/*************************************************************************/ /* collision_solver_2d_sat.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "collision_solver_2d_sat.h" #include "geometry.h" struct _CollectorCallback2D { CollisionSolver2DSW::CallbackResult callback; void *userdata; bool swap; bool collided; Vector2 normal; Vector2 *sep_axis; _FORCE_INLINE_ void call(const Vector2& p_point_A, const Vector2& p_point_B) { //if (normal.dot(p_point_A) >= normal.dot(p_point_B)) // return; if (swap) callback(p_point_B,p_point_A,userdata); else callback(p_point_A,p_point_B,userdata); } }; typedef void (*GenerateContactsFunc)(const Vector2 *,int, const Vector2 *,int ,_CollectorCallback2D *); _FORCE_INLINE_ static void _generate_contacts_point_point(const Vector2 * p_points_A,int p_point_count_A, const Vector2 * p_points_B,int p_point_count_B,_CollectorCallback2D *p_collector) { #ifdef DEBUG_ENABLED ERR_FAIL_COND( p_point_count_A != 1 ); ERR_FAIL_COND( p_point_count_B != 1 ); #endif p_collector->call(*p_points_A,*p_points_B); } _FORCE_INLINE_ static void _generate_contacts_point_edge(const Vector2 * p_points_A,int p_point_count_A, const Vector2 * p_points_B,int p_point_count_B,_CollectorCallback2D *p_collector) { #ifdef DEBUG_ENABLED ERR_FAIL_COND( p_point_count_A != 1 ); ERR_FAIL_COND( p_point_count_B != 2 ); #endif Vector2 closest_B = Geometry::get_closest_point_to_segment_uncapped_2d(*p_points_A, p_points_B ); p_collector->call(*p_points_A,closest_B); } struct _generate_contacts_Pair { int idx; float d; _FORCE_INLINE_ bool operator <(const _generate_contacts_Pair& l) const { return d< l.d; } }; _FORCE_INLINE_ static void _generate_contacts_edge_edge(const Vector2 * p_points_A,int p_point_count_A, const Vector2 * p_points_B,int p_point_count_B,_CollectorCallback2D *p_collector) { #ifdef DEBUG_ENABLED ERR_FAIL_COND( p_point_count_A != 2 ); ERR_FAIL_COND( p_point_count_B != 2 ); // circle is actually a 4x3 matrix #endif Vector2 rel_A=p_points_A[1]-p_points_A[0]; Vector2 rel_B=p_points_B[1]-p_points_B[0]; Vector2 t = p_collector->normal.tangent(); real_t dA[2]={t.dot(p_points_A[0]),t.dot(p_points_A[1])}; Vector2 pA[2]={p_points_A[0],p_points_A[1]}; if (dA[0]>dA[1]) { SWAP(dA[0],dA[1]); SWAP(pA[0],pA[1]); } float dB[2]={t.dot(p_points_B[0]),t.dot(p_points_B[1])}; Vector2 pB[2]={p_points_B[0],p_points_B[1]}; if (dB[0]>dB[1]) { SWAP(dB[0],dB[1]); SWAP(pB[0],pB[1]); } if (dA[0]dB[1]) { //A contains B for(int i=0;i<2;i++) { Vector2 b = p_points_B[i]; Vector2 a = n.plane_project(d,b); if (p_collector->normal.dot(a) > p_collector->normal.dot(b)-CMP_EPSILON) continue; p_collector->call(a,b); } } else { // B0,A1 containment Vector2 n_B = (p_points_B[1]-p_points_B[0]).normalized().tangent(); real_t d_B = n_B.dot(p_points_B[1]); // first, B on A { Vector2 b = p_points_B[0]; Vector2 a = n.plane_project(d,b); if (p_collector->normal.dot(a) < p_collector->normal.dot(b)-CMP_EPSILON) p_collector->call(a,b); } // second, A on B { Vector2 a = p_points_A[1]; Vector2 b = n_B.plane_project(d_B,a); if (p_collector->normal.dot(a) < p_collector->normal.dot(b)-CMP_EPSILON) p_collector->call(a,b); } } } else { Vector2 n = (p_points_B[1]-p_points_B[0]).normalized().tangent(); real_t d = n.dot(p_points_B[1]); if (dB[1]>dA[1]) { //B contains A for(int i=0;i<2;i++) { Vector2 a = p_points_A[i]; Vector2 b = n.plane_project(d,a); if (p_collector->normal.dot(a) > p_collector->normal.dot(b)-CMP_EPSILON) continue; p_collector->call(a,b); } } else { // A0,B1 containment Vector2 n_A = (p_points_A[1]-p_points_A[0]).normalized().tangent(); real_t d_A = n_A.dot(p_points_A[1]); // first A on B { Vector2 a = p_points_A[0]; Vector2 b = n.plane_project(d,a); if (p_collector->normal.dot(a) < p_collector->normal.dot(b)-CMP_EPSILON) p_collector->call(a,b); } //second, B on A { Vector2 b = p_points_B[1]; Vector2 a = n_A.plane_project(d_A,b); if (p_collector->normal.dot(a) < p_collector->normal.dot(b)-CMP_EPSILON) p_collector->call(a,b); } } } #if 0 Vector2 axis = rel_A.normalized(); Vector2 axis_B = rel_B.normalized(); if (axis.dot(axis_B)<0) axis_B=-axis_B; axis=(axis+axis_B)*0.5; Vector2 normal_A = axis.tangent(); real_t dA = normal_A.dot(p_points_A[0]); Vector2 normal_B = rel_B.tangent().normalized(); real_t dB = normal_A.dot(p_points_B[0]); Vector2 A[4]={ normal_A.plane_project(dA,p_points_B[0]), normal_A.plane_project(dA,p_points_B[1]), p_points_A[0], p_points_A[1] }; Vector2 B[4]={ p_points_B[0], p_points_B[1], normal_B.plane_project(dB,p_points_A[0]), normal_B.plane_project(dB,p_points_A[1]) }; _generate_contacts_Pair dvec[4]; for(int i=0;i<4;i++) { dvec[i].d=axis.dot(p_points_A[0]-A[i]); dvec[i].idx=i; } SortArray<_generate_contacts_Pair> sa; sa.sort(dvec,4); for(int i=1;i<=2;i++) { Vector2 a = A[i]; Vector2 b = B[i]; if (p_collector->normal.dot(a) > p_collector->normal.dot(b)-CMP_EPSILON) continue; p_collector->call(a,b); } #elif 0 Vector2 axis = rel_A.normalized(); //make an axis Vector2 axis_B = rel_B.normalized(); if (axis.dot(axis_B)<0) axis_B=-axis_B; axis=(axis+axis_B)*0.5; Vector2 base_A = p_points_A[0] - axis * axis.dot(p_points_A[0]); Vector2 base_B = p_points_B[0] - axis * axis.dot(p_points_B[0]); //sort all 4 points in axis float dvec[4]={ axis.dot(p_points_A[0]), axis.dot(p_points_A[1]), axis.dot(p_points_B[0]), axis.dot(p_points_B[1]) }; //todo , find max/min and then use 2 central points SortArray sa; sa.sort(dvec,4); //use the middle ones as contacts for (int i=1;i<=2;i++) { Vector2 a = base_A+axis*dvec[i]; Vector2 b = base_B+axis*dvec[i]; if (p_collector->normal.dot(a) > p_collector->normal.dot(b)-0.01) { print_line("fail a: "+a); print_line("fail b: "+b); continue; } print_line("res a: "+a); print_line("res b: "+b); p_collector->call(a,b); } #endif } static void _generate_contacts_from_supports(const Vector2 * p_points_A,int p_point_count_A, const Vector2 * p_points_B,int p_point_count_B,_CollectorCallback2D *p_collector) { #ifdef DEBUG_ENABLED ERR_FAIL_COND( p_point_count_A <1 ); ERR_FAIL_COND( p_point_count_B <1 ); #endif static const GenerateContactsFunc generate_contacts_func_table[2][2]={ { _generate_contacts_point_point, _generate_contacts_point_edge, },{ 0, _generate_contacts_edge_edge, } }; int pointcount_B; int pointcount_A; const Vector2 *points_A; const Vector2 *points_B; if (p_point_count_A > p_point_count_B) { //swap p_collector->swap = !p_collector->swap; p_collector->normal = -p_collector->normal; pointcount_B = p_point_count_A; pointcount_A = p_point_count_B; points_A=p_points_B; points_B=p_points_A; } else { pointcount_B = p_point_count_B; pointcount_A = p_point_count_A; points_A=p_points_A; points_B=p_points_B; } int version_A = (pointcount_A > 3 ? 3 : pointcount_A) -1; int version_B = (pointcount_B > 3 ? 