = ((T *)p_dst);

					float p00 = src[y_ofs_up + src_xofs_left + l];
					float p10 = src[y_ofs_up + src_xofs_right + l];
					float p01 = src[y_ofs_down + src_xofs_left + l];
					float p11 = src[y_ofs_down + src_xofs_right + l];

					float interp_up = p00 + (p10 - p00) * xofs_frac;
					float interp_down = p01 + (p11 - p01) * xofs_frac;
					float interp = interp_up + ((interp_down - interp_up) * yofs_frac);

					dst[i * p_dst_width * CC + j * CC + l] = interp;
				}
			}
		}
	}
}

template <int CC, class T>
static void _scale_nearest(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {

	for (uint32_t i = 0; i < p_dst_height; i++) {

		uint32_t src_yofs = i * p_src_height / p_dst_height;
		uint32_t y_ofs = src_yofs * p_src_width * CC;

		for (uint32_t j = 0; j < p_dst_width; j++) {

			uint32_t src_xofs = j * p_src_width / p_dst_width;
			src_xofs *= CC;

			for (uint32_t l = 0; l < CC; l++) {

				const T *src = ((const T *)p_src);
				T *dst = ((T *)p_dst);

				T p = src[y_ofs + src_xofs + l];
				dst[i * p_dst_width * CC + j * CC + l] = p;
			}
		}
	}
}

#define LANCZOS_TYPE 3

static float _lanczos(float p_x) {
	return Math::abs(p_x) >= LANCZOS_TYPE ? 0 : Math::sincn(p_x) * Math::sincn(p_x / LANCZOS_TYPE);
}

template <int CC, class T>
static void _scale_lanczos(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {

	int32_t src_width = p_src_width;
	int32_t src_height = p_src_height;
	int32_t dst_height = p_dst_height;
	int32_t dst_width = p_dst_width;

	uint32_t buffer_size = src_height * dst_width * CC;
	float *buffer = memnew_arr(float, buffer_size); // Store the first pass in a buffer

	{ // FIRST PASS (horizontal)

		float x_scale = float(src_width) / float(dst_width);

		float scale_factor = MAX(x_scale, 1); // A larger kernel is required only when downscaling
		int32_t half_kernel = LANCZOS_TYPE * scale_factor;

		float *kernel = memnew_arr(float, half_kernel * 2);

		for (int32_t buffer_x = 0; buffer_x < dst_width; buffer_x++) {

			float src_real_x = buffer_x * x_scale;
			int32_t src_x = src_real_x;

			int32_t start_x = MAX(0, src_x - half_kernel + 1);
			int32_t end_x = MIN(src_width - 1, src_x + half_kernel);

			// Create the kernel used by all the pixels of the column
			for (int32_t target_x = start_x; target_x <= end_x; target_x++)
				kernel[target_x - start_x] = _lanczos((src_real_x - target_x) / scale_factor);

			for (int32_t buffer_y = 0; buffer_y < src_height; buffer_y++) {

				float pixel[CC] = { 0 };
				float weight = 0;

				for (int32_t target_x = start_x; target_x <= end_x; target_x++) {

					float lanczos_val = kernel[target_x - start_x];
					weight += lanczos_val;

					const T *__restrict src_data = ((const T *)p_src) + (buffer_y * src_width + target_x) * CC;

					for (uint32_t i = 0; i < CC; i++) {
						if (sizeof(T) == 2) //half float
							pixel[i] += Math::half_to_float(src_data[i]) * lanczos_val;
						else
							pixel[i] += src_data[i] * lanczos_val;
					}
				}

				float *dst_data = ((float *)buffer) + (buffer_y * dst_width + buffer_x) * CC;

				for (uint32_t i = 0; i < CC; i++)
					dst_data[i] = pixel[i] / weight; // Normalize the sum of all the samples
			}
		}

		memdelete_arr(kernel);
	} // End of first pass

	{ // SECOND PASS (vertical + result)

		float y_scale = float(src_height) / float(dst_height);

		float scale_factor = MAX(y_scale, 1);
		int32_t half_kernel = LANCZOS_TYPE * scale_factor;

		float *kernel = memnew_arr(float, half_kernel * 2);

		for (int32_t dst_y = 0; dst_y < dst_height; dst_y++) {

			float buffer_real_y = dst_y * y_scale;
			int32_t buffer_y = buffer_real_y;

			int32_t start_y = MAX(0, buffer_y - half_kernel + 1);
			int32_t end_y = MIN(src_height - 1, buffer_y + half_kernel);

			for (int32_t target_y = start_y; target_y <= end_y; target_y++)
				kernel[target_y - start_y] = _lanczos((buffer_real_y - target_y) / scale_factor);

			for (int32_t dst_x = 0; dst_x < dst_width; dst_x++) {

				float pixel[CC] = { 0 };
				float weight = 0;

				for (int32_t target_y = start_y; target_y <= end_y; target_y++) {

					float lanczos_val = kernel[target_y - start_y];
					weight += lanczos_val;

					float *buffer_data = ((float *)buffer) + (target_y * dst_width + dst_x) * CC;

					for (uint32_t i = 0; i < CC; i++)
						pixel[i] += buffer_data[i] * lanczos_val;
				}

				T *dst_data = ((T *)p_dst) + (dst_y * dst_width + dst_x) * CC;

				for (uint32_t i = 0; i < CC; i++) {
					pixel[i] /= weight;

					if (sizeof(T) == 1) //byte
						dst_data[i] = CLAMP(Math::fast_ftoi(pixel[i]), 0, 255);
					else if (sizeof(T) == 2) //half float
						dst_data[i] = Math::make_half_float(pixel[i]);
					else // float
						dst_data[i] = pixel[i];
				}
			}
		}

		memdelete_arr(kernel);
	} // End of second pass

	memdelete_arr(buffer);
}

static void _overlay(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, float p_alpha, uint32_t p_width, uint32_t p_height, uint32_t p_pixel_size) {

	uint16_t alpha = MIN((uint16_t)(p_alpha * 256.0f), 256);

	for (uint32_t i = 0; i < p_width * p_height * p_pixel_size; i++) {

		p_dst[i] = (p_dst[i] * (256 - alpha) + p_src[i] * alpha) >> 8;
	}
}

bool Image::is_size_po2() const {
	return uint32_t(width) == next_power_of_2(width) && uint32_t(height) == next_power_of_2(height);
}

void Image::resize_to_po2(bool p_square) {

	if (!_can_modify(format)) {
		ERR_EXPLAIN("Cannot resize in indexed, compressed or custom image formats.");
		ERR_FAIL();
	}

	int w = next_power_of_2(width);
	int h = next_power_of_2(height);

	if (w == width && h == height) {

		if (!p_square || w == h)
			return; //nothing to do
	}

	resize(w, h);
}

void Image::resize(int p_width, int p_height, Interpolation p_interpolation) {

	if (data.size() == 0) {
		ERR_EXPLAIN("Cannot resize image before creating it, use create() or create_from_data() first.");
		ERR_FAIL();
	}

	if (!_can_modify(format)) {
		ERR_EXPLAIN("Cannot resize in indexed, compressed or custom image formats.");
		ERR_FAIL();
	}

	bool mipmap_aware = p_interpolation == INTERPOLATE_TRILINEAR /* || p_interpolation == INTERPOLATE_TRICUBIC */;

	ERR_FAIL_COND(p_width <= 0);
	ERR_FAIL_COND(p_height <= 0);
	ERR_FAIL_COND(p_width > MAX_WIDTH);
	ERR_FAIL_COND(p_height > MAX_HEIGHT);

	if (p_width == width && p_height == height)
		return;

	Image dst(p_width, p_height, 0, format);

	// Setup mipmap-aware scaling
	Image dst2;
	int mip1 = 0;
	int mip2 = 0;
	float mip1_weight = 0;
	if (mipmap_aware) {
		float avg_scale = ((float)p_width / width + (float)p_height / height) * 0.5f;
		if (avg_scale >= 1.0f) {
			mipmap_aware = false;
		} else {
			float level = Math::log(1.0f / avg_scale) / Math::log(2.0f);
			mip1 = CLAMP((int)Math::floor(level), 0, get_mipmap_count());
			mip2 = CLAMP((int)Math::ceil(level), 0, get_mipmap_count());
			mip1_weight = 1.0f - (level - mip1);
		}
	}
	bool interpolate_mipmaps = mipmap_aware && mip1 != mip2;
	if (interpolate_mipmaps) {
		dst2.create(p_width, p_height, 0, format);
	}

	bool had_mipmaps = mipmaps;
	if (interpolate_mipmaps && !had_mipmaps) {
		generate_mipmaps();
	}
	// --

	PoolVector<uint8_t>::Read r = data.read();
	const unsigned char *r_ptr = r.ptr();

	PoolVector<uint8_t>::Write w = dst.data.write();
	unsigned char *w_ptr = w.ptr();

	switch (p_interpolation) {

		case INTERPOLATE_NEAREST: {

			if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) {
				switch (get_format_pixel_size(format)) {
					case 1: _scale_nearest<1, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 2: _scale_nearest<2, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 3: _scale_nearest<3, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 4: _scale_nearest<4, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
				}
			} else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) {
				switch (get_format_pixel_size(format)) {
					case 4: _scale_nearest<1, float>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 8: _scale_nearest<2, float>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 12: _scale_nearest<3, float>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 16: _scale_nearest<4, float>(r_ptr, w_ptr, width, height, p_width, p_height); break;
				}

			} else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) {
				switch (get_format_pixel_size(format)) {
					case 2: _scale_nearest<1, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 4: _scale_nearest<2, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 6: _scale_nearest<3, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 8: _scale_nearest<4, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
				}
			}

		} break;
		case INTERPOLATE_BILINEAR:
		case INTERPOLATE_TRILINEAR: {

			for (int i = 0; i < 2; ++i) {
				int src_width;
				int src_height;
				const unsigned char *src_ptr;

				if (!mipmap_aware) {
					if (i == 0) {
						// Standard behavior
						src_width = width;
						src_height = height;
						src_ptr = r_ptr;
					} else {
						// No need for a second iteration
						break;
					}
				} else {
					if (i == 0) {
						// Read from the first mipmap that will be interpolated
						// (if both levels are the same, we will not interpolate, but at least we'll sample from the right level)
						int offs;
						_get_mipmap_offset_and_size(mip1, offs, src_width, src_height);
						src_ptr = r_ptr + offs;
					} else if (!interpolate_mipmaps) {
						// No need generate a second image
						break;
					} else {
						// Switch to read from the second mipmap that will be interpolated
						int offs;
						_get_mipmap_offset_and_size(mip2, offs, src_width, src_height);
						src_ptr = r_ptr + offs;
						// Switch to write to the second destination image
						w = dst2.data.write();
						w_ptr = w.ptr();
					}
				}

				if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) {
					switch (get_format_pixel_size(format)) {
						case 1: _scale_bilinear<1, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break;
						case 2: _scale_bilinear<2, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break;
						case 3: _scale_bilinear<3, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break;
						case 4: _scale_bilinear<4, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break;
					}
				} else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) {
					switch (get_format_pixel_size(format)) {
						case 4: _scale_bilinear<1, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break;
						case 8: _scale_bilinear<2, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break;
						case 12: _scale_bilinear<3, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break;
						case 16: _scale_bilinear<4, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break;
					}
				} else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) {
					switch (get_format_pixel_size(format)) {
						case 2: _scale_bilinear<1, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break;
						case 4: _scale_bilinear<2, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break;
						case 6: _scale_bilinear<3, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break;
						case 8: _scale_bilinear<4, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break;
					}
				}
			}

			if (interpolate_mipmaps) {
				// Switch to read again from the first scaled mipmap to overlay it over the second
				r = dst.data.read();
				_overlay(r.ptr(), w.ptr(), mip1_weight, p_width, p_height, get_format_pixel_size(format));
			}

