/*************************************************************************/ /* visual_server_raster.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "visual_server_raster.h" #include "os/os.h" #include "globals.h" #include "default_mouse_cursor.xpm" #include "sort.h" #include "io/marshalls.h" // careful, these may run in different threads than the visual server BalloonAllocator<> *VisualServerRaster::OctreeAllocator::allocator=NULL; #define VS_CHANGED\ changes++;\ // print_line(__FUNCTION__); RID VisualServerRaster::texture_create() { return rasterizer->texture_create(); } void VisualServerRaster::texture_allocate(RID p_texture, int p_width, int p_height,Image::Format p_format,uint32_t p_flags) { rasterizer->texture_allocate(p_texture,p_width,p_height,p_format,p_flags); } void VisualServerRaster::texture_set_flags(RID p_texture,uint32_t p_flags) { VS_CHANGED; rasterizer->texture_set_flags(p_texture,p_flags); } void VisualServerRaster::texture_set_data(RID p_texture,const Image& p_image,CubeMapSide p_cube_side) { VS_CHANGED; rasterizer->texture_set_data(p_texture,p_image,p_cube_side); } Image VisualServerRaster::texture_get_data(RID p_texture,CubeMapSide p_cube_side) const { return rasterizer->texture_get_data(p_texture,p_cube_side); } uint32_t VisualServerRaster::texture_get_flags(RID p_texture) const { return rasterizer->texture_get_flags(p_texture); } Image::Format VisualServerRaster::texture_get_format(RID p_texture) const { return rasterizer->texture_get_format(p_texture); } uint32_t VisualServerRaster::texture_get_width(RID p_texture) const { return rasterizer->texture_get_width(p_texture); } uint32_t VisualServerRaster::texture_get_height(RID p_texture) const { return rasterizer->texture_get_height(p_texture); } void VisualServerRaster::texture_set_size_override(RID p_texture,int p_width, int p_height) { rasterizer->texture_set_size_override(p_texture,p_width,p_height); } bool VisualServerRaster::texture_can_stream(RID p_texture) const { return false; } void VisualServerRaster::texture_set_reload_hook(RID p_texture,ObjectID p_owner,const StringName& p_function) const { rasterizer->texture_set_reload_hook(p_texture,p_owner,p_function); } /* SHADER API */ RID VisualServerRaster::shader_create(ShaderMode p_mode) { return rasterizer->shader_create(p_mode); } void VisualServerRaster::shader_set_mode(RID p_shader,ShaderMode p_mode){ VS_CHANGED; rasterizer->shader_set_mode(p_shader,p_mode); } VisualServer::ShaderMode VisualServerRaster::shader_get_mode(RID p_shader) const{ return rasterizer->shader_get_mode(p_shader); } void VisualServerRaster::shader_set_code(RID p_shader, const String& p_vertex, const String& p_fragment,const String& p_light,int p_vertex_ofs,int p_fragment_ofs,int p_light_ofs) { VS_CHANGED; rasterizer->shader_set_code(p_shader,p_vertex,p_fragment,p_light,p_vertex_ofs,p_fragment_ofs,p_light_ofs); } String VisualServerRaster::shader_get_vertex_code(RID p_shader) const{ return rasterizer->shader_get_vertex_code(p_shader); } String VisualServerRaster::shader_get_fragment_code(RID p_shader) const{ return rasterizer->shader_get_fragment_code(p_shader); } String VisualServerRaster::shader_get_light_code(RID p_shader) const{ return rasterizer->shader_get_light_code(p_shader); } void VisualServerRaster::shader_get_param_list(RID p_shader, List *p_param_list) const { return rasterizer->shader_get_param_list(p_shader,p_param_list); } void VisualServerRaster::shader_set_default_texture_param(RID p_shader, const StringName& p_name, RID p_texture) { rasterizer->shader_set_default_texture_param(p_shader,p_name,p_texture); } RID VisualServerRaster::shader_get_default_texture_param(RID p_shader, const StringName& p_name) const{ return rasterizer->shader_get_default_texture_param(p_shader,p_name); } /* Material */ RID VisualServerRaster::material_create() { return rasterizer->material_create(); } void VisualServerRaster::material_set_shader(RID p_material, RID p_shader) { VS_CHANGED; rasterizer->material_set_shader(p_material, p_shader ); } RID VisualServerRaster::material_get_shader(RID p_material) const { return rasterizer->material_get_shader(p_material); } void VisualServerRaster::material_set_param(RID p_material, const StringName& p_param, const Variant& p_value) { VS_CHANGED; rasterizer->material_set_param(p_material, p_param,p_value ); } Variant VisualServerRaster::material_get_param(RID p_material, const StringName& p_param) const { return rasterizer->material_get_param(p_material,p_param); } void VisualServerRaster::material_set_flag(RID p_material, MaterialFlag p_flag,bool p_enabled) { VS_CHANGED; rasterizer->material_set_flag(p_material,p_flag,p_enabled); } void VisualServerRaster::material_set_depth_draw_mode(RID p_material, MaterialDepthDrawMode p_mode) { VS_CHANGED; rasterizer->material_set_depth_draw_mode(p_material,p_mode); } VS::MaterialDepthDrawMode VisualServerRaster::material_get_depth_draw_mode(RID p_material) const { return rasterizer->material_get_depth_draw_mode(p_material); } bool VisualServerRaster::material_get_flag(RID p_material,MaterialFlag p_flag) const { return rasterizer->material_get_flag(p_material,p_flag); } void VisualServerRaster::material_set_blend_mode(RID p_material,MaterialBlendMode p_mode) { VS_CHANGED; rasterizer->material_set_blend_mode(p_material,p_mode); } VS::MaterialBlendMode VisualServerRaster::material_get_blend_mode(RID p_material) const { return rasterizer->material_get_blend_mode(p_material); } void VisualServerRaster::material_set_line_width(RID p_material,float p_line_width) { VS_CHANGED; rasterizer->material_set_line_width(p_material,p_line_width); } float VisualServerRaster::material_get_line_width(RID p_material) const { return rasterizer->material_get_line_width(p_material); } /* FIXED MATERIAL */ RID VisualServerRaster::fixed_material_create() { return rasterizer->fixed_material_create(); } void VisualServerRaster::fixed_material_set_flag(RID p_material, FixedMaterialFlags p_flag, bool p_enabled) { rasterizer->fixed_material_set_flag(p_material,p_flag,p_enabled); } bool VisualServerRaster::fixed_material_get_flag(RID p_material, FixedMaterialFlags p_flag) const { return rasterizer->fixed_material_get_flag(p_material,p_flag); } void VisualServerRaster::fixed_material_set_param(RID p_material, FixedMaterialParam p_parameter, const Variant& p_value) { VS_CHANGED; rasterizer->fixed_material_set_parameter(p_material,p_parameter,p_value); } Variant VisualServerRaster::fixed_material_get_param(RID p_material,FixedMaterialParam p_parameter) const { return rasterizer->fixed_material_get_parameter(p_material,p_parameter); } void VisualServerRaster::fixed_material_set_texture(RID p_material,FixedMaterialParam p_parameter, RID p_texture) { VS_CHANGED; rasterizer->fixed_material_set_texture(p_material,p_parameter,p_texture); } RID VisualServerRaster::fixed_material_get_texture(RID p_material,FixedMaterialParam p_parameter) const { return rasterizer->fixed_material_get_texture(p_material,p_parameter); } void VisualServerRaster::fixed_material_set_texcoord_mode(RID p_material,FixedMaterialParam p_parameter, FixedMaterialTexCoordMode p_mode) { VS_CHANGED; rasterizer->fixed_material_set_texcoord_mode(p_material,p_parameter,p_mode); } VS::FixedMaterialTexCoordMode VisualServerRaster::fixed_material_get_texcoord_mode(RID p_material,FixedMaterialParam p_parameter) const { return rasterizer->fixed_material_get_texcoord_mode(p_material,p_parameter); } void VisualServerRaster::fixed_material_set_point_size(RID p_material,float p_size) { VS_CHANGED rasterizer->fixed_material_set_point_size(p_material,p_size); } float VisualServerRaster::fixed_material_get_point_size(RID p_material) const{ return rasterizer->fixed_material_get_point_size(p_material); } void VisualServerRaster::fixed_material_set_uv_transform(RID p_material,const Transform& p_transform) { VS_CHANGED; rasterizer->fixed_material_set_uv_transform(p_material,p_transform); } Transform VisualServerRaster::fixed_material_get_uv_transform(RID p_material) const { return rasterizer->fixed_material_get_uv_transform(p_material); } void VisualServerRaster::fixed_material_set_light_shader(RID p_material,FixedMaterialLightShader p_shader) { VS_CHANGED; rasterizer->fixed_material_set_light_shader(p_material,p_shader); } VisualServerRaster::FixedMaterialLightShader