3 : pointcount_B) -1; GenerateContactsFunc contacts_func = generate_contacts_func_table[version_A][version_B]; ERR_FAIL_COND(!contacts_func); contacts_func(points_A,pointcount_A,points_B,pointcount_B,p_collector); } template class SeparatorAxisTest2D { const ShapeA *shape_A; const ShapeB *shape_B; const Matrix32 *transform_A; const Matrix32 *transform_B; const Matrix32 *transform_inv_A; const Matrix32 *transform_inv_B; real_t best_depth; Vector2 best_axis; int best_axis_count; int best_axis_index; _CollectorCallback2D *callback; public: _FORCE_INLINE_ bool test_previous_axis() { if (callback && callback->sep_axis && *callback->sep_axis!=Vector2()) { return test_axis(*callback->sep_axis); } else { #ifdef DEBUG_ENABLED best_axis_count++; #endif } return true; } _FORCE_INLINE_ bool test_axis(const Vector2& p_axis) { Vector2 axis=p_axis; if ( Math::abs(axis.x)project_range(axis,*transform_A,min_A,max_A); shape_B->project_range(axis,*transform_B,min_B,max_B); min_B -= ( max_A - min_A ) * 0.5; max_B += ( max_A - min_A ) * 0.5; real_t dmin = min_B - ( min_A + max_A ) * 0.5; real_t dmax = max_B - ( min_A + max_A ) * 0.5; if (dmin > 0.0 || dmax < 0.0) { if (callback && callback->sep_axis) *callback->sep_axis=axis; #ifdef DEBUG_ENABLED best_axis_count++; #endif return false; // doesn't contain 0 } //use the smallest depth dmin = Math::abs(dmin); if ( dmax < dmin ) { if ( dmax < best_depth ) { best_depth=dmax; best_axis=axis; #ifdef DEBUG_ENABLED best_axis_index=best_axis_count; #endif } } else { if ( dmin < best_depth ) { best_depth=dmin; best_axis=-axis; // keep it as A axis #ifdef DEBUG_ENABLED best_axis_index=best_axis_count; #endif } } // print_line("test axis: "+p_axis+" depth: "+rtos(best_depth)); #ifdef DEBUG_ENABLED best_axis_count++; #endif return true; } _FORCE_INLINE_ void generate_contacts() { // nothing to do, don't generate if (best_axis==Vector2(0.0,0.0)) return; callback->collided=true; if (!callback->callback) return; //only collide, no callback static const int max_supports=2; Vector2 supports_A[max_supports]; int support_count_A; shape_A->get_supports(transform_A->basis_xform_inv(-best_axis).normalized(),supports_A,support_count_A); for(int i=0;ixform(supports_A[i]); } Vector2 supports_B[max_supports]; int support_count_B; shape_B->get_supports(transform_B->basis_xform_inv(best_axis).normalized(),supports_B,support_count_B); for(int i=0;ixform(supports_B[i]); } /* print_line("**************************"); printf("CBK: %p\n",callback->userdata); print_line("type A: "+itos(shape_A->get_type())); print_line("type B: "+itos(shape_B->get_type())); print_line("xform A: "+*transform_A); print_line("xform B: "+*transform_B); print_line("normal: "+best_axis); print_line("depth: "+rtos(best_depth)); print_line("index: "+itos(best_axis_index)); for(int i=0;inormal=best_axis; _generate_contacts_from_supports(supports_A,support_count_A,supports_B,support_count_B,callback); if (callback && callback->sep_axis && *callback->sep_axis!=Vector2()) *callback->sep_axis=Vector2(); //invalidate previous axis (no test) //CollisionSolver2DSW::CallbackResult cbk=NULL; //cbk(Vector2(),Vector2(),NULL); } _FORCE_INLINE_ SeparatorAxisTest2D(const ShapeA *p_shape_A,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a, const ShapeB *p_shape_B,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { best_depth=1e15; shape_A=p_shape_A; shape_B=p_shape_B; transform_A=&p_transform_a; transform_B=&p_transform_b; transform_inv_A=&p_transform_inv_a; transform_inv_B=&p_transform_inv_b; callback=p_collector; #ifdef DEBUG_ENABLED best_axis_count=0; best_axis_index=-1; #endif } }; /****** SAT TESTS *******/ /****** SAT TESTS *******/ /****** SAT TESTS *******/ /****** SAT TESTS *******/ typedef void (*CollisionFunc)(const Shape2DSW*,const Matrix32&,const Matrix32&,const Shape2DSW*,const