		} break;
		case INTERPOLATE_CUBIC: {

			if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) {
				switch (get_format_pixel_size(format)) {
					case 1: _scale_cubic<1, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 2: _scale_cubic<2, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 3: _scale_cubic<3, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 4: _scale_cubic<4, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
				}
			} else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) {
				switch (get_format_pixel_size(format)) {
					case 4: _scale_cubic<1, float>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 8: _scale_cubic<2, float>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 12: _scale_cubic<3, float>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 16: _scale_cubic<4, float>(r_ptr, w_ptr, width, height, p_width, p_height); break;
				}
			} else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) {
				switch (get_format_pixel_size(format)) {
					case 2: _scale_cubic<1, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 4: _scale_cubic<2, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 6: _scale_cubic<3, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 8: _scale_cubic<4, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
				}
			}
		} break;
		case INTERPOLATE_LANCZOS: {

			if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) {
				switch (get_format_pixel_size(format)) {
					case 1: _scale_lanczos<1, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 2: _scale_lanczos<2, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 3: _scale_lanczos<3, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 4: _scale_lanczos<4, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
				}
			} else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) {
				switch (get_format_pixel_size(format)) {
					case 4: _scale_lanczos<1, float>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 8: _scale_lanczos<2, float>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 12: _scale_lanczos<3, float>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 16: _scale_lanczos<4, float>(r_ptr, w_ptr, width, height, p_width, p_height); break;
				}
			} else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) {
				switch (get_format_pixel_size(format)) {
					case 2: _scale_lanczos<1, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 4: _scale_lanczos<2, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 6: _scale_lanczos<3, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
					case 8: _scale_lanczos<4, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break;
				}
			}
		} break;
	}

	r.release();
	w.release();

	if (interpolate_mipmaps) {
		dst._copy_internals_from(dst2);
	}

	if (had_mipmaps)
		dst.generate_mipmaps();

	_copy_internals_from(dst);
}

void Image::crop_from_point(int p_x, int p_y, int p_width, int p_height) {

	if (!_can_modify(format)) {
		ERR_EXPLAIN("Cannot crop in indexed, compressed or custom image formats.");
		ERR_FAIL();
	}
	ERR_FAIL_COND(p_x < 0);
	ERR_FAIL_COND(p_y < 0);
	ERR_FAIL_COND(p_width <= 0);
	ERR_FAIL_COND(p_height <= 0);
	ERR_FAIL_COND(p_x + p_width > MAX_WIDTH);
	ERR_FAIL_COND(p_y + p_height > MAX_HEIGHT);

	/* to save memory, cropping should be done in-place, however, since this function
	   will most likely either not be used much, or in critical areas, for now it won't, because
	   it's a waste of time. */

	if (p_width == width && p_height == height && p_x == 0 && p_y == 0)
		return;

	uint8_t pdata[16]; //largest is 16
	uint32_t pixel_size = get_format_pixel_size(format);

	Image dst(p_width, p_height, 0, format);

	{
		PoolVector<uint8_t>::Read r = data.read();
		PoolVector<uint8_t>::Write w = dst.data.write();

		int m_h = p_y + p_height;
		int m_w = p_x + p_width;
		for (int y = p_y; y < m_h; y++) {

			for (int x = p_x; x < m_w; x++) {

				if ((x >= width || y >= height)) {
					for (uint32_t i = 0; i < pixel_size; i++)
						pdata[i] = 0;
				} else {
					_get_pixelb(x, y, pixel_size, r.ptr(), pdata);
				}

				dst._put_pixelb(x - p_x, y - p_y, pixel_size, w.ptr(), pdata);
			}
		}
	}

	if (has_mipmaps())
		dst.generate_mipmaps();
	_copy_internals_from(dst);
}

void Image::crop(int p_width, int p_height) {

	crop_from_point(0, 0, p_width, p_height);
}

void Image::flip_y() {

	if (!_can_modify(format)) {
		ERR_EXPLAIN("Cannot flip_y in indexed, compressed or custom image formats.");
		ERR_FAIL();
	}

	bool used_mipmaps = has_mipmaps();
	if (used_mipmaps) {
		clear_mipmaps();
	}

	{
		PoolVector<uint8_t>::Write w = data.write();
		uint8_t up[16];
		uint8_t down[16];
		uint32_t pixel_size = get_format_pixel_size(format);

		for (int y = 0; y < height / 2; y++) {

			for (int x = 0; x < width; x++) {

				_get_pixelb(x, y, pixel_size, w.ptr(), up);
				_get_pixelb(x, height - y - 1, pixel_size, w.ptr(), down);

				_put_pixelb(x, height - y - 1, pixel_size, w.ptr(), up);
				_put_pixelb(x, y, pixel_size, w.ptr(), down);
			}
		}
	}

	if (used_mipmaps) {
		generate_mipmaps();
	}
}

void Image::flip_x() {

	if (!_can_modify(format)) {
		ERR_EXPLAIN("Cannot flip_x in indexed, compressed or custom image formats.");
		ERR_FAIL();
	}

	bool used_mipmaps = has_mipmaps();
	if (used_mipmaps) {
		clear_mipmaps();
	}

	{
		PoolVector<uint8_t>::Write w = data.write();
		uint8_t up[16];
		uint8_t down[16];
		uint32_t pixel_size = get_format_pixel_size(format);

		for (int y = 0; y < height; y++) {

			for (int x = 0; x < width / 2; x++) {

				_get_pixelb(x, y, pixel_size, w.ptr(), up);
				_get_pixelb(width - x - 1, y, pixel_size, w.ptr(), down);

				_put_pixelb(width - x - 1, y, pixel_size, w.ptr(), up);
				_put_pixelb(x, y, pixel_size, w.ptr(), down);
			}
		}
	}

	if (used_mipmaps) {
		generate_mipmaps();
	}
}

int Image::_get_dst_image_size(int p_width, int p_height, Format p_format, int &r_mipmaps, int p_mipmaps) {

	int size = 0;
	int w = p_width;
	int h = p_height;
	int mm = 0;

	int pixsize = get_format_pixel_size(p_format);
	int pixshift = get_format_pixel_rshift(p_format);
	int block = get_format_block_size(p_format);
	//technically, you can still compress up to 1 px no matter the format, so commenting this
	//int minw, minh;
	//get_format_min_pixel_size(p_format, minw, minh);
	int minw = 1, minh = 1;

	while (true) {

		int bw = w % block != 0 ? w + (block - w % block) : w;
		int bh = h % block != 0 ? h + (block - h % block) : h;

		int s = bw * bh;

		s *= pixsize;
		s >>= pixshift;

		size += s;

		if (p_mipmaps >= 0 && mm == p_mipmaps)
			break;

		if (p_mipmaps >= 0) {

			w = MAX(minw, w >> 1);
			h = MAX(minh, h >> 1);
		} else {
			if (w == minw && h == minh)
				break;
			w = MAX(minw, w >> 1);
			h = MAX(minh, h >> 1);
		}
		mm++;
	};

	r_mipmaps = mm;
	return size;
}

bool Image::_can_modify(Format p_format) const {

	return p_format <= FORMAT_RGBE9995;
}

template <class Component, int CC, bool renormalize,
		void (*average_func)(Component &, const Component &, const Component &, const Component &, const Component &),
		void (*renormalize_func)(Component *)>
static void _generate_po2_mipmap(const Component *p_src, Component *p_dst, uint32_t p_width, uint32_t p_height) {

	//fast power of 2 mipmap generation
	uint32_t dst_w = MAX(p_width >> 1, 1);
	uint32_t dst_h = MAX(p_height >> 1, 1);

	int right_step = (p_width == 1) ? 0 : CC;
	int down_step = (p_height == 1) ? 0 : (p_width * CC);

	for (uint32_t i = 0; i < dst_h; i++) {

		const Component *rup_ptr = &p_src[i * 2 * down_step];
		const Component *rdown_ptr = rup_ptr + down_step;
		Component *dst_ptr = &p_dst[i * dst_w * CC];
		uint32_t count = dst_w;

		while (count--) {

			for (int j = 0; j < CC; j++) {
				average_func(dst_ptr[j], rup_ptr[j], rup_ptr[j + right_step], rdown_ptr[j], rdown_ptr[j + right_step]);
			}

			if (renormalize) {
				renormalize_func(dst_ptr);
			}

			dst_ptr += CC;
			rup_ptr += right_step * 2;
			rdown_ptr += right_step * 2;
		}
	}
}

void Image::expand_x2_hq2x() {

	ERR_FAIL_COND(!_can_modify(format));

	bool used_mipmaps = has_mipmaps();
	if (used_mipmaps) {
		clear_mipmaps();
	}

	Format current = format;

	if (current != FORMAT_RGBA8)
		convert(FORMAT_RGBA8);

	PoolVector<uint8_t> dest;
	dest.resize(width * 2 * height * 2 * 4);

	{
		PoolVector<uint8_t>::Read r = data.read();
		PoolVector<uint8_t>::Write w = dest.write();

		hq2x_resize((const uint32_t *)r.ptr(), width, height, (uint32_t *)w.ptr());
	}

	width *= 2;
	height *= 2;
	data = dest;

	if (current != FORMAT_RGBA8)
		convert(current);

	// FIXME: This is likely meant to use "used_mipmaps" as defined above, but if we do,
	// we end up with a regression: GH-22747
	if (mipmaps) {
		generate_mipmaps();
	}
}

void Image::shrink_x2() {

	ERR_FAIL_COND(data.size() == 0);

	if (mipmaps) {

		//just use the lower mipmap as base and copy all
		PoolVector<uint8_t> new_img;

		int ofs = get_mipmap_offset(1);

		int new_size = data.size() - ofs;
		new_img.resize(new_size);
		ERR_FAIL_COND(new_img.size() == 0);

		{
			PoolVector<uint8_t>::Write w = new_img.write();
			PoolVector<uint8_t>::Read r = data.read();

			copymem(w.ptr(), &r[ofs], new_size);
		}

		width = MAX(width / 2, 1);
		height = MAX(height / 2, 1);
		data = new_img;

	} else {

		PoolVector<uint8_t> new_img;

		ERR_FAIL_COND(!_can_modify(format));
		int ps = get_format_pixel_size(format);
		new_img.resize((width / 2) * (height / 2) * ps);
		ERR_FAIL_COND(new_img.size() == 0);