VisualServerRaster::fixed_material_get_light_shader(RID p_material) const{ return rasterizer->fixed_material_get_light_shader(p_material); } /* MESH API */ RID VisualServerRaster::mesh_create() { return rasterizer->mesh_create(); } void VisualServerRaster::mesh_set_morph_target_count(RID p_mesh,int p_amount) { rasterizer->mesh_set_morph_target_count(p_mesh,p_amount); int amount = rasterizer->mesh_get_morph_target_count(p_mesh); Map< RID, Set >::Element * E = instance_dependency_map.find( p_mesh ); if (!E) return; Set::Element *I = E->get().front(); while(I) { Instance *ins = instance_owner.get( I->get() ); ins->data.morph_values.resize(amount); I = I->next(); } } int VisualServerRaster::mesh_get_morph_target_count(RID p_mesh) const { return rasterizer->mesh_get_morph_target_count(p_mesh); } void VisualServerRaster::mesh_set_morph_target_mode(RID p_mesh,MorphTargetMode p_mode) { rasterizer->mesh_set_morph_target_mode(p_mesh,p_mode); } VisualServer::MorphTargetMode VisualServerRaster::mesh_get_morph_target_mode(RID p_mesh) const{ return rasterizer->mesh_get_morph_target_mode(p_mesh); } void VisualServerRaster::mesh_add_custom_surface(RID p_mesh,const Variant& p_dat) { } void VisualServerRaster::mesh_add_surface(RID p_mesh,PrimitiveType p_primitive,const Array& p_arrays,const Array& p_blend_shapes,bool p_alpha_sort) { VS_CHANGED; _dependency_queue_update(p_mesh,true); rasterizer->mesh_add_surface(p_mesh,p_primitive,p_arrays,p_blend_shapes,p_alpha_sort); } Array VisualServerRaster::mesh_get_surface_arrays(RID p_mesh,int p_surface) const { return rasterizer->mesh_get_surface_arrays(p_mesh,p_surface); } Array VisualServerRaster::mesh_get_surface_morph_arrays(RID p_mesh,int p_surface) const { return rasterizer->mesh_get_surface_morph_arrays(p_mesh,p_surface); } void VisualServerRaster::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material,bool p_owned){ VS_CHANGED; rasterizer->mesh_surface_set_material(p_mesh,p_surface,p_material,p_owned); } RID VisualServerRaster::mesh_surface_get_material(RID p_mesh,int p_surface) const { return rasterizer->mesh_surface_get_material(p_mesh,p_surface); } int VisualServerRaster::mesh_surface_get_array_len(RID p_mesh, int p_surface) const{ return rasterizer->mesh_surface_get_array_len(p_mesh,p_surface); } int VisualServerRaster::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const{ return rasterizer->mesh_surface_get_array_index_len(p_mesh,p_surface); } uint32_t VisualServerRaster::mesh_surface_get_format(RID p_mesh, int p_surface) const{ return rasterizer->mesh_surface_get_format(p_mesh,p_surface); } VisualServer::PrimitiveType VisualServerRaster::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const{ return rasterizer->mesh_surface_get_primitive_type(p_mesh,p_surface); } void VisualServerRaster::mesh_remove_surface(RID p_mesh,int p_surface){ rasterizer->mesh_remove_surface(p_mesh,p_surface); } int VisualServerRaster::mesh_get_surface_count(RID p_mesh) const{ return rasterizer->mesh_get_surface_count(p_mesh); } void VisualServerRaster::mesh_set_custom_aabb(RID p_mesh,const AABB& p_aabb) { VS_CHANGED; _dependency_queue_update(p_mesh,true); rasterizer->mesh_set_custom_aabb(p_mesh,p_aabb); } AABB VisualServerRaster::mesh_get_custom_aabb(RID p_mesh) const { return rasterizer->mesh_get_custom_aabb(p_mesh); } /* MULTIMESH */ RID VisualServerRaster::multimesh_create() { return rasterizer->multimesh_create(); } void VisualServerRaster::multimesh_set_instance_count(RID p_multimesh,int p_count) { VS_CHANGED; rasterizer->multimesh_set_instance_count(p_multimesh,p_count); } int VisualServerRaster::multimesh_get_instance_count(RID p_multimesh) const { return rasterizer->multimesh_get_instance_count(p_multimesh); } void VisualServerRaster::multimesh_set_mesh(RID p_multimesh,RID p_mesh) { VS_CHANGED; rasterizer->multimesh_set_mesh(p_multimesh,p_mesh); } void VisualServerRaster::multimesh_set_aabb(RID p_multimesh,const AABB& p_aabb) { VS_CHANGED; rasterizer->multimesh_set_aabb(p_multimesh,p_aabb); _dependency_queue_update(p_multimesh,true); } void VisualServerRaster::multimesh_instance_set_transform(RID p_multimesh,int p_index,const Transform& p_transform) { VS_CHANGED; rasterizer->multimesh_instance_set_transform(p_multimesh,p_index,p_transform); } void VisualServerRaster::multimesh_instance_set_color(RID p_multimesh,int p_index,const Color& p_color) { VS_CHANGED; rasterizer->multimesh_instance_set_color(p_multimesh,p_index,p_color); } RID VisualServerRaster::multimesh_get_mesh(RID p_multimesh) const { return rasterizer->multimesh_get_mesh(p_multimesh); } AABB VisualServerRaster::multimesh_get_aabb(RID p_multimesh,const AABB& p_aabb) const { return rasterizer->multimesh_get_aabb(p_multimesh); } Transform VisualServerRaster::multimesh_instance_get_transform(RID p_multimesh,int p_index) const { return rasterizer->multimesh_instance_get_transform(p_multimesh,p_index); } Color VisualServerRaster::multimesh_instance_get_color(RID p_multimesh,int p_index) const { return rasterizer->multimesh_instance_get_color(p_multimesh,p_index); } void VisualServerRaster::multimesh_set_visible_instances(RID p_multimesh,int p_visible) { rasterizer->multimesh_set_visible_instances(p_multimesh,p_visible); } int VisualServerRaster::multimesh_get_visible_instances(RID p_multimesh) const { return rasterizer->multimesh_get_visible_instances(p_multimesh); } /* IMMEDIATE API */ RID VisualServerRaster::immediate_create() { return rasterizer->immediate_create(); } void VisualServerRaster::immediate_begin(RID p_immediate,PrimitiveType p_primitive,RID p_texture){ rasterizer->immediate_begin(p_immediate,p_primitive,p_texture); } void VisualServerRaster::immediate_vertex(RID p_immediate,const Vector3& p_vertex){ rasterizer->immediate_vertex(p_immediate,p_vertex); } void VisualServerRaster::immediate_normal(RID p_immediate,const Vector3& p_normal){ rasterizer->immediate_normal(p_immediate,p_normal); } void VisualServerRaster::immediate_tangent(RID p_immediate,const Plane& p_tangent){ rasterizer->immediate_tangent(p_immediate,p_tangent); } void VisualServerRaster::immediate_color(RID p_immediate,const Color& p_color){ rasterizer->immediate_color(p_immediate,p_color); } void VisualServerRaster::immediate_uv(RID p_immediate,const Vector2& p_uv){ rasterizer->immediate_uv(p_immediate,p_uv); } void VisualServerRaster::immediate_uv2(RID p_immediate,const Vector2& p_uv2){ rasterizer->immediate_uv2(p_immediate,p_uv2); } void VisualServerRaster::immediate_end(RID p_immediate){ VS_CHANGED; _dependency_queue_update(p_immediate,true); rasterizer->immediate_end(p_immediate); } void VisualServerRaster::immediate_clear(RID p_immediate){ VS_CHANGED; _dependency_queue_update(p_immediate,true); rasterizer->immediate_clear(p_immediate); } void VisualServerRaster::immediate_set_material(RID p_immediate,RID p_material) { rasterizer->immediate_set_material(p_immediate,p_material); } RID VisualServerRaster::immediate_get_material(RID p_immediate) const { return rasterizer->immediate_get_material(p_immediate); } /* PARTICLES API */ RID VisualServerRaster::particles_create() { return rasterizer->particles_create(); } void VisualServerRaster::particles_set_amount(RID p_particles, int p_amount) { VS_CHANGED; rasterizer->particles_set_amount(p_particles,p_amount); } int VisualServerRaster::particles_get_amount(RID p_particles) const { return rasterizer->particles_get_amount(p_particles); } void VisualServerRaster::particles_set_emitting(RID p_particles, bool p_emitting) { VS_CHANGED; rasterizer->particles_set_emitting(p_particles,p_emitting); } bool VisualServerRaster::particles_is_emitting(RID p_particles) const { return rasterizer->particles_is_emitting(p_particles); } void VisualServerRaster::particles_set_visibility_aabb(RID p_particles, const AABB& p_visibility) { VS_CHANGED; rasterizer->particles_set_visibility_aabb(p_particles, p_visibility); } AABB VisualServerRaster::particles_get_visibility_aabb(RID p_particles) const { return rasterizer->particles_get_visibility_aabb(p_particles); } void VisualServerRaster::particles_set_emission_half_extents(RID p_particles, const Vector3& p_half_extents) { VS_CHANGED; rasterizer->particles_set_emission_half_extents(p_particles,p_half_extents); } Vector3 VisualServerRaster::particles_get_emission_half_extents(RID p_particles) const { return rasterizer->particles_get_emission_half_extents(p_particles); } void