Matrix32&,const Matrix32&,_CollectorCallback2D *p_collector); static void _collision_segment_segment(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const SegmentShape2DSW *segment_A = static_cast(p_a); const SegmentShape2DSW *segment_B = static_cast(p_b); SeparatorAxisTest2D separator(segment_A,p_transform_a,p_transform_inv_a,segment_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; if (!separator.test_axis(p_transform_inv_a.basis_xform_inv(segment_A->get_normal()).normalized())) return; if (!separator.test_axis(p_transform_inv_a.basis_xform_inv(segment_B->get_normal()).normalized())) return; separator.generate_contacts(); } static void _collision_segment_circle(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const SegmentShape2DSW *segment_A = static_cast(p_a); const CircleShape2DSW *circle_B = static_cast(p_b); SeparatorAxisTest2D separator(segment_A,p_transform_a,p_transform_inv_a,circle_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; if (!separator.test_axis( (p_transform_a.xform(segment_A->get_b())-p_transform_a.xform(segment_A->get_a())).normalized().tangent() )) return; // if (!separator.test_axis(p_transform_inv_a.basis_xform_inv(segment_A->get_normal()).normalized())) // return; if (!separator.test_axis((p_transform_a.xform(segment_A->get_a())-p_transform_b.get_origin()).normalized())) return; if (!separator.test_axis((p_transform_a.xform(segment_A->get_b())-p_transform_b.get_origin()).normalized())) return; separator.generate_contacts(); } static void _collision_segment_rectangle(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const SegmentShape2DSW *segment_A = static_cast(p_a); const RectangleShape2DSW *rectangle_B = static_cast(p_b); SeparatorAxisTest2D separator(segment_A,p_transform_a,p_transform_inv_a,rectangle_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; if (!separator.test_axis(p_transform_inv_a.basis_xform_inv(segment_A->get_normal()).normalized())) return; if (!separator.test_axis(p_transform_b.elements[0].normalized())) return; if (!separator.test_axis(p_transform_b.elements[1].normalized())) return; separator.generate_contacts(); } static void _collision_segment_capsule(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const SegmentShape2DSW *segment_A = static_cast(p_a); const CapsuleShape2DSW *capsule_B = static_cast(p_b); SeparatorAxisTest2D separator(segment_A,p_transform_a,p_transform_inv_a,capsule_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; if (!separator.test_axis(p_transform_inv_a.basis_xform_inv(segment_A->get_normal()).normalized())) return; if (!separator.test_axis(p_transform_b.elements[0].normalized())) return; if (!separator.test_axis((p_transform_a.xform(segment_A->get_a())-(p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*0.5)).normalized())) return; if (!separator.test_axis((p_transform_a.xform(segment_A->get_a())-(p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*-0.5)).normalized())) return; if (!separator.test_axis((p_transform_a.xform(segment_A->get_b())-(p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*0.5)).normalized())) return; if (!separator.test_axis((p_transform_a.xform(segment_A->get_b())-(p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*-0.5)).normalized())) return; separator.generate_contacts(); } static void _collision_segment_convex_polygon(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const SegmentShape2DSW *segment_A = static_cast(p_a); const ConvexPolygonShape2DSW *convex_B = static_cast(p_b); SeparatorAxisTest2D