		{
			PoolVector<uint8_t>::Write w = new_img.write();
			PoolVector<uint8_t>::Read r = data.read();

			switch (format) {

				case FORMAT_L8:
				case FORMAT_R8: _generate_po2_mipmap<uint8_t, 1, false, Image::average_4_uint8, Image::renormalize_uint8>(r.ptr(), w.ptr(), width, height); break;
				case FORMAT_LA8: _generate_po2_mipmap<uint8_t, 2, false, Image::average_4_uint8, Image::renormalize_uint8>(r.ptr(), w.ptr(), width, height); break;
				case FORMAT_RG8: _generate_po2_mipmap<uint8_t, 2, false, Image::average_4_uint8, Image::renormalize_uint8>(r.ptr(), w.ptr(), width, height); break;
				case FORMAT_RGB8: _generate_po2_mipmap<uint8_t, 3, false, Image::average_4_uint8, Image::renormalize_uint8>(r.ptr(), w.ptr(), width, height); break;
				case FORMAT_RGBA8: _generate_po2_mipmap<uint8_t, 4, false, Image::average_4_uint8, Image::renormalize_uint8>(r.ptr(), w.ptr(), width, height); break;

				case FORMAT_RF: _generate_po2_mipmap<float, 1, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(r.ptr()), reinterpret_cast<float *>(w.ptr()), width, height); break;
				case FORMAT_RGF: _generate_po2_mipmap<float, 2, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(r.ptr()), reinterpret_cast<float *>(w.ptr()), width, height); break;
				case FORMAT_RGBF: _generate_po2_mipmap<float, 3, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(r.ptr()), reinterpret_cast<float *>(w.ptr()), width, height); break;
				case FORMAT_RGBAF: _generate_po2_mipmap<float, 4, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(r.ptr()), reinterpret_cast<float *>(w.ptr()), width, height); break;

				case FORMAT_RH: _generate_po2_mipmap<uint16_t, 1, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(r.ptr()), reinterpret_cast<uint16_t *>(w.ptr()), width, height); break;
				case FORMAT_RGH: _generate_po2_mipmap<uint16_t, 2, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(r.ptr()), reinterpret_cast<uint16_t *>(w.ptr()), width, height); break;
				case FORMAT_RGBH: _generate_po2_mipmap<uint16_t, 3, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(r.ptr()), reinterpret_cast<uint16_t *>(w.ptr()), width, height); break;
				case FORMAT_RGBAH: _generate_po2_mipmap<uint16_t, 4, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(r.ptr()), reinterpret_cast<uint16_t *>(w.ptr()), width, height); break;

				case FORMAT_RGBE9995: _generate_po2_mipmap<uint32_t, 1, false, Image::average_4_rgbe9995, Image::renormalize_rgbe9995>(reinterpret_cast<const uint32_t *>(r.ptr()), reinterpret_cast<uint32_t *>(w.ptr()), width, height); break;
				default: {
				}
			}
		}

		width /= 2;
		height /= 2;
		data = new_img;
	}
}

void Image::normalize() {

	bool used_mipmaps = has_mipmaps();
	if (used_mipmaps) {
		clear_mipmaps();
	}

	lock();

	for (int y = 0; y < height; y++) {

		for (int x = 0; x < width; x++) {

			Color c = get_pixel(x, y);
			Vector3 v(c.r * 2.0 - 1.0, c.g * 2.0 - 1.0, c.b * 2.0 - 1.0);
			v.normalize();
			c.r = v.x * 0.5 + 0.5;
			c.g = v.y * 0.5 + 0.5;
			c.b = v.z * 0.5 + 0.5;
			set_pixel(x, y, c);
		}
	}

	unlock();

	if (used_mipmaps) {
		generate_mipmaps(true);
	}
}

Error Image::generate_mipmaps(bool p_renormalize) {

	if (!_can_modify(format)) {
		ERR_EXPLAIN("Cannot generate mipmaps in indexed, compressed or custom image formats.");
		ERR_FAIL_V(ERR_UNAVAILABLE);
	}

	if (width == 0 || height == 0) {
		ERR_EXPLAIN("Cannot generate mipmaps with width or height equal to 0.");
		ERR_FAIL_V(ERR_UNCONFIGURED);
	}

	int mmcount;

	int size = _get_dst_image_size(width, height, format, mmcount);

	data.resize(size);

	PoolVector<uint8_t>::Write wp = data.write();

	int prev_ofs = 0;
	int prev_h = height;
	int prev_w = width;

	for (int i = 1; i <= mmcount; i++) {

		int ofs, w, h;
		_get_mipmap_offset_and_size(i, ofs, w, h);

		switch (format) {

			case FORMAT_L8:
			case FORMAT_R8: _generate_po2_mipmap<uint8_t, 1, false, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break;
			case FORMAT_LA8:
			case FORMAT_RG8: _generate_po2_mipmap<uint8_t, 2, false, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break;
			case FORMAT_RGB8:
				if (p_renormalize)
					_generate_po2_mipmap<uint8_t, 3, true, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
				else
					_generate_po2_mipmap<uint8_t, 3, false, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);

				break;
			case FORMAT_RGBA8:
				if (p_renormalize)
					_generate_po2_mipmap<uint8_t, 4, true, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
				else
					_generate_po2_mipmap<uint8_t, 4, false, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
				break;
			case FORMAT_RF:
				_generate_po2_mipmap<float, 1, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
				break;
			case FORMAT_RGF:
				_generate_po2_mipmap<float, 2, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
				break;
			case FORMAT_RGBF:
				if (p_renormalize)
					_generate_po2_mipmap<float, 3, true, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
				else
					_generate_po2_mipmap<float, 3, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);

				break;
			case FORMAT_RGBAF:
				if (p_renormalize)
					_generate_po2_mipmap<float, 4, true, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
				else
					_generate_po2_mipmap<float, 4, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);

				break;
			case FORMAT_RH:
				_generate_po2_mipmap<uint16_t, 1, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
				break;
			case FORMAT_RGH:
				_generate_po2_mipmap<uint16_t, 2, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
				break;
			case FORMAT_RGBH:
				if (p_renormalize)
					_generate_po2_mipmap<uint16_t, 3, true, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
				else
					_generate_po2_mipmap<uint16_t, 3, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);

				break;
			case FORMAT_RGBAH:
				if (p_renormalize)
					_generate_po2_mipmap<uint16_t, 4, true, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
				else
					_generate_po2_mipmap<uint16_t, 4, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);

				break;
			case FORMAT_RGBE9995:
				if (p_renormalize)
					_generate_po2_mipmap<uint32_t, 1, true, Image::average_4_rgbe9995, Image::renormalize_rgbe9995>(reinterpret_cast<const uint32_t *>(&wp[prev_ofs]), reinterpret_cast<uint32_t *>(&wp[ofs]), prev_w, prev_h);
				else
					_generate_po2_mipmap<uint32_t, 1, false, Image::average_4_rgbe9995, Image::renormalize_rgbe9995>(reinterpret_cast<const uint32_t *>(&wp[prev_ofs]), reinterpret_cast<uint32_t *>(&wp[ofs]), prev_w, prev_h);

				break;
			default: {
			}
		}

		prev_ofs = ofs;
		prev_w = w;
		prev_h = h;
	}

	mipmaps = true;

	return OK;
}

void Image::clear_mipmaps() {

	if (!mipmaps)
		return;

	if (empty())
		return;

	int ofs, w, h;
	_get_mipmap_offset_and_size(1, ofs, w, h);
	data.resize(ofs);

	mipmaps = false;
}

bool Image::empty() const {

	return (data.size() == 0);
}

PoolVector<uint8_t> Image::get_data() const {

	return data;
}

void Image::create(int p_width, int p_height, bool p_use_mipmaps, Format p_format) {

	ERR_FAIL_INDEX(p_width - 1, MAX_WIDTH);
	ERR_FAIL_INDEX(p_height - 1, MAX_HEIGHT);

	int mm = 0;
	int size = _get_dst_image_size(p_width, p_height, p_format, mm, p_use_mipmaps ? -1 : 0);
	data.resize(size);
	{
		PoolVector<uint8_t>::Write w = data.write();
		zeromem(w.ptr(), size);
	}

	width = p_width;
	height = p_height;
	mipmaps = p_use_mipmaps;
	format = p_format;
}

void Image::create(int p_width, int p_height, bool p_use_mipmaps, Format p_format, const PoolVector<uint8_t> &p_data) {

	ERR_FAIL_INDEX(p_width - 1, MAX_WIDTH);
	ERR_FAIL_INDEX(p_height - 1, MAX_HEIGHT);

	int mm;
	int size = _get_dst_image_size(p_width, p_height, p_format, mm, p_use_mipmaps ? -1 : 0);

	if (size != p_data.size()) {
		ERR_EXPLAIN("Expected data size of " + itos(size) + " bytes in Image::create(), got instead " + itos(p_data.size()) + " bytes.");
		ERR_FAIL_COND(p_data.size() != size);
	}

	height = p_height;
	width = p_width;
	format = p_format;
	data = p_data;
	mipmaps = p_use_mipmaps;
}

void Image::create(const char **p_xpm) {

	int size_width = 0;
	int size_height = 0;
	int pixelchars = 0;
	mipmaps = false;
	bool has_alpha = false;

	enum Status {
		READING_HEADER,
		READING_COLORS,
		READING_PIXELS,
		DONE
	};

	Status status = READING_HEADER;
	int line = 0;

	HashMap<String, Color> colormap;
	int colormap_size = 0;
	uint32_t pixel_size = 0;
	PoolVector<uint8_t>::Write w;

	while (status != DONE) {

		const char *line_ptr = p_xpm[line];

		switch (status) {

			case READING_HEADER: {

				String line_str = line_ptr;
				line_str.replace("\t", " ");

				size_width = line_str.get_slicec(' ', 0).to_int();
				size_height = line_str.get_slicec(' ', 1).to_int();
				colormap_size = line_str.get_slicec(' ', 2).to_int();
				pixelchars = line_str.get_slicec(' ', 3).to_int();
				ERR_FAIL_COND(colormap_size > 32766);
				ERR_FAIL_COND(pixelchars > 5);
				ERR_FAIL_COND(size_width > 32767);
				ERR_FAIL_COND(size_height > 32767);
				status = READING_COLORS;
			} break;
			case READING_COLORS: {

				String colorstring;
				for (int i = 0; i < pixelchars; i++) {

					colorstring += *line_ptr;
					line_ptr++;
				}
				//skip spaces
				while (*line_ptr == ' ' || *line_ptr == '\t' || *line_ptr == 0) {
					if (*line_ptr == 0)
						break;
					line_ptr++;
				}
				if (*line_ptr == 'c') {

					line_ptr++;
					while (*line_ptr == ' ' || *line_ptr == '\t' || *line_ptr == 0) {
						if (*line_ptr == 0)
							break;
						line_ptr++;
					}

					if (*line_ptr == '#') {
						line_ptr++;
						uint8_t col_r = 0;
						uint8_t col_g = 0;
						uint8_t col_b = 0;
						//uint8_t col_a=255;

						for (int i = 0; i < 6; i++) {

							char v = line_ptr[i];

							if (v >= '0' && v <= '9')
								v -= '0';
							else if (v >= 'A' && v <= 'F')
								v = (v - 'A') + 10;
							else if (v >= 'a' && v <= 'f')
								v = (v - 'a') + 10;
							else
								break;

							switch (i) {
								case 0: col_r = v << 4; break;
								case 1: col_r |= v; break;
								case 2: col_g = v << 4; break;
								case 3: col_g |= v; break;
								case 4: col_b = v << 4; break;
								case 5: col_b |= v; break;
							};
						}