VisualServerRaster::particles_set_emission_base_velocity(RID p_particles, const Vector3& p_base_velocity) { VS_CHANGED; rasterizer->particles_set_emission_base_velocity(p_particles,p_base_velocity); } Vector3 VisualServerRaster::particles_get_emission_base_velocity(RID p_particles) const { return rasterizer->particles_get_emission_base_velocity(p_particles); } void VisualServerRaster::particles_set_emission_points(RID p_particles, const DVector& p_points) { VS_CHANGED; rasterizer->particles_set_emission_points(p_particles,p_points); } DVector VisualServerRaster::particles_get_emission_points(RID p_particles) const { return rasterizer->particles_get_emission_points(p_particles); } void VisualServerRaster::particles_set_gravity_normal(RID p_particles, const Vector3& p_normal) { VS_CHANGED; rasterizer->particles_set_gravity_normal(p_particles,p_normal); } Vector3 VisualServerRaster::particles_get_gravity_normal(RID p_particles) const { return rasterizer->particles_get_gravity_normal(p_particles); } void VisualServerRaster::particles_set_variable(RID p_particles, ParticleVariable p_variable,float p_value) { VS_CHANGED; rasterizer->particles_set_variable(p_particles,p_variable,p_value); } float VisualServerRaster::particles_get_variable(RID p_particles, ParticleVariable p_variable) const { return rasterizer->particles_get_variable(p_particles,p_variable); } void VisualServerRaster::particles_set_randomness(RID p_particles, ParticleVariable p_variable,float p_randomness) { VS_CHANGED; rasterizer->particles_set_randomness(p_particles,p_variable,p_randomness); } float VisualServerRaster::particles_get_randomness(RID p_particles, ParticleVariable p_variable) const { return rasterizer->particles_get_randomness(p_particles,p_variable); } void VisualServerRaster::particles_set_color_phases(RID p_particles, int p_phases) { VS_CHANGED; rasterizer->particles_set_color_phases(p_particles,p_phases); } int VisualServerRaster::particles_get_color_phases(RID p_particles) const { return rasterizer->particles_get_color_phases(p_particles); } void VisualServerRaster::particles_set_color_phase_pos(RID p_particles, int p_phase, float p_pos) { VS_CHANGED; rasterizer->particles_set_color_phase_pos(p_particles,p_phase,p_pos); } float VisualServerRaster::particles_get_color_phase_pos(RID p_particles, int p_phase) const { return rasterizer->particles_get_color_phase_pos(p_particles,p_phase); } void VisualServerRaster::particles_set_attractors(RID p_particles, int p_attractors) { VS_CHANGED; rasterizer->particles_set_attractors(p_particles,p_attractors); } int VisualServerRaster::particles_get_attractors(RID p_particles) const { return rasterizer->particles_get_attractors(p_particles); } void VisualServerRaster::particles_set_attractor_pos(RID p_particles, int p_attractor, const Vector3& p_pos) { VS_CHANGED; rasterizer->particles_set_attractor_pos(p_particles,p_attractor,p_pos); } Vector3 VisualServerRaster::particles_get_attractor_pos(RID p_particles,int p_attractor) const { return rasterizer->particles_get_attractor_pos(p_particles,p_attractor); } void VisualServerRaster::particles_set_attractor_strength(RID p_particles, int p_attractor, float p_force) { VS_CHANGED; rasterizer->particles_set_attractor_strength(p_particles,p_attractor,p_force); } float VisualServerRaster::particles_get_attractor_strength(RID p_particles,int p_attractor) const { return rasterizer->particles_get_attractor_strength(p_particles,p_attractor); } void VisualServerRaster::particles_set_color_phase_color(RID p_particles, int p_phase, const Color& p_color) { VS_CHANGED; rasterizer->particles_set_color_phase_color(p_particles,p_phase,p_color); } Color VisualServerRaster::particles_get_color_phase_color(RID p_particles, int p_phase) const { return rasterizer->particles_get_color_phase_color(p_particles,p_phase); } void VisualServerRaster::particles_set_material(RID p_particles, RID p_material,bool p_owned) { VS_CHANGED; rasterizer->particles_set_material(p_particles,p_material,p_owned); } RID VisualServerRaster::particles_get_material(RID p_particles) const { return rasterizer->particles_get_material(p_particles); } void VisualServerRaster::particles_set_height_from_velocity(RID p_particles, bool p_enable) { VS_CHANGED; rasterizer->particles_set_height_from_velocity(p_particles,p_enable); } bool VisualServerRaster::particles_has_height_from_velocity(RID p_particles) const { return rasterizer->particles_has_height_from_velocity(p_particles); } void VisualServerRaster::particles_set_use_local_coordinates(RID p_particles, bool p_enable) { rasterizer->particles_set_use_local_coordinates(p_particles,p_enable); } bool VisualServerRaster::particles_is_using_local_coordinates(RID p_particles) const { return rasterizer->particles_is_using_local_coordinates(p_particles); } /* Light API */ RID VisualServerRaster::light_create(LightType p_type) { return rasterizer->light_create(p_type); } VisualServer::LightType VisualServerRaster::light_get_type(RID p_light) const { return rasterizer->light_get_type(p_light); } void VisualServerRaster::light_set_color(RID p_light,LightColor p_type, const Color& p_color) { VS_CHANGED; rasterizer->light_set_color(p_light,p_type,p_color); } Color VisualServerRaster::light_get_color(RID p_light,LightColor p_type) const { return rasterizer->light_get_color(p_light,p_type); } void VisualServerRaster::light_set_shadow(RID p_light,bool p_enabled) { VS_CHANGED; rasterizer->light_set_shadow(p_light,p_enabled); } bool VisualServerRaster::light_has_shadow(RID p_light) const { return rasterizer->light_has_shadow(p_light); } void VisualServerRaster::light_set_volumetric(RID p_light,bool p_enabled) { VS_CHANGED; rasterizer->light_set_volumetric(p_light,p_enabled); } bool VisualServerRaster::light_is_volumetric(RID p_light) const { return rasterizer->light_is_volumetric(p_light); } void VisualServerRaster::light_set_projector(RID p_light,RID p_texture) { VS_CHANGED; rasterizer->light_set_projector(p_light,p_texture); } RID VisualServerRaster::light_get_projector(RID p_light) const { return rasterizer->light_get_projector(p_light); } void VisualServerRaster::light_set_param(RID p_light, LightParam p_var, float p_value) { VS_CHANGED; rasterizer->light_set_var(p_light,p_var,p_value); _dependency_queue_update(p_light,true); } float VisualServerRaster::light_get_param(RID p_light, LightParam p_var) const { return rasterizer->light_get_var(p_light,p_var); } void VisualServerRaster::light_set_operator(RID p_light,LightOp p_op) { VS_CHANGED; rasterizer->light_set_operator(p_light,p_op); } VisualServerRaster::LightOp VisualServerRaster::light_get_operator(RID p_light) const { return rasterizer->light_get_operator(p_light); } void VisualServerRaster::light_omni_set_shadow_mode(RID p_light,LightOmniShadowMode p_mode) { VS_CHANGED; rasterizer->light_omni_set_shadow_mode(p_light,p_mode); } VisualServerRaster::LightOmniShadowMode VisualServerRaster::light_omni_get_shadow_mode(RID p_light) const { return rasterizer->light_omni_get_shadow_mode(p_light); } void VisualServerRaster::light_directional_set_shadow_mode(RID p_light,LightDirectionalShadowMode p_mode){ VS_CHANGED; rasterizer->light_directional_set_shadow_mode(p_light,p_mode); } VS::LightDirectionalShadowMode VisualServerRaster::light_directional_get_shadow_mode(RID p_light) const{ return rasterizer->light_directional_get_shadow_mode(p_light); } void VisualServerRaster::light_directional_set_shadow_param(RID p_light,LightDirectionalShadowParam p_param, float p_value) { VS_CHANGED; rasterizer->light_directional_set_shadow_param(p_light,p_param,p_value); } float VisualServerRaster::light_directional_get_shadow_param(RID p_light,LightDirectionalShadowParam p_param) const { return rasterizer->light_directional_get_shadow_param(p_light,p_param); } RID VisualServerRaster::skeleton_create() { return rasterizer->skeleton_create(); } void VisualServerRaster::skeleton_resize(RID p_skeleton,int p_bones) { VS_CHANGED; rasterizer->skeleton_resize(p_skeleton,p_bones); } int VisualServerRaster::skeleton_get_bone_count(RID p_skeleton) const { return rasterizer->skeleton_get_bone_count(p_skeleton); } void VisualServerRaster::skeleton_bone_set_transform(RID p_skeleton,int p_bone, const Transform& p_transform) { VS_CHANGED; rasterizer->skeleton_bone_set_transform(p_skeleton,p_bone,p_transform); Map< RID, Set >::Element *E=skeleton_dependency_map.find(p_skeleton); if (E) { //detach skeletons for (Set::Element *F=E->get().front();F;F=F->next()) { _instance_queue_update( F->get() , true); } } } Transform VisualServerRaster::skeleton_bone_get_transform(RID p_skeleton,int p_bone) { return rasterizer->skeleton_bone_get_transform(p_skeleton,p_bone); } /* VISIBILITY API */ /* ROOM API */ RID VisualServerRaster::room_create() { Room *room = memnew( Room ); ERR_FAIL_COND_V(!room,RID()); return room_owner.make_rid( room ); } void VisualServerRaster::room_set_bounds(RID p_room, const BSP_Tree& p_bounds) { VS_CHANGED; Room *room = room_owner.get(p_room); ERR_FAIL_COND(!room); room->bounds=p_bounds; _dependency_queue_update(p_room,true); } BSP_Tree VisualServerRaster::room_get_bounds(RID p_room) const { Room *room = room_owner.get(p_room); ERR_FAIL_COND_V(!room, BSP_Tree()); return room->bounds; } /* PORTAL API */ RID VisualServerRaster::portal_create() { VS_CHANGED; Portal *portal = memnew( Portal ); ERR_FAIL_COND_V(!portal,RID()); return portal_owner.make_rid( portal ); } void VisualServerRaster::portal_set_shape(RID p_portal, const Vector& p_shape) { VS_CHANGED; Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND(!portal); portal->shape=p_shape; portal->bounds=Rect2(); for(int i=0;ibounds.pos=p_shape[i]; else portal->bounds.expand_to(p_shape[i]); } _dependency_queue_update(p_portal,true); } Vector VisualServerRaster::portal_get_shape(RID p_portal) const { Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND_V(!portal, Vector()); return portal->shape; } void VisualServerRaster::portal_set_enabled(RID p_portal, bool p_enabled) { VS_CHANGED; Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND(!portal); portal->enabled=p_enabled; } bool VisualServerRaster::portal_is_enabled(RID p_portal) const { Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND_V(!portal, false); return portal->enabled; } void VisualServerRaster::portal_set_disable_distance(RID p_portal, float p_distance) { VS_CHANGED; Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND(!portal); portal->disable_distance=p_distance; } float VisualServerRaster::portal_get_disable_distance(RID p_portal) const { Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND_V(!portal, -1); return portal->disable_distance; } void VisualServerRaster::portal_set_disabled_color(RID p_portal, const Color& p_color) { VS_CHANGED; Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND(!portal); portal->disable_color=p_color; } Color VisualServerRaster::portal_get_disabled_color(RID p_portal) const { Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND_V(!portal, Color()); return portal->disable_color; } void VisualServerRaster::portal_set_connect_range(RID p_portal, float p_range) { VS_CHANGED; Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND(!portal); portal->connect_range=p_range; _dependency_queue_update(p_portal,true); } float VisualServerRaster::portal_get_connect_range(RID p_portal) const { Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND_V(!portal,0); return portal->connect_range; } RID VisualServerRaster::baked_light_create() { BakedLight *baked_light = memnew( BakedLight ); ERR_FAIL_COND_V(!baked_light,RID()); baked_light->data.mode=BAKED_LIGHT_OCTREE; baked_light->data.octree_lattice_size=0; baked_light->data.octree_lattice_divide=0; baked_light->data.octree_steps=1; baked_light->data.lightmap_multiplier=1.0; return baked_light_owner.make_rid( baked_light ); } void VisualServerRaster::baked_light_set_mode(RID p_baked_light,BakedLightMode p_mode){ VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); baked_light->data.mode=p_mode; baked_light->data.color_multiplier=1.0; _dependency_queue_update(p_baked_light,true); } VisualServer::BakedLightMode VisualServerRaster::baked_light_get_mode(RID p_baked_light) const{ const BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND_V(!baked_light,BAKED_LIGHT_OCTREE); return baked_light->data.mode; } void VisualServerRaster::baked_light_set_lightmap_multiplier(RID p_baked_light,float p_multiplier) { VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); baked_light->data.lightmap_multiplier=p_multiplier; } float VisualServerRaster::baked_light_get_lightmap_multiplier(RID p_baked_light) const{ const BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND_V(!baked_light,0); return baked_light->data.lightmap_multiplier; } void VisualServerRaster::baked_light_set_octree(RID p_baked_light,const DVector p_octree){ VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); if (p_octree.size()==0) { if (baked_light->data.octree_texture.is_valid()) rasterizer->free(baked_light->data.octree_texture); baked_light->data.octree_texture=RID(); baked_light->octree_aabb=AABB(); baked_light->octree_tex_size=Size2(); } else { int tex_w; int tex_h; int light_tex_w; int light_tex_h; bool is16; bool has_light_tex=false; { DVector::Read r=p_octree.read(); tex_w = decode_uint32(&r[0]); tex_h = decode_uint32(&r[4]); print_line("TEX W: "+itos(tex_w)+" TEX H:"+itos(tex_h)+" LEN: "+itos(p_octree.size())); is16=decode_uint32(&r[8]); baked_light->data.octree_lattice_size=decode_float(&r[12]); baked_light->data.octree_lattice_divide=tex_w/4.0; print_line("LATTICE SIZE: "+rtos(baked_light->data.octree_lattice_size)); print_line("LATTICE DIVIDE: "+rtos(baked_light->data.octree_lattice_divide)); baked_light->data.octree_steps=decode_uint32(&r[16]); baked_light->data.octree_tex_pixel_size.x=1.0/tex_w; baked_light->data.octree_tex_pixel_size.y=1.0/tex_h; baked_light->data.texture_multiplier=decode_uint32(&r[20]); light_tex_w=decode_uint16(&r[24]); light_tex_h=decode_uint16(&r[26]); print_line("ltexw "+itos(light_tex_w)); print_line("ltexh "+itos(light_tex_h)); if (light_tex_w>0 && light_tex_h>0) { baked_light->data.light_tex_pixel_size.x=1.0/light_tex_w; baked_light->data.light_tex_pixel_size.y=1.0/light_tex_h; has_light_tex=true; } else { baked_light->data.light_tex_pixel_size=baked_light->data.octree_tex_pixel_size; } baked_light->octree_aabb.pos.x=decode_float(&r[32]); baked_light->octree_aabb.pos.y=decode_float(&r[36]); baked_light->octree_aabb.pos.z=decode_float(&r[40]); baked_light->octree_aabb.size.x=decode_float(&r[44]); baked_light->octree_aabb.size.y=decode_float(&r[48]); baked_light->octree_aabb.size.z=decode_float(&r[52]); } if (baked_light->data.octree_texture.is_valid()) { if (tex_w!=baked_light->octree_tex_size.x || tex_h!=baked_light->octree_tex_size.y) { rasterizer->free(baked_light->data.octree_texture); baked_light->data.octree_texture=RID(); baked_light->octree_tex_size.x=0; baked_light->octree_tex_size.y=0; } } if (baked_light->data.light_texture.is_valid()) { if (!has_light_tex || light_tex_w!=baked_light->light_tex_size.x || light_tex_h!=baked_light->light_tex_size.y) { rasterizer->free(baked_light->data.light_texture); baked_light->data.light_texture=RID(); baked_light->light_tex_size.x=0; baked_light->light_tex_size.y=0; } } if (!baked_light->data.octree_texture.is_valid()) { baked_light->data.octree_texture=rasterizer->texture_create(); rasterizer->texture_allocate(baked_light->data.octree_texture,tex_w,tex_h,Image::FORMAT_RGBA,TEXTURE_FLAG_FILTER); baked_light->octree_tex_size.x=tex_w; baked_light->octree_tex_size.y=tex_h; } if (!baked_light->data.light_texture.is_valid() && has_light_tex) { baked_light->data.light_texture=rasterizer->texture_create(); rasterizer->texture_allocate(baked_light->data.light_texture,light_tex_w,light_tex_h,Image::FORMAT_RGBA,TEXTURE_FLAG_FILTER); baked_light->light_tex_size.x=light_tex_w; baked_light->light_tex_size.y=light_tex_h; } Image img(tex_w,tex_h,0,Image::FORMAT_RGBA,p_octree); rasterizer->texture_set_data(baked_light->data.octree_texture,img); } _dependency_queue_update(p_baked_light,true); } DVector VisualServerRaster::baked_light_get_octree(RID p_baked_light) const{ BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND_V(!baked_light,DVector()); if (rasterizer->is_texture(baked_light->data.octree_texture)) { Image img = rasterizer->texture_get_data(baked_light->data.octree_texture); return img.get_data(); } else { return DVector(); } } void VisualServerRaster::baked_light_set_light(RID p_baked_light,const DVector p_light) { VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); ERR_FAIL_COND(p_light.size()==0); int