separator(segment_A,p_transform_a,p_transform_inv_a,convex_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; if (!separator.test_axis(p_transform_inv_a.basis_xform_inv(segment_A->get_normal()).normalized())) return; for(int i=0;iget_point_count();i++) { if (!separator.test_axis( p_transform_inv_b.basis_xform_inv(convex_B->get_segment_normal(i)).normalized() )) return; } separator.generate_contacts(); } ///////// static void _collision_circle_circle(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const CircleShape2DSW *circle_A = static_cast(p_a); const CircleShape2DSW *circle_B = static_cast(p_b); SeparatorAxisTest2D separator(circle_A,p_transform_a,p_transform_inv_a,circle_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; if (!separator.test_axis((p_transform_a.get_origin()-p_transform_b.get_origin()).normalized())) return; separator.generate_contacts(); } static void _collision_circle_rectangle(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const CircleShape2DSW *circle_A = static_cast(p_a); const RectangleShape2DSW *rectangle_B = static_cast(p_b); SeparatorAxisTest2D separator(circle_A,p_transform_a,p_transform_inv_a,rectangle_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; const Vector2 &sphere=p_transform_a.elements[2]; const Vector2 *axis=&p_transform_b.elements[0]; const Vector2& half_extents = rectangle_B->get_half_extents(); if (!separator.test_axis(axis[0].normalized())) return; if (!separator.test_axis(axis[1].normalized())) return; Vector2 local_v = p_transform_inv_b.xform(p_transform_a.get_origin()); Vector2 he( (local_v.x<0) ? -half_extents.x : half_extents.x, (local_v.y<0) ? -half_extents.y : half_extents.y ); if (!separator.test_axis((p_transform_b.xform(he)-sphere).normalized())) return; separator.generate_contacts(); } static void _collision_circle_capsule(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const CircleShape2DSW *circle_A = static_cast(p_a); const CapsuleShape2DSW *capsule_B = static_cast(p_b); SeparatorAxisTest2D separator(circle_A,p_transform_a,p_transform_inv_a,capsule_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; //capsule axis if (!separator.test_axis(p_transform_b.elements[0].normalized())) return; //capsule endpoints if (!separator.test_axis((p_transform_a.get_origin()-(p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*0.5)).normalized())) return; if (!separator.test_axis((p_transform_a.get_origin()-(p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*-0.5)).normalized())) return; separator.generate_contacts(); } static void _collision_circle_convex_polygon(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const CircleShape2DSW *circle_A = static_cast(p_a); const ConvexPolygonShape2DSW *convex_B = static_cast(p_b); SeparatorAxisTest2D separator(circle_A,p_transform_a,p_transform_inv_a,convex_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; //poly faces and poly points vs circle for(int i=0;iget_point_count();i++) { if (!separator.test_axis( (p_transform_b.xform(convex_B->get_point(i))-p_transform_a.get_origin()).normalized() )) return; if (!separator.test_axis( p_transform_inv_b.basis_xform_inv(convex_B->get_segment_normal(i)).normalized() )) return; } separator.generate_contacts(); } ///////// static void _collision_rectangle_rectangle(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const RectangleShape2DSW *rectangle_A = static_cast(p_a); const RectangleShape2DSW *rectangle_B = static_cast(p_b); SeparatorAxisTest2D