						// magenta mask
						if (col_r == 255 && col_g == 0 && col_b == 255) {

							colormap[colorstring] = Color(0, 0, 0, 0);
							has_alpha = true;
						} else {

							colormap[colorstring] = Color(col_r / 255.0, col_g / 255.0, col_b / 255.0, 1.0);
						}
					}
				}
				if (line == colormap_size) {

					status = READING_PIXELS;
					create(size_width, size_height, 0, has_alpha ? FORMAT_RGBA8 : FORMAT_RGB8);
					w = data.write();
					pixel_size = has_alpha ? 4 : 3;
				}
			} break;
			case READING_PIXELS: {

				int y = line - colormap_size - 1;
				for (int x = 0; x < size_width; x++) {

					char pixelstr[6] = { 0, 0, 0, 0, 0, 0 };
					for (int i = 0; i < pixelchars; i++)
						pixelstr[i] = line_ptr[x * pixelchars + i];

					Color *colorptr = colormap.getptr(pixelstr);
					ERR_FAIL_COND(!colorptr);
					uint8_t pixel[4];
					for (uint32_t i = 0; i < pixel_size; i++) {
						pixel[i] = CLAMP((*colorptr)[i] * 255, 0, 255);
					}
					_put_pixelb(x, y, pixel_size, w.ptr(), pixel);
				}

				if (y == (size_height - 1))
					status = DONE;
			} break;
			default: {
			}
		}

		line++;
	}
}
#define DETECT_ALPHA_MAX_THRESHOLD 254
#define DETECT_ALPHA_MIN_THRESHOLD 2

#define DETECT_ALPHA(m_value)                          \
	{                                                  \
		uint8_t value = m_value;                       \
		if (value < DETECT_ALPHA_MIN_THRESHOLD)        \
			bit = true;                                \
		else if (value < DETECT_ALPHA_MAX_THRESHOLD) { \
                                                       \
			detected = true;                           \
			break;                                     \
		}                                              \
	}

#define DETECT_NON_ALPHA(m_value) \
	{                             \
		uint8_t value = m_value;  \
		if (value > 0) {          \
                                  \
			detected = true;      \
			break;                \
		}                         \
	}

bool Image::is_invisible() const {

	if (format == FORMAT_L8 ||
			format == FORMAT_RGB8 || format == FORMAT_RG8)
		return false;

	int len = data.size();

	if (len == 0)
		return true;

	int w, h;
	_get_mipmap_offset_and_size(1, len, w, h);

	PoolVector<uint8_t>::Read r = data.read();
	const unsigned char *data_ptr = r.ptr();

	bool detected = false;

	switch (format) {

		case FORMAT_LA8: {

			for (int i = 0; i < (len >> 1); i++) {
				DETECT_NON_ALPHA(data_ptr[(i << 1) + 1]);
			}

		} break;
		case FORMAT_RGBA8: {

			for (int i = 0; i < (len >> 2); i++) {
				DETECT_NON_ALPHA(data_ptr[(i << 2) + 3])
			}

		} break;

		case FORMAT_PVRTC2A:
		case FORMAT_PVRTC4A:
		case FORMAT_DXT3:
		case FORMAT_DXT5: {
			detected = true;
		} break;
		default: {
		}
	}

	return !detected;
}

Image::AlphaMode Image::detect_alpha() const {

	int len = data.size();

	if (len == 0)
		return ALPHA_NONE;

	int w, h;
	_get_mipmap_offset_and_size(1, len, w, h);

	PoolVector<uint8_t>::Read r = data.read();
	const unsigned char *data_ptr = r.ptr();

	bool bit = false;
	bool detected = false;

	switch (format) {

		case FORMAT_LA8: {

			for (int i = 0; i < (len >> 1); i++) {
				DETECT_ALPHA(data_ptr[(i << 1) + 1]);
			}

		} break;
		case FORMAT_RGBA8: {

			for (int i = 0; i < (len >> 2); i++) {
				DETECT_ALPHA(data_ptr[(i << 2) + 3])
			}

		} break;
		case FORMAT_PVRTC2A:
		case FORMAT_PVRTC4A:
		case FORMAT_DXT3:
		case FORMAT_DXT5: {
			detected = true;
		} break;
		default: {
		}
	}

	if (detected)
		return ALPHA_BLEND;
	else if (bit)
		return ALPHA_BIT;
	else
		return ALPHA_NONE;
}

Error Image::load(const String &p_path) {
#ifdef DEBUG_ENABLED
	if (p_path.begins_with("res://") && ResourceLoader::exists(p_path)) {
		WARN_PRINTS("Loaded resource as image file, this will not work on export: '" + p_path + "'. Instead, import the image file as an Image resource and load it normally as a resource.");
	}
#endif
	return ImageLoader::load_image(p_path, this);
}

Error Image::save_png(const String &p_path) const {

	if (save_png_func == NULL)
		return ERR_UNAVAILABLE;

	return save_png_func(p_path, Ref<Image>((Image *)this));
}

int Image::get_image_data_size(int p_width, int p_height, Format p_format, bool p_mipmaps) {

	int mm;
	return _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmaps ? -1 : 0);
}

int Image::get_image_required_mipmaps(int p_width, int p_height, Format p_format) {

	int mm;
	_get_dst_image_size(p_width, p_height, p_format, mm, -1);
	return mm;
}

int Image::get_image_mipmap_offset(int p_width, int p_height, Format p_format, int p_mipmap) {

	if (p_mipmap <= 0) {
		return 0;
	}
	int mm;
	return _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmap - 1);
}

bool Image::is_compressed() const {
	return format > FORMAT_RGBE9995;
}

Error Image::decompress() {

	if (format >= FORMAT_DXT1 && format <= FORMAT_RGTC_RG && _image_decompress_bc)
		_image_decompress_bc(this);
	else if (format >= FORMAT_BPTC_RGBA && format <= FORMAT_BPTC_RGBFU && _image_decompress_bptc)
		_image_decompress_bptc(this);
	else if (format >= FORMAT_PVRTC2 && format <= FORMAT_PVRTC4A && _image_decompress_pvrtc)
		_image_decompress_pvrtc(this);
	else if (format == FORMAT_ETC && _image_decompress_etc1)
		_image_decompress_etc1(this);
	else if (format >= FORMAT_ETC2_R11 && format <= FORMAT_ETC2_RGB8A1 && _image_decompress_etc2)
		_image_decompress_etc2(this);
	else
		return ERR_UNAVAILABLE;
	return OK;
}

Error Image::compress(CompressMode p_mode, CompressSource p_source, float p_lossy_quality) {

	switch (p_mode) {

		case COMPRESS_S3TC: {

			ERR_FAIL_COND_V(!_image_compress_bc_func, ERR_UNAVAILABLE);
			_image_compress_bc_func(this, p_lossy_quality, p_source);
		} break;
		case COMPRESS_PVRTC2: {

			ERR_FAIL_COND_V(!_image_compress_pvrtc2_func, ERR_UNAVAILABLE);
			_image_compress_pvrtc2_func(this);
		} break;
		case COMPRESS_PVRTC4: {

			ERR_FAIL_COND_V(!_image_compress_pvrtc4_func, ERR_UNAVAILABLE);
			_image_compress_pvrtc4_func(this);
		} break;
		case COMPRESS_ETC: {

			ERR_FAIL_COND_V(!_image_compress_etc1_func, ERR_UNAVAILABLE);
			_image_compress_etc1_func(this, p_lossy_quality);
		} break;
		case COMPRESS_ETC2: {

			ERR_FAIL_COND_V(!_image_compress_etc2_func, ERR_UNAVAILABLE);
			_image_compress_etc2_func(this, p_lossy_quality, p_source);
		} break;
		case COMPRESS_BPTC: {

			ERR_FAIL_COND_V(!_image_compress_bptc_func, ERR_UNAVAILABLE);
			_image_compress_bptc_func(this, p_lossy_quality, p_source);
		} break;
	}

	return OK;
}

Image::Image(const char **p_xpm) {

	width = 0;
	height = 0;
	mipmaps = false;
	format = FORMAT_L8;

	create(p_xpm);
}

Image::Image(int p_width, int p_height, bool p_use_mipmaps, Format p_format) {

	width = 0;
	height = 0;
	mipmaps = p_use_mipmaps;
	format = FORMAT_L8;

	create(p_width, p_height, p_use_mipmaps, p_format);
}

Image::Image(int p_width, int p_height, bool p_mipmaps, Format p_format, const PoolVector<uint8_t> &p_data) {

	width = 0;
	height = 0;
	mipmaps = p_mipmaps;
	format = FORMAT_L8;

	create(p_width, p_height, p_mipmaps, p_format, p_data);
}

Rect2 Image::get_used_rect() const {

	if (format != FORMAT_LA8 && format != FORMAT_RGBA8 && format != FORMAT_RGBAF && format != FORMAT_RGBAH && format != FORMAT_RGBA4444 && format != FORMAT_RGBA5551)
		return Rect2(Point2(), Size2(width, height));

	int len = data.size();

	if (len == 0)
		return Rect2();

	const_cast<Image *>(this)->lock();
	int minx = 0xFFFFFF, miny = 0xFFFFFFF;
	int maxx = -1, maxy = -1;
	for (int j = 0; j < height; j++) {
		for (int i = 0; i < width; i++) {

			bool opaque = get_pixel(i, j).a > 0.99;
			if (!opaque)
				continue;
			if (i > maxx)
				maxx = i;
			if (j > maxy)
				maxy = j;
			if (i < minx)
				minx = i;
			if (j < miny)
				miny = j;
		}
	}

	const_cast<Image *>(this)->unlock();

	if (maxx == -1)
		return Rect2();
	else
		return Rect2(minx, miny, maxx - minx + 1, maxy - miny + 1);
}

Ref<Image> Image::get_rect(const Rect2 &p_area) const {

	Ref<Image> img = memnew(Image(p_area.size.x, p_area.size.y, mipmaps, format));
	img->blit_rect(Ref<Image>((Image *)this), p_area, Point2(0, 0));
	return img;
}

void Image::blit_rect(const Ref<Image> &p_src, const Rect2 &p_src_rect, const Point2 &p_dest) {

	ERR_FAIL_COND(p_src.is_null());
	int dsize = data.size();
	int srcdsize = p_src->data.size();
	ERR_FAIL_COND(dsize == 0);
	ERR_FAIL_COND(srcdsize == 0);
	ERR_FAIL_COND(format != p_src->format);

	Rect2i clipped_src_rect = Rect2i(0, 0, p_src->width, p_src->height).clip(p_src_rect);

	if (p_dest.x < 0)
		clipped_src_rect.position.x = ABS(p_dest.x);
	if (p_dest.y < 0)
		clipped_src_rect.position.y = ABS(p_dest.y);

	if (clipped_src_rect.size.x <= 0 || clipped_src_rect.size.y <= 0)
		return;

	Point2 src_underscan = Point2(MIN(0, p_src_rect.position.x), MIN(0, p_src_rect.position.y));
	Rect2i dest_rect = Rect2i(0, 0, width, height).clip(Rect2i(p_dest - src_underscan, clipped_src_rect.size));

	PoolVector<uint8_t>::Write wp = data.write();
	uint8_t *dst_data_ptr = wp.ptr();