tex_w=baked_light->light_tex_size.x; int tex_h=baked_light->light_tex_size.y; ERR_FAIL_COND(tex_w==0 && tex_h==0); ERR_FAIL_COND(!baked_light->data.light_texture.is_valid()); print_line("w: "+itos(tex_w)+" h: "+itos(tex_h)+" lightsize: "+itos(p_light.size())); Image img(tex_w,tex_h,0,Image::FORMAT_RGBA,p_light); rasterizer->texture_set_data(baked_light->data.light_texture,img); } DVector VisualServerRaster::baked_light_get_light(RID p_baked_light) const{ BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND_V(!baked_light,DVector()); if (rasterizer->is_texture(baked_light->data.light_texture)) { Image img = rasterizer->texture_get_data(baked_light->data.light_texture); return img.get_data(); } else { return DVector(); } } void VisualServerRaster::baked_light_set_sampler_octree(RID p_baked_light, const DVector &p_sampler) { BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); baked_light->sampler=p_sampler; } DVector VisualServerRaster::baked_light_get_sampler_octree(RID p_baked_light) const { BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND_V(!baked_light,DVector()); return baked_light->sampler; } void VisualServerRaster::baked_light_add_lightmap(RID p_baked_light,const RID p_texture,int p_id){ VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); baked_light->data.lightmaps.insert(p_id,p_texture); } void VisualServerRaster::baked_light_clear_lightmaps(RID p_baked_light){ VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); baked_light->data.lightmaps.clear(); } /* BAKED LIGHT SAMPLER */ RID VisualServerRaster::baked_light_sampler_create() { BakedLightSampler * blsamp = memnew( BakedLightSampler ); RID rid = baked_light_sampler_owner.make_rid(blsamp); _update_baked_light_sampler_dp_cache(blsamp); return rid; } void VisualServerRaster::baked_light_sampler_set_param(RID p_baked_light_sampler,BakedLightSamplerParam p_param,float p_value){ VS_CHANGED; BakedLightSampler * blsamp = baked_light_sampler_owner.get(p_baked_light_sampler); ERR_FAIL_COND(!blsamp); ERR_FAIL_INDEX(p_param,BAKED_LIGHT_SAMPLER_MAX); blsamp->params[p_param]=p_value; _dependency_queue_update(p_baked_light_sampler,true); } float VisualServerRaster::baked_light_sampler_get_param(RID p_baked_light_sampler,BakedLightSamplerParam p_param) const{ BakedLightSampler * blsamp = baked_light_sampler_owner.get(p_baked_light_sampler); ERR_FAIL_COND_V(!blsamp,0); ERR_FAIL_INDEX_V(p_param,BAKED_LIGHT_SAMPLER_MAX,0); return blsamp->params[p_param]; } void VisualServerRaster::_update_baked_light_sampler_dp_cache(BakedLightSampler * blsamp) { int res = blsamp->resolution; blsamp->dp_cache.resize(res*res*2); Vector3 *dp_normals=blsamp->dp_cache.ptr(); for(int p=0;p<2;p++) { float sign = p==0?1:-1; int ofs = res*res*p; for(int i=0;i1.0) { v/=l; l=1.0; //clamp to avoid imaginary } v*=(2*l)/(l*l+1); //inverse of the dual paraboloid function Vector3 n = Vector3(v.x,v.y,sign*sqrtf(MAX(1 - v.dot(v),0))); //reconstruction of z n.y*=sign; dp_normals[j*res+i+ofs]=n; } } } } void VisualServerRaster::baked_light_sampler_set_resolution(RID p_baked_light_sampler,int p_resolution){ ERR_FAIL_COND(p_resolution<4 && p_resolution>64); VS_CHANGED; BakedLightSampler * blsamp = baked_light_sampler_owner.get(p_baked_light_sampler); ERR_FAIL_COND(!blsamp); blsamp->resolution=p_resolution; _update_baked_light_sampler_dp_cache(blsamp); } int VisualServerRaster::baked_light_sampler_get_resolution(RID p_baked_light_sampler) const{ BakedLightSampler * blsamp = baked_light_sampler_owner.get(p_baked_light_sampler); ERR_FAIL_COND_V(!blsamp,0); return blsamp->resolution; } /* CAMERA API */ RID VisualServerRaster::camera_create() { Camera * camera = memnew( Camera ); return camera_owner.make_rid( camera ); } void VisualServerRaster::camera_set_perspective(RID p_camera,float p_fovy_degrees, float p_z_near, float p_z_far) { VS_CHANGED Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND(!camera); camera->type=Camera::PERSPECTIVE; camera->fov=p_fovy_degrees; camera->znear=p_z_near; camera->zfar=p_z_far; } void VisualServerRaster::camera_set_orthogonal(RID p_camera,float p_size, float p_z_near, float p_z_far) { VS_CHANGED; Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND(!camera); camera->type=Camera::ORTHOGONAL; camera->size=p_size; camera->znear=p_z_near; camera->zfar=p_z_far; } void VisualServerRaster::camera_set_transform(RID p_camera,const Transform& p_transform) { VS_CHANGED; Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND(!camera); camera->transform=p_transform.orthonormalized(); } void VisualServerRaster::camera_set_visible_layers(RID p_camera,uint32_t p_layers) { VS_CHANGED; Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND(!camera); camera->visible_layers=p_layers; } uint32_t VisualServerRaster::camera_get_visible_layers(RID p_camera) const{ const Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND_V(!camera,0); return camera->visible_layers; } void VisualServerRaster::camera_set_environment(RID p_camera,RID p_env) { Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND(!camera); camera->env=p_env; } RID VisualServerRaster::camera_get_environment(RID p_camera) const { const Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND_V(!camera,RID()); return camera->env; } void VisualServerRaster::camera_set_use_vertical_aspect(RID p_camera,bool p_enable) { Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND(!camera); camera->vaspect=p_enable; } bool VisualServerRaster::camera_is_using_vertical_aspect(RID p_camera,bool p_enable) const{ const Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND_V(!camera,false); return camera->vaspect; } /* VIEWPORT API */ RID VisualServerRaster::viewport_create() { Viewport *viewport = memnew( Viewport ); RID rid = viewport_owner.make_rid( viewport ); ERR_FAIL_COND_V( !rid.is_valid(), rid ); viewport->self=rid; viewport->hide_scenario=false; viewport->hide_canvas=false; viewport->viewport_data=rasterizer->viewport_data_create(); return rid; } void VisualServerRaster::viewport_attach_to_screen(RID p_viewport,int p_screen) { VS_CHANGED; Viewport *viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); screen_viewports[p_viewport]=p_screen; } void VisualServerRaster::viewport_detach(RID p_viewport) { VS_CHANGED; Viewport *viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); ERR_FAIL_COND(!screen_viewports.has(p_viewport)); screen_viewports.erase(p_viewport); } void VisualServerRaster::viewport_set_as_render_target(RID p_viewport,bool p_enable) { VS_CHANGED; Viewport *viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); if (viewport->render_target.is_valid()==p_enable) return; if (!p_enable) { rasterizer->free(viewport->render_target); viewport->render_target=RID(); viewport->render_target_texture=RID(); if (viewport->update_list.in_list()) viewport_update_list.remove(&viewport->update_list); } else { viewport->render_target=rasterizer->render_target_create(); rasterizer->render_target_set_size(viewport->render_target,viewport->rect.width,viewport->rect.height); viewport->render_target_texture=rasterizer->render_target_get_texture(viewport->render_target); if (viewport->render_target_update_mode!=RENDER_TARGET_UPDATE_DISABLED) viewport_update_list.add(&viewport->update_list); } } void VisualServerRaster::viewport_set_render_target_update_mode(RID p_viewport,RenderTargetUpdateMode p_mode){ VS_CHANGED; Viewport *viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); if (viewport->render_target.is_valid() && viewport->update_list.in_list()) viewport_update_list.remove(&viewport->update_list); viewport->render_target_update_mode=p_mode; if (viewport->render_target.is_valid() &&viewport->render_target_update_mode!