separator(rectangle_A,p_transform_a,p_transform_inv_a,rectangle_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; //box faces A if (!separator.test_axis(p_transform_a.elements[0].normalized())) return; if (!separator.test_axis(p_transform_a.elements[1].normalized())) return; //box faces B if (!separator.test_axis(p_transform_b.elements[0].normalized())) return; if (!separator.test_axis(p_transform_b.elements[1].normalized())) return; separator.generate_contacts(); } static void _collision_rectangle_capsule(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const RectangleShape2DSW *rectangle_A = static_cast(p_a); const CapsuleShape2DSW *capsule_B = static_cast(p_b); SeparatorAxisTest2D separator(rectangle_A,p_transform_a,p_transform_inv_a,capsule_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; //box faces if (!separator.test_axis(p_transform_a.elements[0].normalized())) return; if (!separator.test_axis(p_transform_a.elements[1].normalized())) return; //capsule axis if (!separator.test_axis(p_transform_b.elements[0].normalized())) return; //box endpoints to capsule circles for(int i=0;i<2;i++) { Vector2 capsule_endpoint = p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*(i==0?0.5:-0.5); const Vector2& half_extents = rectangle_A->get_half_extents(); Vector2 local_v = p_transform_inv_a.xform(capsule_endpoint); Vector2 he( (local_v.x<0) ? -half_extents.x : half_extents.x, (local_v.y<0) ? -half_extents.y : half_extents.y ); if (!separator.test_axis(p_transform_a.xform(he).normalized())) return; } separator.generate_contacts(); } static void _collision_rectangle_convex_polygon(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const RectangleShape2DSW *rectangle_A = static_cast(p_a); const ConvexPolygonShape2DSW *convex_B = static_cast(p_b); SeparatorAxisTest2D separator(rectangle_A,p_transform_a,p_transform_inv_a,convex_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; //box faces if (!separator.test_axis(p_transform_a.elements[0].normalized())) return; if (!separator.test_axis(p_transform_a.elements[1].normalized())) return; //convex faces for(int i=0;iget_point_count();i++) { if (!separator.test_axis( p_transform_inv_b.basis_xform_inv(convex_B->get_segment_normal(i)).normalized() )) return; } separator.generate_contacts(); } ///////// static void _collision_capsule_capsule(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const CapsuleShape2DSW *capsule_A = static_cast(p_a); const CapsuleShape2DSW *capsule_B = static_cast(p_b); SeparatorAxisTest2D separator(capsule_A,p_transform_a,p_transform_inv_a,capsule_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; //capsule axis if (!separator.test_axis(p_transform_b.elements[0].normalized())) return; if (!separator.test_axis(p_transform_a.elements[0].normalized())) return; //capsule endpoints for(int i=0;i<2;i++) { Vector2 capsule_endpoint_A = p_transform_a.get_origin()+p_transform_a.elements[1]*capsule_A->get_height()*(i==0?0.5:-0.5); for(int j=0;j<2;j++) { Vector2 capsule_endpoint_B = p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*(j==0?0.5:-0.5); if (!separator.test_axis( (capsule_endpoint_A-capsule_endpoint_B).normalized() )) return; } } separator.generate_contacts(); } static void _collision_capsule_convex_polygon(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const CapsuleShape2DSW *capsule_A = static_cast(p_a); const ConvexPolygonShape2DSW *convex_B = static_cast(p_b); SeparatorAxisTest2D separator(capsule_A,p_transform_a,p_transform_inv_a,convex_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; //capsule