	PoolVector<uint8_t>::Read rp = p_src->data.read();
	const uint8_t *src_data_ptr = rp.ptr();

	int pixel_size = get_format_pixel_size(format);

	for (int i = 0; i < dest_rect.size.y; i++) {

		for (int j = 0; j < dest_rect.size.x; j++) {

			int src_x = clipped_src_rect.position.x + j;
			int src_y = clipped_src_rect.position.y + i;

			int dst_x = dest_rect.position.x + j;
			int dst_y = dest_rect.position.y + i;

			const uint8_t *src = &src_data_ptr[(src_y * p_src->width + src_x) * pixel_size];
			uint8_t *dst = &dst_data_ptr[(dst_y * width + dst_x) * pixel_size];

			for (int k = 0; k < pixel_size; k++) {
				dst[k] = src[k];
			}
		}
	}
}

void Image::blit_rect_mask(const Ref<Image> &p_src, const Ref<Image> &p_mask, const Rect2 &p_src_rect, const Point2 &p_dest) {

	ERR_FAIL_COND(p_src.is_null());
	ERR_FAIL_COND(p_mask.is_null());
	int dsize = data.size();
	int srcdsize = p_src->data.size();
	int maskdsize = p_mask->data.size();
	ERR_FAIL_COND(dsize == 0);
	ERR_FAIL_COND(srcdsize == 0);
	ERR_FAIL_COND(maskdsize == 0);
	ERR_FAIL_COND(p_src->width != p_mask->width);
	ERR_FAIL_COND(p_src->height != p_mask->height);
	ERR_FAIL_COND(format != p_src->format);

	Rect2i clipped_src_rect = Rect2i(0, 0, p_src->width, p_src->height).clip(p_src_rect);

	if (p_dest.x < 0)
		clipped_src_rect.position.x = ABS(p_dest.x);
	if (p_dest.y < 0)
		clipped_src_rect.position.y = ABS(p_dest.y);

	if (clipped_src_rect.size.x <= 0 || clipped_src_rect.size.y <= 0)
		return;

	Point2 src_underscan = Point2(MIN(0, p_src_rect.position.x), MIN(0, p_src_rect.position.y));
	Rect2i dest_rect = Rect2i(0, 0, width, height).clip(Rect2i(p_dest - src_underscan, clipped_src_rect.size));

	PoolVector<uint8_t>::Write wp = data.write();
	uint8_t *dst_data_ptr = wp.ptr();

	PoolVector<uint8_t>::Read rp = p_src->data.read();
	const uint8_t *src_data_ptr = rp.ptr();

	int pixel_size = get_format_pixel_size(format);

	Ref<Image> msk = p_mask;
	msk->lock();

	for (int i = 0; i < dest_rect.size.y; i++) {

		for (int j = 0; j < dest_rect.size.x; j++) {

			int src_x = clipped_src_rect.position.x + j;
			int src_y = clipped_src_rect.position.y + i;

			if (msk->get_pixel(src_x, src_y).a != 0) {

				int dst_x = dest_rect.position.x + j;
				int dst_y = dest_rect.position.y + i;

				const uint8_t *src = &src_data_ptr[(src_y * p_src->width + src_x) * pixel_size];
				uint8_t *dst = &dst_data_ptr[(dst_y * width + dst_x) * pixel_size];

				for (int k = 0; k < pixel_size; k++) {
					dst[k] = src[k];
				}
			}
		}
	}

	msk->unlock();
}

void Image::blend_rect(const Ref<Image> &p_src, const Rect2 &p_src_rect, const Point2 &p_dest) {

	ERR_FAIL_COND(p_src.is_null());
	int dsize = data.size();
	int srcdsize = p_src->data.size();
	ERR_FAIL_COND(dsize == 0);
	ERR_FAIL_COND(srcdsize == 0);
	ERR_FAIL_COND(format != p_src->format);

	Rect2i clipped_src_rect = Rect2i(0, 0, p_src->width, p_src->height).clip(p_src_rect);

	if (p_dest.x < 0)
		clipped_src_rect.position.x = ABS(p_dest.x);
	if (p_dest.y < 0)
		clipped_src_rect.position.y = ABS(p_dest.y);

	if (clipped_src_rect.size.x <= 0 || clipped_src_rect.size.y <= 0)
		return;

	Point2 src_underscan = Point2(MIN(0, p_src_rect.position.x), MIN(0, p_src_rect.position.y));
	Rect2i dest_rect = Rect2i(0, 0, width, height).clip(Rect2i(p_dest - src_underscan, clipped_src_rect.size));

	lock();
	Ref<Image> img = p_src;
	img->lock();

	for (int i = 0; i < dest_rect.size.y; i++) {

		for (int j = 0; j < dest_rect.size.x; j++) {

			int src_x = clipped_src_rect.position.x + j;
			int src_y = clipped_src_rect.position.y + i;

			int dst_x = dest_rect.position.x + j;
			int dst_y = dest_rect.position.y + i;

			Color sc = img->get_pixel(src_x, src_y);
			Color dc = get_pixel(dst_x, dst_y);
			dc.r = (double)(sc.a * sc.r + dc.a * (1.0 - sc.a) * dc.r);
			dc.g = (double)(sc.a * sc.g + dc.a * (1.0 - sc.a) * dc.g);
			dc.b = (double)(sc.a * sc.b + dc.a * (1.0 - sc.a) * dc.b);
			dc.a = (double)(sc.a + dc.a * (1.0 - sc.a));
			set_pixel(dst_x, dst_y, dc);
		}
	}

	img->unlock();
	unlock();
}

void Image::blend_rect_mask(const Ref<Image> &p_src, const Ref<Image> &p_mask, const Rect2 &p_src_rect, const Point2 &p_dest) {

	ERR_FAIL_COND(p_src.is_null());
	ERR_FAIL_COND(p_mask.is_null());
	int dsize = data.size();
	int srcdsize = p_src->data.size();
	int maskdsize = p_mask->data.size();
	ERR_FAIL_COND(dsize == 0);
	ERR_FAIL_COND(srcdsize == 0);
	ERR_FAIL_COND(maskdsize == 0);
	ERR_FAIL_COND(p_src->width != p_mask->width);
	ERR_FAIL_COND(p_src->height != p_mask->height);
	ERR_FAIL_COND(format != p_src->format);

	Rect2i clipped_src_rect = Rect2i(0, 0, p_src->width, p_src->height).clip(p_src_rect);

	if (p_dest.x < 0)
		clipped_src_rect.position.x = ABS(p_dest.x);
	if (p_dest.y < 0)
		clipped_src_rect.position.y = ABS(p_dest.y);

	if (clipped_src_rect.size.x <= 0 || clipped_src_rect.size.y <= 0)
		return;

	Point2 src_underscan = Point2(MIN(0, p_src_rect.position.x), MIN(0, p_src_rect.position.y));
	Rect2i dest_rect = Rect2i(0, 0, width, height).clip(Rect2i(p_dest - src_underscan, clipped_src_rect.size));

	lock();
	Ref<Image> img = p_src;
	Ref<Image> msk = p_mask;
	img->lock();
	msk->lock();

	for (int i = 0; i < dest_rect.size.y; i++) {

		for (int j = 0; j < dest_rect.size.x; j++) {

			int src_x = clipped_src_rect.position.x + j;
			int src_y = clipped_src_rect.position.y + i;

			// If the mask's pixel is transparent then we skip it
			//Color c = msk->get_pixel(src_x, src_y);
			//if (c.a == 0) continue;
			if (msk->get_pixel(src_x, src_y).a != 0) {

				int dst_x = dest_rect.position.x + j;
				int dst_y = dest_rect.position.y + i;

				Color sc = img->get_pixel(src_x, src_y);
				Color dc = get_pixel(dst_x, dst_y);
				dc.r = (double)(sc.a * sc.r + dc.a * (1.0 - sc.a) * dc.r);
				dc.g = (double)(sc.a * sc.g + dc.a * (1.0 - sc.a) * dc.g);
				dc.b = (double)(sc.a * sc.b + dc.a * (1.0 - sc.a) * dc.b);
				dc.a = (double)(sc.a + dc.a * (1.0 - sc.a));
				set_pixel(dst_x, dst_y, dc);
			}
		}
	}

	msk->unlock();
	img->unlock();
	unlock();
}

void Image::fill(const Color &c) {

	lock();

	PoolVector<uint8_t>::Write wp = data.write();
	uint8_t *dst_data_ptr = wp.ptr();

	int pixel_size = get_format_pixel_size(format);

	// put first pixel with the format-aware API
	set_pixel(0, 0, c);

	for (int y = 0; y < height; y++) {

		for (int x = 0; x < width; x++) {

			uint8_t *dst = &dst_data_ptr[(y * width + x) * pixel_size];

			for (int k = 0; k < pixel_size; k++) {
				dst[k] = dst_data_ptr[k];
			}
		}
	}

	unlock();
}

ImageMemLoadFunc Image::_png_mem_loader_func = NULL;
ImageMemLoadFunc Image::_jpg_mem_loader_func = NULL;
ImageMemLoadFunc Image::_webp_mem_loader_func = NULL;

void (*Image::_image_compress_bc_func)(Image *, float, Image::CompressSource) = NULL;
void (*Image::_image_compress_bptc_func)(Image *, float, Image::CompressSource) = NULL;
void (*Image::_image_compress_pvrtc2_func)(Image *) = NULL;
void (*Image::_image_compress_pvrtc4_func)(Image *) = NULL;
void (*Image::_image_compress_etc1_func)(Image *, float) = NULL;
void (*Image::_image_compress_etc2_func)(Image *, float, Image::CompressSource) = NULL;
void (*Image::_image_decompress_pvrtc)(Image *) = NULL;
void (*Image::_image_decompress_bc)(Image *) = NULL;
void (*Image::_image_decompress_bptc)(Image *) = NULL;
void (*Image::_image_decompress_etc1)(Image *) = NULL;
void (*Image::_image_decompress_etc2)(Image *) = NULL;

PoolVector<uint8_t> (*Image::lossy_packer)(const Ref<Image> &, float) = NULL;
Ref<Image> (*Image::lossy_unpacker)(const PoolVector<uint8_t> &) = NULL;
PoolVector<uint8_t> (*Image::lossless_packer)(const Ref<Image> &) = NULL;
Ref<Image> (*Image::lossless_unpacker)(const PoolVector<uint8_t> &) = NULL;

void Image::_set_data(const Dictionary &p_data) {

	ERR_FAIL_COND(!p_data.has("width"));
	ERR_FAIL_COND(!p_data.has("height"));
	ERR_FAIL_COND(!p_data.has("format"));
	ERR_FAIL_COND(!p_data.has("mipmaps"));
	ERR_FAIL_COND(!p_data.has("data"));

	int dwidth = p_data["width"];
	int dheight = p_data["height"];
	String dformat = p_data["format"];
	bool dmipmaps = p_data["mipmaps"];
	PoolVector<uint8_t> ddata = p_data["data"];
	Format ddformat = FORMAT_MAX;
	for (int i = 0; i < FORMAT_MAX; i++) {
		if (dformat == get_format_name(Format(i))) {
			ddformat = Format(i);
			break;
		}
	}

	ERR_FAIL_COND(ddformat == FORMAT_MAX);

	create(dwidth, dheight, dmipmaps, ddformat, ddata);
}

Dictionary Image::_get_data() const {

	Dictionary d;
	d["width"] = width;
	d["height"] = height;
	d["format"] = get_format_name(format);
	d["mipmaps"] = mipmaps;
	d["data"] = data;
	return d;
}

void Image::lock() {

	ERR_FAIL_COND(data.size() == 0);
	write_lock = data.write();
}

void Image::unlock() {

	write_lock.release();
}

Color Image::get_pixelv(const Point2 &p_src) const {
	return get_pixel(p_src.x, p_src.y);
}