=RENDER_TARGET_UPDATE_DISABLED) viewport_update_list.add(&viewport->update_list); } VisualServer::RenderTargetUpdateMode VisualServerRaster::viewport_get_render_target_update_mode(RID p_viewport) const{ const Viewport *viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND_V(!viewport,RENDER_TARGET_UPDATE_DISABLED); return viewport->render_target_update_mode; } RID VisualServerRaster::viewport_get_render_target_texture(RID p_viewport) const{ Viewport *viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND_V(!viewport,RID()); return viewport->render_target_texture; } void VisualServerRaster::viewport_set_render_target_vflip(RID p_viewport,bool p_enable) { Viewport *viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); viewport->render_target_vflip=p_enable; } void VisualServerRaster::viewport_set_render_target_to_screen_rect(RID p_viewport,const Rect2& p_rect) { Viewport *viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); viewport->rt_to_screen_rect=p_rect; } bool VisualServerRaster::viewport_get_render_target_vflip(RID p_viewport) const{ const Viewport *viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND_V(!viewport,false); return viewport->render_target_vflip; } void VisualServerRaster::viewport_queue_screen_capture(RID p_viewport) { VS_CHANGED; Viewport *viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); viewport->queue_capture=true; } Image VisualServerRaster::viewport_get_screen_capture(RID p_viewport) const { Viewport *viewport = (Viewport*)viewport_owner.get( p_viewport ); ERR_FAIL_COND_V(!viewport,Image()); Image ret = viewport->capture; viewport->capture=Image(); return ret; } void VisualServerRaster::viewport_set_rect(RID p_viewport,const ViewportRect& p_rect) { VS_CHANGED; Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); viewport->rect=p_rect; if (viewport->render_target.is_valid()) { rasterizer->render_target_set_size(viewport->render_target,viewport->rect.width,viewport->rect.height); } } VisualServer::ViewportRect VisualServerRaster::viewport_get_rect(RID p_viewport) const { const Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND_V(!viewport, ViewportRect()); return viewport->rect; } void VisualServerRaster::viewport_set_hide_scenario(RID p_viewport,bool p_hide) { VS_CHANGED; Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); viewport->hide_scenario=p_hide; } void VisualServerRaster::viewport_set_hide_canvas(RID p_viewport,bool p_hide) { VS_CHANGED; Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); viewport->hide_canvas=p_hide; } void VisualServerRaster::viewport_attach_camera(RID p_viewport,RID p_camera) { VS_CHANGED; Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); if (p_camera.is_valid()) { ERR_FAIL_COND(!camera_owner.owns(p_camera)); // a camera viewport->camera=p_camera; } else { viewport->camera=RID(); } } void VisualServerRaster::viewport_set_scenario(RID p_viewport,RID p_scenario) { VS_CHANGED; Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); if (p_scenario.is_valid()) { ERR_FAIL_COND(!scenario_owner.owns(p_scenario)); // a camera viewport->scenario=p_scenario; } else { viewport->scenario=RID(); } } RID VisualServerRaster::viewport_get_attached_camera(RID p_viewport) const { const Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND_V(!viewport, RID()); return viewport->camera; } void VisualServerRaster::viewport_attach_canvas(RID p_viewport,RID p_canvas) { VS_CHANGED; Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); Canvas *canvas = canvas_owner.get( p_canvas ); ERR_FAIL_COND(!canvas); ERR_EXPLAIN("Canvas already attached."); ERR_FAIL_COND(viewport->canvas_map.has(p_canvas)); Viewport::CanvasData cd; cd.canvas=canvas; cd.layer=0; viewport->canvas_map[p_canvas]=cd; canvas->viewports.insert(p_viewport); } void VisualServerRaster::viewport_set_canvas_transform(RID p_viewport,RID p_canvas,const Matrix32& p_transform) { VS_CHANGED; Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); Map::Element *E=viewport->canvas_map.find(p_canvas); if (!E) { ERR_EXPLAIN("Viewport does not contain the canvas"); ERR_FAIL_COND(!E); } E->get().transform=p_transform; } Matrix32 VisualServerRaster::viewport_get_canvas_transform(RID p_viewport,RID p_canvas) const { Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND_V(!viewport,Matrix32()); Map::Element *E=viewport->canvas_map.find(p_canvas); if (!E) { ERR_EXPLAIN("Viewport does not contain the canvas"); ERR_FAIL_COND_V(!E,Matrix32()); } return E->get().transform; } void VisualServerRaster::viewport_set_global_canvas_transform(RID p_viewport,const Matrix32& p_transform) { VS_CHANGED Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); viewport->global_transform=p_transform; } Matrix32 VisualServerRaster::viewport_get_global_canvas_transform(RID p_viewport) const{ Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND_V(!viewport,Matrix32()); return viewport->global_transform; } void VisualServerRaster::viewport_remove_canvas(RID p_viewport,RID p_canvas) { VS_CHANGED; Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); Canvas *canvas = canvas_owner.get( p_canvas ); ERR_FAIL_COND(!canvas); Map::Element *E=viewport->canvas_map.find(p_canvas); if (!E) { ERR_EXPLAIN("Viewport does not contain the canvas"); ERR_FAIL_COND(!E); } canvas->viewports.erase(p_viewport); viewport->canvas_map.erase(E); } void VisualServerRaster::viewport_set_canvas_layer(RID p_viewport,RID p_canvas,int p_layer) { VS_CHANGED; Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); Map::Element *E=viewport->canvas_map.find(p_canvas); if (!E) { ERR_EXPLAIN("Viewport does not contain the canvas"); ERR_FAIL_COND(!E); } E->get().layer=p_layer; } void VisualServerRaster::viewport_set_transparent_background(RID p_viewport,bool p_enabled) { VS_CHANGED; Viewport *viewport=viewport_owner.get( p_viewport ); ERR_FAIL_COND(!viewport); viewport->transparent_bg=p_enabled; } bool VisualServerRaster::viewport_has_transparent_background(RID p_viewport) const { Viewport *viewport=viewport_owner.get( p_viewport ); ERR_FAIL_COND_V(!viewport, false); return viewport->transparent_bg; } RID VisualServerRaster::viewport_get_scenario(RID p_viewport) const { const Viewport *viewport=NULL; viewport = viewport_owner.get( p_viewport ); ERR_FAIL_COND_V(!viewport, RID()); return viewport->scenario; } RID VisualServerRaster::environment_create() { return rasterizer->environment_create(); } void VisualServerRaster::environment_set_background(RID p_env,EnvironmentBG p_bg){ rasterizer->environment_set_background(p_env,p_bg); } VisualServer::EnvironmentBG VisualServerRaster::environment_get_background(RID p_env) const{ return rasterizer->environment_get_background(p_env); } void VisualServerRaster::environment_set_background_param(RID p_env,EnvironmentBGParam p_param, const Variant& p_value){ rasterizer->environment_set_background_param(p_env,p_param,p_value); } Variant VisualServerRaster::environment_get_background_param(RID p_env,EnvironmentBGParam p_param) const{ return rasterizer->environment_get_background_param(p_env,p_param); } void VisualServerRaster::environment_set_enable_fx(RID p_env,EnvironmentFx p_effect,bool p_enabled){ rasterizer->environment_set_enable_fx(p_env,p_effect,p_enabled); } bool VisualServerRaster::environment_is_fx_enabled(RID p_env,EnvironmentFx p_effect) const{ return rasterizer->environment_is_fx_enabled(p_env,p_effect); } void VisualServerRaster::environment_fx_set_param(RID p_env,EnvironmentFxParam p_param,const Variant& p_value){ rasterizer->environment_fx_set_param(p_env,p_param,p_value); } Variant VisualServerRaster::environment_fx_get_param(RID p_env,EnvironmentFxParam p_param) const { return environment_fx_get_param(p_env,p_param); } /* SCENARIO API */ void VisualServerRaster::_dependency_queue_update(RID p_rid,bool p_update_aabb) { Map< RID, Set >::Element * E = instance_dependency_map.find( p_rid ); if (!E) return; Set::Element *I = E->get().front(); while(I) { Instance *ins = instance_owner.get( I->get() ); _instance_queue_update( ins , p_update_aabb ); I = I->next(); } } void VisualServerRaster::_instance_queue_update(Instance *p_instance,bool p_update_aabb) { if (p_update_aabb) p_instance->update_aabb=true; if (p_instance->update) return; p_instance->update_next=instance_update_list; instance_update_list=p_instance; p_instance->update=true; } RID VisualServerRaster::scenario_create() { Scenario *scenario = memnew( Scenario ); ERR_FAIL_COND_V(!scenario,RID()); RID scenario_rid = scenario_owner.make_rid( scenario ); scenario->self=scenario_rid; scenario->octree.set_pair_callback(instance_pair,this); scenario->octree.set_unpair_callback(instance_unpair,this); return scenario_rid; } void VisualServerRaster::scenario_set_debug(RID p_scenario,ScenarioDebugMode p_debug_mode) { VS_CHANGED; Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); scenario->debug=p_debug_mode; } void VisualServerRaster::scenario_set_environment(RID p_scenario, RID p_environment) { VS_CHANGED; Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); scenario->environment=p_environment; } void VisualServerRaster::scenario_set_fallback_environment(RID p_scenario, RID p_environment) { VS_CHANGED; Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); scenario->fallback_environment=p_environment; } RID VisualServerRaster::scenario_get_environment(RID p_scenario, RID p_environment) const{ const Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND_V(!scenario,RID()); return scenario->environment; } /* INSTANCING API */ RID VisualServerRaster::instance_create() { Instance *instance = memnew( Instance ); ERR_FAIL_COND_V(!instance,RID()); RID instance_rid = instance_owner.make_rid(instance); instance->self=instance_rid; instance->base_type=INSTANCE_NONE; instance->scenario=NULL; return instance_rid; } void VisualServerRaster::instance_set_base(RID p_instance, RID p_base) { VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); if (instance->base_type!