axis if (!separator.test_axis(p_transform_a.elements[0].normalized())) return; //poly vs capsule for(int i=0;iget_point_count();i++) { Vector2 cpoint = p_transform_b.xform(convex_B->get_point(i)); for(int j=0;j<2;j++) { Vector2 capsule_endpoint_A = p_transform_a.get_origin()+p_transform_a.elements[1]*capsule_A->get_height()*(j==0?0.5:-0.5); if (!separator.test_axis( (cpoint - capsule_endpoint_A).normalized() )) return; } if (!separator.test_axis( p_transform_inv_b.basis_xform_inv(convex_B->get_segment_normal(i)).normalized() )) return; } separator.generate_contacts(); } ///////// static void _collision_convex_polygon_convex_polygon(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) { const ConvexPolygonShape2DSW *convex_A = static_cast(p_a); const ConvexPolygonShape2DSW *convex_B = static_cast(p_b); SeparatorAxisTest2D separator(convex_A,p_transform_a,p_transform_inv_a,convex_B,p_transform_b,p_transform_inv_b,p_collector); if (!separator.test_previous_axis()) return; for(int i=0;iget_point_count();i++) { if (!separator.test_axis( p_transform_inv_a.basis_xform_inv(convex_A->get_segment_normal(i)).normalized() )) return; } for(int i=0;iget_point_count();i++) { if (!separator.test_axis( p_transform_inv_b.basis_xform_inv(convex_B->get_segment_normal(i)).normalized() )) return; } separator.generate_contacts(); } //////// bool sat_2d_calculate_penetration(const Shape2DSW *p_shape_A, const Matrix32& p_transform_A, const Matrix32& p_transform_inv_A, const Shape2DSW *p_shape_B, const Matrix32& p_transform_B, const Matrix32& p_transform_inv_B, CollisionSolver2DSW::CallbackResult p_result_callback,void *p_userdata, bool p_swap,Vector2 *sep_axis) { Physics2DServer::ShapeType type_A=p_shape_A->get_type(); ERR_FAIL_COND_V(type_A==Physics2DServer::SHAPE_LINE,false); //ERR_FAIL_COND_V(type_A==Physics2DServer::SHAPE_RAY,false); ERR_FAIL_COND_V(p_shape_A->is_concave(),false); Physics2DServer::ShapeType type_B=p_shape_B->get_type(); ERR_FAIL_COND_V(type_B==Physics2DServer::SHAPE_LINE,false); //ERR_FAIL_COND_V(type_B==Physics2DServer::SHAPE_RAY,false); ERR_FAIL_COND_V(p_shape_B->is_concave(),false); static const CollisionFunc collision_table[5][5]={ {_collision_segment_segment, _collision_segment_circle, _collision_segment_rectangle, _collision_segment_capsule, _collision_segment_convex_polygon}, {0, _collision_circle_circle, _collision_circle_rectangle, _collision_circle_capsule, _collision_circle_convex_polygon}, {0, 0, _collision_rectangle_rectangle, _collision_rectangle_capsule, _collision_rectangle_convex_polygon}, {0, 0, 0, _collision_capsule_capsule, _collision_capsule_convex_polygon}, {0, 0, 0, 0, _collision_convex_polygon_convex_polygon} }; _CollectorCallback2D callback; callback.callback=p_result_callback; callback.swap=p_swap; callback.userdata=p_userdata; callback.collided=false; callback.sep_axis=sep_axis; const Shape2DSW *A=p_shape_A; const Shape2DSW *B=p_shape_B; const Matrix32 *transform_A=&p_transform_A; const Matrix32 *transform_B=&p_transform_B; const Matrix32 *transform_inv_A=&p_transform_inv_A; const Matrix32 *transform_inv_B=&p_transform_inv_B; if (type_A > type_B) { SWAP(A,B); SWAP(transform_A,transform_B); SWAP(transform_inv_A,transform_inv_B); SWAP(type_A,type_B); callback.swap = !callback.swap; } CollisionFunc collision_func = collision_table[type_A-2][type_B-2]; ERR_FAIL_COND_V(!collision_func,false); collision_func(A,*transform_A,*transform_inv_A,B,*transform_B,*transform_inv_B,&callback); return callback.collided; }