Color Image::get_pixel(int p_x, int p_y) const {

	uint8_t *ptr = write_lock.ptr();
#ifdef DEBUG_ENABLED
	if (!ptr) {
		ERR_EXPLAIN("Image must be locked with 'lock()' before using get_pixel()");
		ERR_FAIL_V(Color());
	}

	ERR_FAIL_INDEX_V(p_x, width, Color());
	ERR_FAIL_INDEX_V(p_y, height, Color());

#endif

	uint32_t ofs = p_y * width + p_x;

	switch (format) {
		case FORMAT_L8: {
			float l = ptr[ofs] / 255.0;
			return Color(l, l, l, 1);
		}
		case FORMAT_LA8: {
			float l = ptr[ofs * 2 + 0] / 255.0;
			float a = ptr[ofs * 2 + 1] / 255.0;
			return Color(l, l, l, a);
		}
		case FORMAT_R8: {

			float r = ptr[ofs] / 255.0;
			return Color(r, 0, 0, 1);
		}
		case FORMAT_RG8: {

			float r = ptr[ofs * 2 + 0] / 255.0;
			float g = ptr[ofs * 2 + 1] / 255.0;
			return Color(r, g, 0, 1);
		}
		case FORMAT_RGB8: {
			float r = ptr[ofs * 3 + 0] / 255.0;
			float g = ptr[ofs * 3 + 1] / 255.0;
			float b = ptr[ofs * 3 + 2] / 255.0;
			return Color(r, g, b, 1);
		}
		case FORMAT_RGBA8: {
			float r = ptr[ofs * 4 + 0] / 255.0;
			float g = ptr[ofs * 4 + 1] / 255.0;
			float b = ptr[ofs * 4 + 2] / 255.0;
			float a = ptr[ofs * 4 + 3] / 255.0;
			return Color(r, g, b, a);
		}
		case FORMAT_RGBA4444: {
			uint16_t u = ((uint16_t *)ptr)[ofs];
			float r = (u & 0xF) / 15.0;
			float g = ((u >> 4) & 0xF) / 15.0;
			float b = ((u >> 8) & 0xF) / 15.0;
			float a = ((u >> 12) & 0xF) / 15.0;
			return Color(r, g, b, a);
		}
		case FORMAT_RGBA5551: {

			uint16_t u = ((uint16_t *)ptr)[ofs];
			float r = (u & 0x1F) / 15.0;
			float g = ((u >> 5) & 0x1F) / 15.0;
			float b = ((u >> 10) & 0x1F) / 15.0;
			float a = ((u >> 15) & 0x1) / 1.0;
			return Color(r, g, b, a);
		}
		case FORMAT_RF: {

			float r = ((float *)ptr)[ofs];
			return Color(r, 0, 0, 1);
		}
		case FORMAT_RGF: {

			float r = ((float *)ptr)[ofs * 2 + 0];
			float g = ((float *)ptr)[ofs * 2 + 1];
			return Color(r, g, 0, 1);
		}
		case FORMAT_RGBF: {

			float r = ((float *)ptr)[ofs * 3 + 0];
			float g = ((float *)ptr)[ofs * 3 + 1];
			float b = ((float *)ptr)[ofs * 3 + 2];
			return Color(r, g, b, 1);
		}
		case FORMAT_RGBAF: {

			float r = ((float *)ptr)[ofs * 4 + 0];
			float g = ((float *)ptr)[ofs * 4 + 1];
			float b = ((float *)ptr)[ofs * 4 + 2];
			float a = ((float *)ptr)[ofs * 4 + 3];
			return Color(r, g, b, a);
		}
		case FORMAT_RH: {

			uint16_t r = ((uint16_t *)ptr)[ofs];
			return Color(Math::half_to_float(r), 0, 0, 1);
		}
		case FORMAT_RGH: {

			uint16_t r = ((uint16_t *)ptr)[ofs * 2 + 0];
			uint16_t g = ((uint16_t *)ptr)[ofs * 2 + 1];
			return Color(Math::half_to_float(r), Math::half_to_float(g), 0, 1);
		}
		case FORMAT_RGBH: {

			uint16_t r = ((uint16_t *)ptr)[ofs * 3 + 0];
			uint16_t g = ((uint16_t *)ptr)[ofs * 3 + 1];
			uint16_t b = ((uint16_t *)ptr)[ofs * 3 + 2];
			return Color(Math::half_to_float(r), Math::half_to_float(g), Math::half_to_float(b), 1);
		}
		case FORMAT_RGBAH: {

			uint16_t r = ((uint16_t *)ptr)[ofs * 4 + 0];
			uint16_t g = ((uint16_t *)ptr)[ofs * 4 + 1];
			uint16_t b = ((uint16_t *)ptr)[ofs * 4 + 2];
			uint16_t a = ((uint16_t *)ptr)[ofs * 4 + 3];
			return Color(Math::half_to_float(r), Math::half_to_float(g), Math::half_to_float(b), Math::half_to_float(a));
		}
		case FORMAT_RGBE9995: {
			return Color::from_rgbe9995(((uint32_t *)ptr)[ofs]);
		}
		default: {
			ERR_EXPLAIN("Can't get_pixel() on compressed image, sorry.");
			ERR_FAIL_V(Color());
		}
	}
}

void Image::set_pixelv(const Point2 &p_dst, const Color &p_color) {
	set_pixel(p_dst.x, p_dst.y, p_color);
}

void Image::set_pixel(int p_x, int p_y, const Color &p_color) {

	uint8_t *ptr = write_lock.ptr();
#ifdef DEBUG_ENABLED
	if (!ptr) {
		ERR_EXPLAIN("Image must be locked with 'lock()' before using set_pixel()");
		ERR_FAIL();
	}

	ERR_FAIL_INDEX(p_x, width);
	ERR_FAIL_INDEX(p_y, height);

#endif

	uint32_t ofs = p_y * width + p_x;

	switch (format) {
		case FORMAT_L8: {
			ptr[ofs] = uint8_t(CLAMP(p_color.get_v() * 255.0, 0, 255));
		} break;
		case FORMAT_LA8: {
			ptr[ofs * 2 + 0] = uint8_t(CLAMP(p_color.get_v() * 255.0, 0, 255));
			ptr[ofs * 2 + 1] = uint8_t(CLAMP(p_color.a * 255.0, 0, 255));
		} break;
		case FORMAT_R8: {

			ptr[ofs] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255));
		} break;
		case FORMAT_RG8: {

			ptr[ofs * 2 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255));
			ptr[ofs * 2 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255));
		} break;
		case FORMAT_RGB8: {
			ptr[ofs * 3 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255));
			ptr[ofs * 3 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255));
			ptr[ofs * 3 + 2] = uint8_t(CLAMP(p_color.b * 255.0, 0, 255));
		} break;
		case FORMAT_RGBA8: {
			ptr[ofs * 4 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255));
			ptr[ofs * 4 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255));
			ptr[ofs * 4 + 2] = uint8_t(CLAMP(p_color.b * 255.0, 0, 255));
			ptr[ofs * 4 + 3] = uint8_t(CLAMP(p_color.a * 255.0, 0, 255));

		} break;
		case FORMAT_RGBA4444: {

			uint16_t rgba = 0;

			rgba = uint16_t(CLAMP(p_color.r * 15.0, 0, 15));
			rgba |= uint16_t(CLAMP(p_color.g * 15.0, 0, 15)) << 4;
			rgba |= uint16_t(CLAMP(p_color.b * 15.0, 0, 15)) << 8;
			rgba |= uint16_t(CLAMP(p_color.a * 15.0, 0, 15)) << 12;

			((uint16_t *)ptr)[ofs] = rgba;

		} break;
		case FORMAT_RGBA5551: {

			uint16_t rgba = 0;

			rgba = uint16_t(CLAMP(p_color.r * 31.0, 0, 31));
			rgba |= uint16_t(CLAMP(p_color.g * 31.0, 0, 31)) << 5;
			rgba |= uint16_t(CLAMP(p_color.b * 31.0, 0, 31)) << 10;
			rgba |= uint16_t(p_color.a > 0.5 ? 1 : 0) << 15;

			((uint16_t *)ptr)[ofs] = rgba;

		} break;
		case FORMAT_RF: {

			((float *)ptr)[ofs] = p_color.r;
		} break;
		case FORMAT_RGF: {

			((float *)ptr)[ofs * 2 + 0] = p_color.r;
			((float *)ptr)[ofs * 2 + 1] = p_color.g;
		} break;
		case FORMAT_RGBF: {

			((float *)ptr)[ofs * 3 + 0] = p_color.r;
			((float *)ptr)[ofs * 3 + 1] = p_color.g;
			((float *)ptr)[ofs * 3 + 2] = p_color.b;
		} break;
		case FORMAT_RGBAF: {

			((float *)ptr)[ofs * 4 + 0] = p_color.r;
			((float *)ptr)[ofs * 4 + 1] = p_color.g;
			((float *)ptr)[ofs * 4 + 2] = p_color.b;
			((float *)ptr)[ofs * 4 + 3] = p_color.a;
		} break;
		case FORMAT_RH: {

			((uint16_t *)ptr)[ofs] = Math::make_half_float(p_color.r);
		} break;
		case FORMAT_RGH: {

			((uint16_t *)ptr)[ofs * 2 + 0] = Math::make_half_float(p_color.r);
			((uint16_t *)ptr)[ofs * 2 + 1] = Math::make_half_float(p_color.g);
		} break;
		case FORMAT_RGBH: {

			((uint16_t *)ptr)[ofs * 3 + 0] = Math::make_half_float(p_color.r);
			((uint16_t *)ptr)[ofs * 3 + 1] = Math::make_half_float(p_color.g);
			((uint16_t *)ptr)[ofs * 3 + 2] = Math::make_half_float(p_color.b);
		} break;
		case FORMAT_RGBAH: {

			((uint16_t *)ptr)[ofs * 4 + 0] = Math::make_half_float(p_color.r);
			((uint16_t *)ptr)[ofs * 4 + 1] = Math::make_half_float(p_color.g);
			((uint16_t *)ptr)[ofs * 4 + 2] = Math::make_half_float(p_color.b);
			((uint16_t *)ptr)[ofs * 4 + 3] = Math::make_half_float(p_color.a);
		} break;
		case FORMAT_RGBE9995: {

			((uint32_t *)ptr)[ofs] = p_color.to_rgbe9995();

		} break;
		default: {
			ERR_EXPLAIN("Can't set_pixel() on compressed image, sorry.");
			ERR_FAIL();
		}
	}
}

Image::DetectChannels Image::get_detected_channels() {

	ERR_FAIL_COND_V(data.size() == 0, DETECTED_RGBA);
	ERR_FAIL_COND_V(is_compressed(), DETECTED_RGBA);
	bool r = false, g = false, b = false, a = false, c = false;
	lock();
	for (int i = 0; i < width; i++) {
		for (int j = 0; j < height; j++) {