=INSTANCE_NONE) { //free anything related to that base Map< RID, Set >::Element * E = instance_dependency_map.find( instance->base_rid ); if (E) { // wtf, no E? E->get().erase( instance->self ); } else { ERR_PRINT("no base E? Bug?"); } if ( instance->room ) { instance_set_room(p_instance,RID()); /* if((1<base_type)&INSTANCE_GEOMETRY_MASK) instance->room->room_info->owned_geometry_instances.erase(instance->RE); else if (instance->base_type==INSTANCE_PORTAL) { print_line("freeing portal, is it there? "+itos(instance->room->room_info->owned_portal_instances.(instance->RE))); instance->room->room_info->owned_portal_instances.erase(instance->RE); } else if (instance->base_type==INSTANCE_ROOM) instance->room->room_info->owned_room_instances.erase(instance->RE); else if (instance->base_type==INSTANCE_LIGHT) instance->room->room_info->owned_light_instances.erase(instance->RE); instance->RE=NULL;*/ } if (instance->light_info) { if (instance->scenario && instance->light_info->D) instance->scenario->directional_lights.erase( instance->light_info->D ); rasterizer->free(instance->light_info->instance); memdelete(instance->light_info); instance->light_info=NULL; } if (instance->portal_info) { _portal_disconnect(instance,true); memdelete(instance->portal_info); instance->portal_info=NULL; } if (instance->baked_light_info) { while(instance->baked_light_info->owned_instances.size()) { Instance *owned=instance->baked_light_info->owned_instances.front()->get(); owned->baked_light=NULL; owned->data.baked_light=NULL; owned->data.baked_light_octree_xform=NULL; owned->BLE=NULL; instance->baked_light_info->owned_instances.pop_front(); } memdelete(instance->baked_light_info); instance->baked_light_info=NULL; } if (instance->scenario && instance->octree_id) { instance->scenario->octree.erase( instance->octree_id ); instance->octree_id=0; } if (instance->room_info) { for(List::Element *E=instance->room_info->owned_geometry_instances.front();E;E=E->next()) { Instance *owned = E->get(); owned->room=NULL; owned->RE=NULL; } for(List::Element *E=instance->room_info->owned_portal_instances.front();E;E=E->next()) { _portal_disconnect(E->get(),true); Instance *owned = E->get(); owned->room=NULL; owned->RE=NULL; } for(List::Element *E=instance->room_info->owned_room_instances.front();E;E=E->next()) { Instance *owned = E->get(); owned->room=NULL; owned->RE=NULL; } if (instance->room_info->disconnected_child_portals.size()) { ERR_PRINT("BUG: Disconnected portals remain!"); } memdelete(instance->room_info); instance->room_info=NULL; } if (instance->particles_info) { rasterizer->free( instance->particles_info->instance ); memdelete(instance->particles_info); instance->particles_info=NULL; } if (instance->baked_light_sampler_info) { while (instance->baked_light_sampler_info->owned_instances.size()) { instance_geometry_set_baked_light_sampler(instance->baked_light_sampler_info->owned_instances.front()->get()->self,RID()); } if (instance->baked_light_sampler_info->sampled_light.is_valid()) { rasterizer->free(instance->baked_light_sampler_info->sampled_light); } memdelete( instance->baked_light_sampler_info ); instance->baked_light_sampler_info=NULL; } instance->data.morph_values.clear(); } instance->base_type=INSTANCE_NONE; instance->base_rid=RID(); if (p_base.is_valid()) { if (rasterizer->is_mesh(p_base)) { instance->base_type=INSTANCE_MESH; instance->data.morph_values.resize( rasterizer->mesh_get_morph_target_count(p_base)); } else if (rasterizer->is_multimesh(p_base)) { instance->base_type=INSTANCE_MULTIMESH; } else if (rasterizer->is_immediate(p_base)) { instance->base_type=INSTANCE_IMMEDIATE; } else if (rasterizer->is_particles(p_base)) { instance->base_type=INSTANCE_PARTICLES; instance->particles_info=memnew( Instance::ParticlesInfo ); instance->particles_info->instance = rasterizer->particles_instance_create( p_base ); } else if (rasterizer->is_light(p_base)) { instance->base_type=INSTANCE_LIGHT; instance->light_info = memnew( Instance::LightInfo ); instance->light_info->instance = rasterizer->light_instance_create(p_base); if (instance->scenario && rasterizer->light_get_type(p_base)==LIGHT_DIRECTIONAL) { instance->light_info->D = instance->scenario->directional_lights.push_back(instance->self); } } else if (room_owner.owns(p_base)) { instance->base_type=INSTANCE_ROOM; instance->room_info = memnew( Instance::RoomInfo ); instance->room_info->room=room_owner.get(p_base); } else if (portal_owner.owns(p_base)) { instance->base_type=INSTANCE_PORTAL; instance->portal_info = memnew(Instance::PortalInfo); instance->portal_info->portal=portal_owner.get(p_base); } else if (baked_light_owner.owns(p_base)) { instance->base_type=INSTANCE_BAKED_LIGHT; instance->baked_light_info=memnew(Instance::BakedLightInfo); instance->baked_light_info->baked_light=baked_light_owner.get(p_base); //instance->portal_info = memnew(Instance::PortalInfo); //instance->portal_info->portal=portal_owner.get(p_base); } else if (baked_light_sampler_owner.owns(p_base)) { instance->base_type=INSTANCE_BAKED_LIGHT_SAMPLER; instance->baked_light_sampler_info=memnew( Instance::BakedLightSamplerInfo); instance->baked_light_sampler_info->sampler=baked_light_sampler_owner.get(p_base); //instance->portal_info = memnew(Instance::PortalInfo); //instance->portal_info->portal=portal_owner.get(p_base); } else { ERR_EXPLAIN("Invalid base RID for instance!") ERR_FAIL(); } instance_dependency_map[ p_base ].insert( instance->self ); instance->base_rid=p_base; if (instance->scenario) _instance_queue_update(instance,true); } } RID VisualServerRaster::instance_get_base(RID p_instance) const { Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance, RID() ); return instance->base_rid; } void VisualServerRaster::instance_set_scenario(RID p_instance, RID p_scenario) { VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); if (instance->scenario) { Map< RID, Set >::Element *E = instance_dependency_map.find( instance->scenario->self ); if (E) { // wtf, no E? E->get().erase( instance->self ); } else { ERR_PRINT("no scenario E? Bug?"); } if (instance->light_info) { if (instance->light_info->D) instance->scenario->directional_lights.erase( instance->light_info->D ); } if (instance->portal_info) { _portal_disconnect(instance,true); } if (instance->octree_id) { instance->scenario->octree.erase( instance->octree_id ); instance->octree_id=0; } instance->scenario=NULL; } if (p_scenario.is_valid()) { Scenario *scenario = scenario_owner.get( p_scenario ); ERR_FAIL_COND(!scenario); instance->scenario=scenario; instance_dependency_map[ p_scenario ].insert( instance->self ); instance->scenario=scenario; if (instance->base_type==INSTANCE_LIGHT && rasterizer->light_get_type(instance->base_rid)==LIGHT_DIRECTIONAL) { instance->light_info->D = instance->scenario->directional_lights.push_back(instance->self); } _instance_queue_update(instance,true); } } RID VisualServerRaster::instance_get_scenario(RID p_instance) const { Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance, RID() ); if (instance->scenario) return instance->scenario->self; else return RID(); } void VisualServerRaster::instance_set_layer_mask(RID p_instance, uint32_t p_mask) { VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); instance->layer_mask=p_mask; } uint32_t VisualServerRaster::instance_get_layer_mask(RID p_instance) const{ Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance, 0 ); return instance->layer_mask; } AABB