			Color col = get_pixel(i, j);

			if (col.r > 0.001)
				r = true;
			if (col.g > 0.001)
				g = true;
			if (col.b > 0.001)
				b = true;
			if (col.a < 0.999)
				a = true;

			if (col.r != col.b || col.r != col.g || col.b != col.g) {
				c = true;
			}
		}
	}

	unlock();

	if (!c && !a)
		return DETECTED_L;
	if (!c && a)
		return DETECTED_LA;

	if (r && !g && !b && !a)
		return DETECTED_R;

	if (r && g && !b && !a)
		return DETECTED_RG;

	if (r && g && b && !a)
		return DETECTED_RGB;

	return DETECTED_RGBA;
}

void Image::optimize_channels() {
	switch (get_detected_channels()) {
		case DETECTED_L: convert(FORMAT_L8); break;
		case DETECTED_LA: convert(FORMAT_LA8); break;
		case DETECTED_R: convert(FORMAT_R8); break;
		case DETECTED_RG: convert(FORMAT_RG8); break;
		case DETECTED_RGB: convert(FORMAT_RGB8); break;
		case DETECTED_RGBA: convert(FORMAT_RGBA8); break;
	}
}

void Image::_bind_methods() {

	ClassDB::bind_method(D_METHOD("get_width"), &Image::get_width);
	ClassDB::bind_method(D_METHOD("get_height"), &Image::get_height);
	ClassDB::bind_method(D_METHOD("get_size"), &Image::get_size);
	ClassDB::bind_method(D_METHOD("has_mipmaps"), &Image::has_mipmaps);
	ClassDB::bind_method(D_METHOD("get_format"), &Image::get_format);
	ClassDB::bind_method(D_METHOD("get_data"), &Image::get_data);

	ClassDB::bind_method(D_METHOD("convert", "format"), &Image::convert);

	ClassDB::bind_method(D_METHOD("get_mipmap_offset", "mipmap"), &Image::get_mipmap_offset);

	ClassDB::bind_method(D_METHOD("resize_to_po2", "square"), &Image::resize_to_po2, DEFVAL(false));
	ClassDB::bind_method(D_METHOD("resize", "width", "height", "interpolation"), &Image::resize, DEFVAL(INTERPOLATE_BILINEAR));
	ClassDB::bind_method(D_METHOD("shrink_x2"), &Image::shrink_x2);
	ClassDB::bind_method(D_METHOD("expand_x2_hq2x"), &Image::expand_x2_hq2x);

	ClassDB::bind_method(D_METHOD("crop", "width", "height"), &Image::crop);
	ClassDB::bind_method(D_METHOD("flip_x"), &Image::flip_x);
	ClassDB::bind_method(D_METHOD("flip_y"), &Image::flip_y);
	ClassDB::bind_method(D_METHOD("generate_mipmaps", "renormalize"), &Image::generate_mipmaps, DEFVAL(false));
	ClassDB::bind_method(D_METHOD("clear_mipmaps"), &Image::clear_mipmaps);

	ClassDB::bind_method(D_METHOD("create", "width", "height", "use_mipmaps", "format"), &Image::_create_empty);
	ClassDB::bind_method(D_METHOD("create_from_data", "width", "height", "use_mipmaps", "format", "data"), &Image::_create_from_data);

	ClassDB::bind_method(D_METHOD("is_empty"), &Image::empty);

	ClassDB::bind_method(D_METHOD("load", "path"), &Image::load);
	ClassDB::bind_method(D_METHOD("save_png", "path"), &Image::save_png);

	ClassDB::bind_method(D_METHOD("detect_alpha"), &Image::detect_alpha);
	ClassDB::bind_method(D_METHOD("is_invisible"), &Image::is_invisible);

	ClassDB::bind_method(D_METHOD("compress", "mode", "source", "lossy_quality"), &Image::compress);
	ClassDB::bind_method(D_METHOD("decompress"), &Image::decompress);
	ClassDB::bind_method(D_METHOD("is_compressed"), &Image::is_compressed);

	ClassDB::bind_method(D_METHOD("fix_alpha_edges"), &Image::fix_alpha_edges);
	ClassDB::bind_method(D_METHOD("premultiply_alpha"), &Image::premultiply_alpha);
	ClassDB::bind_method(D_METHOD("srgb_to_linear"), &Image::srgb_to_linear);
	ClassDB::bind_method(D_METHOD("normalmap_to_xy"), &Image::normalmap_to_xy);
	ClassDB::bind_method(D_METHOD("rgbe_to_srgb"), &Image::rgbe_to_srgb);
	ClassDB::bind_method(D_METHOD("bumpmap_to_normalmap", "bump_scale"), &Image::bumpmap_to_normalmap, DEFVAL(1.0));

	ClassDB::bind_method(D_METHOD("blit_rect", "src", "src_rect", "dst"), &Image::blit_rect);
	ClassDB::bind_method(D_METHOD("blit_rect_mask", "src", "mask", "src_rect", "dst"), &Image::blit_rect_mask);
	ClassDB::bind_method(D_METHOD("blend_rect", "src", "src_rect", "dst"), &Image::blend_rect);
	ClassDB::bind_method(D_METHOD("blend_rect_mask", "src", "mask", "src_rect", "dst"), &Image::blend_rect_mask);
	ClassDB::bind_method(D_METHOD("fill", "color"), &Image::fill);

	ClassDB::bind_method(D_METHOD("get_used_rect"), &Image::get_used_rect);
	ClassDB::bind_method(D_METHOD("get_rect", "rect"), &Image::get_rect);

	ClassDB::bind_method(D_METHOD("copy_from", "src"), &Image::copy_internals_from);

	ClassDB::bind_method(D_METHOD("_set_data", "data"), &Image::_set_data);
	ClassDB::bind_method(D_METHOD("_get_data"), &Image::_get_data);

	ClassDB::bind_method(D_METHOD("lock"), &Image::lock);
	ClassDB::bind_method(D_METHOD("unlock"), &Image::unlock);
	ClassDB::bind_method(D_METHOD("get_pixelv", "src"), &Image::get_pixelv);
	ClassDB::bind_method(D_METHOD("get_pixel", "x", "y"), &Image::get_pixel);
	ClassDB::bind_method(D_METHOD("set_pixelv", "dst", "color"), &Image::set_pixelv);
	ClassDB::bind_method(D_METHOD("set_pixel", "x", "y", "color"), &Image::set_pixel);

	ClassDB::bind_method(D_METHOD("load_png_from_buffer", "buffer"), &Image::load_png_from_buffer);
	ClassDB::bind_method(D_METHOD("load_jpg_from_buffer", "buffer"), &Image::load_jpg_from_buffer);
	ClassDB::bind_method(D_METHOD("load_webp_from_buffer", "buffer"), &Image::load_webp_from_buffer);

	ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_STORAGE), "_set_data", "_get_data");

	BIND_CONSTANT(MAX_WIDTH);
	BIND_CONSTANT(MAX_HEIGHT);

	BIND_ENUM_CONSTANT(FORMAT_L8); //luminance
	BIND_ENUM_CONSTANT(FORMAT_LA8); //luminance-alpha
	BIND_ENUM_CONSTANT(FORMAT_R8);
	BIND_ENUM_CONSTANT(FORMAT_RG8);
	BIND_ENUM_CONSTANT(FORMAT_RGB8);
	BIND_ENUM_CONSTANT(FORMAT_RGBA8);
	BIND_ENUM_CONSTANT(FORMAT_RGBA4444);
	BIND_ENUM_CONSTANT(FORMAT_RGBA5551);
	BIND_ENUM_CONSTANT(FORMAT_RF); //float
	BIND_ENUM_CONSTANT(FORMAT_RGF);
	BIND_ENUM_CONSTANT(FORMAT_RGBF);
	BIND_ENUM_CONSTANT(FORMAT_RGBAF);
	BIND_ENUM_CONSTANT(FORMAT_RH); //half float
	BIND_ENUM_CONSTANT(FORMAT_RGH);
	BIND_ENUM_CONSTANT(FORMAT_RGBH);
	BIND_ENUM_CONSTANT(FORMAT_RGBAH);
	BIND_ENUM_CONSTANT(FORMAT_RGBE9995);
	BIND_ENUM_CONSTANT(FORMAT_DXT1); //s3tc bc1
	BIND_ENUM_CONSTANT(FORMAT_DXT3); //bc2
	BIND_ENUM_CONSTANT(FORMAT_DXT5); //bc3
	BIND_ENUM_CONSTANT(FORMAT_RGTC_R);
	BIND_ENUM_CONSTANT(FORMAT_RGTC_RG);
	BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBA); //btpc bc6h
	BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBF); //float /
	BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBFU); //unsigned float
	BIND_ENUM_CONSTANT(FORMAT_PVRTC2); //pvrtc
	BIND_ENUM_CONSTANT(FORMAT_PVRTC2A);
	BIND_ENUM_CONSTANT(FORMAT_PVRTC4);
	BIND_ENUM_CONSTANT(FORMAT_PVRTC4A);
	BIND_ENUM_CONSTANT(FORMAT_ETC); //etc1
	BIND_ENUM_CONSTANT(FORMAT_ETC2_R11); //etc2
	BIND_ENUM_CONSTANT(FORMAT_ETC2_R11S); //signed ); NOT srgb.
	BIND_ENUM_CONSTANT(FORMAT_ETC2_RG11);
	BIND_ENUM_CONSTANT(FORMAT_ETC2_RG11S);
	BIND_ENUM_CONSTANT(FORMAT_ETC2_RGB8);
	BIND_ENUM_CONSTANT(FORMAT_ETC2_RGBA8);
	BIND_ENUM_CONSTANT(FORMAT_ETC2_RGB8A1);
	BIND_ENUM_CONSTANT(FORMAT_MAX);

	BIND_ENUM_CONSTANT(INTERPOLATE_NEAREST);
	BIND_ENUM_CONSTANT(INTERPOLATE_BILINEAR);
	BIND_ENUM_CONSTANT(INTERPOLATE_CUBIC);
	BIND_ENUM_CONSTANT(INTERPOLATE_TRILINEAR);
	BIND_ENUM_CONSTANT(INTERPOLATE_LANCZOS);

	BIND_ENUM_CONSTANT(ALPHA_NONE);
	BIND_ENUM_CONSTANT(ALPHA_BIT);
	BIND_ENUM_CONSTANT(ALPHA_BLEND);

	BIND_ENUM_CONSTANT(COMPRESS_S3TC);
	BIND_ENUM_CONSTANT(COMPRESS_PVRTC2);
	BIND_ENUM_CONSTANT(COMPRESS_PVRTC4);
	BIND_ENUM_CONSTANT(COMPRESS_ETC);
	BIND_ENUM_CONSTANT(COMPRESS_ETC2);

	BIND_ENUM_CONSTANT(COMPRESS_SOURCE_GENERIC);
	BIND_ENUM_CONSTANT(COMPRESS_SOURCE_SRGB);
	BIND_ENUM_CONSTANT(COMPRESS_SOURCE_NORMAL);
}

void Image::set_compress_bc_func(void (*p_compress_func)(Image *, float, CompressSource)) {

	_image_compress_bc_func = p_compress_func;
}

void Image::set_compress_bptc_func(void (*p_compress_func)(Image *, float, CompressSource)) {

	_image_compress_bptc_func = p_compress_func;
}

void Image::normalmap_to_xy() {

	convert(Image::FORMAT_RGBA8);

	{
		int len = data.size() / 4;
		PoolVector<uint8_t>::Write wp = data.write();
		unsigned char *data_ptr = wp.ptr();

		for (int i = 0; i < len; i++) {

			data_ptr[(i << 2) + 3] = data_ptr[(i << 2) + 0]; //x to w
			data_ptr[(i << 2) + 0] = data_ptr[(i << 2) + 1]; //y to xz
			data_ptr[(i << 2) + 2] = data_ptr[(i << 2) + 1];
		}
	}

	convert(Image::FORMAT_LA8);
}

Ref<Image> Image::rgbe_to_srgb() {

	if (data.size() == 0)
		return Ref<Image>();

	ERR_FAIL_COND_V(format != FORMAT_RGBE9995, Ref<Image>());

	Ref<Image> new_image;
	new_image.instance();
	new_image->create(width, height, 0, Image::FORMAT_RGB8);

	lock();

	new_image->lock();

	for (int row = 0; row < height; row++) {
		for (int col = 0; col < width; col++) {
			new_image->set_pixel(col, row, get_pixel(col, row).to_srgb());
		}
	}

	unlock();
	new_image->unlock();

	if (has_mipmaps()) {
		new_image->generate_mipmaps();
	}

	return new_image;
}

void Image::bumpmap_to_normalmap(float bump_scale) {
	ERR_FAIL_COND(!_can_modify(format));
	convert(Image::FORMAT_RF);

	PoolVector<uint8_t> result_image; //rgba output
	result_image.resize(width * height * 4);

	{
		PoolVector<uint8_t>::Read rp = data.read();
		PoolVector<uint8_t>::Write wp = result_image.write();

		unsigned char *write_ptr = wp.ptr();
		float *read_ptr = (float *)rp.ptr();

		for (int ty = 0; ty < height; ty++) {
			int py = ty + 1;
			if (py >= height) py -= height;

			for (int tx = 0; tx < width; tx++) {
				int px = tx + 1;
				if (px >= width) px -= width;
				float here = read_ptr[ty * width + tx];
				float to_right = read_ptr[ty * width + px];
				float above = read_ptr[py * width + tx];
				Vector3 up = Vector3(0, 1, (here - above) * bump_scale);
				Vector3 across = Vector3(1, 0, (to_right - here) * bump_scale);

				Vector3 normal = across.cross(up);
				normal.normalize();

				write_ptr[((ty * width + tx) << 2) + 0] = (127.5 + normal.x * 127.5);
				write_ptr[((ty * width + tx) << 2) + 1] = (127.5 + normal.y * 127.5);
				write_ptr[((ty * width + tx) << 2) + 2] = (127.5 + normal.z * 127.5);
				write_ptr[((ty * width + tx) << 2) + 3] = 255;
			}
		}
	}
	format = FORMAT_RGBA8;
	data = result_image;
}

void Image::srgb_to_linear() {

	if (data.size() == 0)
		return;

	static const uint8_t srgb2lin[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 26, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 47, 48, 49, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 112, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 139, 140, 142, 144, 145, 147, 148, 150, 152, 153, 155, 157, 159, 160, 162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 188, 190, 192, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 235, 237, 239, 241, 243, 245, 248, 250, 252 };

	ERR_FAIL_COND(format != FORMAT_RGB8 && format != FORMAT_RGBA8);

	if (format == FORMAT_RGBA8) {

		int len = data.size() / 4;
		PoolVector<uint8_t>::Write wp = data.write();
		unsigned char *data_ptr = wp.ptr();

		for (int i = 0; i < len; i++) {

			data_ptr[(i << 2) + 0] = srgb2lin[data_ptr[(i << 2) + 0]];
			data_ptr[(i << 2) + 1] = srgb2lin[data_ptr[(i << 2) + 1]];
			data_ptr[(i << 2) + 2] = srgb2lin[data_ptr[(i << 2) + 2]];
		}

	} else if (format == FORMAT_RGB8) {

		int len = data.size() / 3;
		PoolVector<uint8_t>::Write wp = data.write();
		unsigned char *data_ptr = wp.ptr();

		for (int i = 0; i < len; i++) {

			data_ptr[(i * 3) + 0] = srgb2lin[data_ptr[(i * 3) + 0]];
			data_ptr[(i * 3) + 1] = srgb2lin[data_ptr[(i * 3) + 1]];
			data_ptr[(i * 3) + 2] = srgb2lin[data_ptr[(i * 3) + 2]];
		}
	}
}

void Image::premultiply_alpha() {

	if (data.size() == 0)
		return;

	if (format != FORMAT_RGBA8)
		return; //not needed

	PoolVector<uint8_t>::Write wp = data.write();
	unsigned char *data_ptr = wp.ptr();

	for (int i = 0; i < height; i++) {
		for (int j = 0; j < width; j++) {

			uint8_t *ptr = &data_ptr[(i * width + j) * 4];

			ptr[0] = (uint16_t(ptr[0]) * uint16_t(ptr[3])) >> 8;
			ptr[1] = (uint16_t(ptr[1]) * uint16_t(ptr[3])) >> 8;
			ptr[2] = (uint16_t(ptr[2]) * uint16_t(ptr[3])) >> 8;
		}
	}
}

void Image::fix_alpha_edges() {

	if (data.size() == 0)
		return;

	if (format != FORMAT_RGBA8)
		return; //not needed

	PoolVector<uint8_t> dcopy = data;
	PoolVector<uint8_t>::Read rp = dcopy.read();
	const uint8_t *srcptr = rp.ptr();

	PoolVector<uint8_t>::Write wp = data.write();
	unsigned char *data_ptr = wp.ptr();

	const int max_radius = 4;
	const int alpha_threshold = 20;
	const int max_dist = 0x7FFFFFFF;

	for (int i = 0; i < height; i++) {
		for (int j = 0; j < width; j++) {

			const uint8_t *rptr = &srcptr[(i * width + j) * 4];
			uint8_t *wptr = &data_ptr[(i * width + j) * 4];

			if (rptr[3] >= alpha_threshold)
				continue;

			int closest_dist = max_dist;
			uint8_t closest_color[3];

			int from_x = MAX(0, j - max_radius);
			int to_x = MIN(width - 1, j + max_radius);
			int from_y = MAX(0, i - max_radius);
			int to_y = MIN(height - 1, i + max_radius);

			for (int k = from_y; k <= to_y; k++) {
				for (int l = from_x; l <= to_x; l++) {

					int dy = i - k;
					int dx = j - l;
					int dist = dy * dy + dx * dx;
					if (dist >= closest_dist)
						continue;

					const uint8_t *rp2 = &srcptr[(k * width + l) << 2];

					if (rp2[3] < alpha_threshold)
						continue;

					closest_dist = dist;
					closest_color[0] = rp2[0];
					closest_color[1] = rp2[1];
					closest_color[2] = rp2[2];
				}
			}

			if (closest_dist != max_dist) {

				wptr[0] = closest_color[0];
				wptr[1] = closest_color[1];
				wptr[2] = closest_color[2];
			}
		}
	}
}

String Image::get_format_name(Format p_format) {

	ERR_FAIL_INDEX_V(p_format, FORMAT_MAX, String());
	return format_names[p_format];
}

Error Image::load_png_from_buffer(const PoolVector<uint8_t> &p_array) {
	return _load_from_buffer(p_array, _png_mem_loader_func);
}

Error Image::load_jpg_from_buffer(const PoolVector<uint8_t> &p_array) {
	return _load_from_buffer(p_array, _jpg_mem_loader_func);
}

Error Image::load_webp_from_buffer(const PoolVector<uint8_t> &p_array) {
	return _load_from_buffer(p_array, _webp_mem_loader_func);
}

Error Image::_load_from_buffer(const PoolVector<uint8_t> &p_array, ImageMemLoadFunc p_loader) {
	int buffer_size = p_array.size();

	ERR_FAIL_COND_V(buffer_size == 0, ERR_INVALID_PARAMETER);
	ERR_FAIL_COND_V(!p_loader, ERR_INVALID_PARAMETER);

	PoolVector<uint8_t>::Read r = p_array.read();

	Ref<Image> image = p_loader(r.ptr(), buffer_size);
	ERR_FAIL_COND_V(!image.is_valid(), ERR_PARSE_ERROR);

	copy_internals_from(image);

	return OK;
}

void Image::average_4_uint8(uint8_t &p_out, const uint8_t &p_a, const uint8_t &p_b, const uint8_t &p_c, const uint8_t &p_d) {
	p_out = static_cast<uint8_t>((p_a + p_b + p_c + p_d + 2) >> 2);
}

void Image::average_4_float(float &p_out, const float &p_a, const float &p_b, const float &p_c, const float &p_d) {
	p_out = (p_a + p_b + p_c + p_d) * 0.25f;
}

void Image::average_4_half(uint16_t &p_out, const uint16_t &p_a, const uint16_t &p_b, const uint16_t &p_c, const uint16_t &p_d) {
	p_out = Math::make_half_float((Math::half_to_float(p_a) + Math::half_to_float(p_b) + Math::half_to_float(p_c) + Math::half_to_float(p_d)) * 0.25f);
}

void Image::average_4_rgbe9995(uint32_t &p_out, const uint32_t &p_a, const uint32_t &p_b, const uint32_t &p_c, const uint32_t &p_d) {
	p_out = ((Color::from_rgbe9995(p_a) + Color::from_rgbe9995(p_b) + Color::from_rgbe9995(p_c) + Color::from_rgbe9995(p_d)) * 0.25f).to_rgbe9995();
}

void Image::renormalize_uint8(uint8_t *p_rgb) {
	Vector3 n(p_rgb[0] / 255.0, p_rgb[1] / 255.0, p_rgb[2] / 255.0);
	n *= 2.0;
	n -= Vector3(1, 1, 1);
	n.normalize();
	n += Vector3(1, 1, 1);
	n *= 0.5;
	n *= 255;
	p_rgb[0] = CLAMP(int(n.x), 0, 255);
	p_rgb[1] = CLAMP(int(n.y), 0, 255);
	p_rgb[2] = CLAMP(int(n.z), 0, 255);
}

void Image::renormalize_float(float *p_rgb) {
	Vector3 n(p_rgb[0], p_rgb[1], p_rgb[2]);
	n.normalize();
	p_rgb[0] = n.x;
	p_rgb[1] = n.y;
	p_rgb[2] = n.z;
}

void Image::renormalize_half(uint16_t *p_rgb) {
	Vector3 n(Math::half_to_float(p_rgb[0]), Math::half_to_float(p_rgb[1]), Math::half_to_float(p_rgb[2]));
	n.normalize();
	p_rgb[0] = Math::make_half_float(n.x);
	p_rgb[1] = Math::make_half_float(n.y);
	p_rgb[2] = Math::make_half_float(n.z);
}

void Image::renormalize_rgbe9995(uint32_t *p_rgb) {
	// Never used
}

Image::Image(const uint8_t *p_mem_png_jpg, int p_len) {

	width = 0;
	height = 0;
	mipmaps = false;
	format = FORMAT_L8;

	if (_png_mem_loader_func) {
		copy_internals_from(_png_mem_loader_func(p_mem_png_jpg, p_len));
	}

	if (empty() && _jpg_mem_loader_func) {
		copy_internals_from(_jpg_mem_loader_func(p_mem_png_jpg, p_len));
	}
}

Ref<Resource> Image::duplicate(bool p_subresources) const {

	Ref<Image> copy;
	copy.instance();
	copy->_copy_internals_from(*this);
	return copy;
}

Image::Image() {

	width = 0;
	height = 0;
	mipmaps = false;
	format = FORMAT_L8;
}

Image::~Image() {

	if (write_lock.ptr()) {
		unlock();
	}
}