VisualServerRaster::instance_get_base_aabb(RID p_instance) const { Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance, AABB() ); return instance->aabb; } void VisualServerRaster::instance_attach_object_instance_ID(RID p_instance,uint32_t p_ID) { VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); instance->object_ID=p_ID; } uint32_t VisualServerRaster::instance_get_object_instance_ID(RID p_instance) const { Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance, 0 ); return instance->object_ID; } void VisualServerRaster::instance_attach_skeleton(RID p_instance,RID p_skeleton) { VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); if (instance->data.skeleton.is_valid()) { skeleton_dependency_map[instance->data.skeleton].erase(instance); } instance->data.skeleton=p_skeleton; if (instance->data.skeleton.is_valid()) { skeleton_dependency_map[instance->data.skeleton].insert(instance); } } RID VisualServerRaster::instance_get_skeleton(RID p_instance) const { Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance, RID() ); return instance->data.skeleton; } void VisualServerRaster::instance_set_morph_target_weight(RID p_instance,int p_shape, float p_weight) { VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); ERR_FAIL_INDEX( p_shape, instance->data.morph_values.size() ); instance->data.morph_values[p_shape]=p_weight; } float VisualServerRaster::instance_get_morph_target_weight(RID p_instance,int p_shape) const { Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance, 0 ); ERR_FAIL_INDEX_V( p_shape, instance->data.morph_values.size(), 0 ); return instance->data.morph_values[p_shape]; } void VisualServerRaster::instance_set_transform(RID p_instance, const Transform& p_transform) { VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); if (p_transform==instance->data.transform) // must improve somehow return; instance->data.transform=p_transform; if (instance->base_type==INSTANCE_LIGHT) instance->data.transform.orthonormalize(); _instance_queue_update(instance); } Transform VisualServerRaster::instance_get_transform(RID p_instance) const { Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance, Transform() ); return instance->data.transform; } void VisualServerRaster::instance_set_exterior( RID p_instance, bool p_enabled ) { VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); ERR_EXPLAIN("Portals can't be assigned to be exterior"); ERR_FAIL_COND( instance->base_type == INSTANCE_PORTAL ); if (instance->exterior==p_enabled) return; instance->exterior=p_enabled; _instance_queue_update( instance ); } bool VisualServerRaster::instance_is_exterior( RID p_instance) const { Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance, false ); return instance->exterior; } void VisualServerRaster::instance_set_room( RID p_instance, RID p_room ) { VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); if (instance->room && instance->RE) { //instance already havs a room, remove it from there if ( (1<base_type) & INSTANCE_GEOMETRY_MASK ) { instance->room->room_info->owned_geometry_instances.erase(instance->RE); if (!p_room.is_valid() && instance->octree_id) { //remove from the octree, so it's re-added with different flags instance->scenario->octree.erase( instance->octree_id ); instance->octree_id=0; _instance_queue_update( instance,true ); } } else if ( instance->base_type==INSTANCE_ROOM ) { instance->room->room_info->owned_room_instances.erase(instance->RE); for(List::Element *E=instance->room_info->owned_portal_instances.front();E;E=E->next()) { _portal_disconnect(E->get()); _instance_queue_update( E->get(),false ); } } else if ( instance->base_type==INSTANCE_PORTAL ) { _portal_disconnect(instance,true); bool ss = instance->room->room_info->owned_portal_instances.erase(instance->RE); } else if ( instance->base_type==INSTANCE_LIGHT ) { instance->room->room_info->owned_light_instances.erase(instance->RE); } else { ERR_FAIL(); } instance->RE=NULL; instance->room=NULL; } else { if (p_room.is_valid() && instance->octree_id) { //remove from the octree, so it's re-added with different flags instance->scenario->octree.erase( instance->octree_id ); instance->octree_id=0; _instance_queue_update( instance,true ); } } if (!p_room.is_valid()) return; // just clearning the room Instance *room = instance_owner.get( p_room ); ERR_FAIL_COND( !room ); ERR_FAIL_COND( room->base_type!=INSTANCE_ROOM ); if (instance->base_type==INSTANCE_ROOM) { //perform cycle test Instance *parent = instance; while(parent) { ERR_EXPLAIN("Cycle in room assignment"); ERR_FAIL_COND( parent == room ); parent=parent->room; } } if ( (1<base_type) & INSTANCE_GEOMETRY_MASK ) { instance->RE = room->room_info->owned_geometry_instances.push_back(instance); } else if ( instance->base_type==INSTANCE_ROOM ) { instance->RE = room->room_info->owned_room_instances.push_back(instance); for(List::Element *E=instance->room_info->owned_portal_instances.front();E;E=E->next()) _instance_queue_update( E->get(),false ); } else if ( instance->base_type==INSTANCE_PORTAL ) { instance->RE = room->room_info->owned_portal_instances.push_back(instance); } else if ( instance->base_type==INSTANCE_LIGHT ) { instance->RE = room->room_info->owned_light_instances.push_back(instance); } else { ERR_FAIL(); } instance->room=room; } RID VisualServerRaster::instance_get_room( RID p_instance ) const { Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance, RID() ); if (instance->room) return instance->room->self; else return RID(); } void VisualServerRaster::instance_set_extra_visibility_margin( RID p_instance, real_t p_margin ) { VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); instance->extra_margin=p_margin; } real_t VisualServerRaster::instance_get_extra_visibility_margin( RID p_instance ) const{ Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance, 0 ); return instance->extra_margin; } Vector VisualServerRaster::instances_cull_aabb(const AABB& p_aabb, RID p_scenario) const { Vector instances; Scenario *scenario=scenario_owner.get(p_scenario); ERR_FAIL_COND_V(!scenario,instances); const_cast(this)->_update_instances(); // check dirty instances before culling int culled=0; Instance *cull[1024]; culled=scenario->octree.cull_AABB(p_aabb,cull,1024); for (int i=0;iself); } return instances; } Vector VisualServerRaster::instances_cull_ray(const Vector3& p_from, const Vector3& p_to, RID p_scenario) const{ Vector instances; Scenario *scenario=scenario_owner.get(p_scenario); ERR_FAIL_COND_V(!scenario,instances); const_cast(this)->_update_instances(); // check dirty instances before culling int culled=0; Instance *cull[1024]; culled=scenario->octree.cull_segment(p_from,p_to*10000,cull,1024); for (int i=0;iself); } return instances; } Vector VisualServerRaster::instances_cull_convex(const Vector& p_convex, RID p_scenario) const{ Vector instances; Scenario *scenario=scenario_owner.get(p_scenario); ERR_FAIL_COND_V(!scenario,instances); const_cast(this)->_update_instances(); // check dirty instances before culling int culled=0; Instance *cull[1024]; culled=scenario->octree.cull_convex(p_convex,cull,1024); for (int i=0;iself); } return instances; } void VisualServerRaster::instance_geometry_set_flag(RID p_instance,InstanceFlags p_flags,bool p_enabled) { Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); // ERR_FAIL_COND( ! ( (1<base_type) & INSTANCE_GEOMETRY_MASK) ); switch(p_flags) { case INSTANCE_FLAG_VISIBLE: { instance->visible=p_enabled; } break; case INSTANCE_FLAG_BILLBOARD: { instance->data.billboard=p_enabled; } break; case INSTANCE_FLAG_BILLBOARD_FIX_Y: { instance->data.billboard_y=p_enabled; } break; case INSTANCE_FLAG_CAST_SHADOW: { instance->cast_shadows=p_enabled; } break; case INSTANCE_FLAG_RECEIVE_SHADOWS: { instance->receive_shadows=p_enabled; } break; case INSTANCE_FLAG_DEPH_SCALE: { instance->data.depth_scale=p_enabled; } break; case INSTANCE_FLAG_VISIBLE_IN_ALL_ROOMS: { instance->visible_in_all_rooms=p_enabled; } break; } } bool VisualServerRaster::instance_geometry_get_flag(RID p_instance,InstanceFlags p_flags) const{ const Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance, false ); // ERR_FAIL_COND_V( ! ( (1<base_type) & INSTANCE_GEOMETRY_MASK), false ); switch(p_flags) { case INSTANCE_FLAG_VISIBLE: { return instance->visible; } break; case INSTANCE_FLAG_BILLBOARD: { return instance->data.billboard; } break; case INSTANCE_FLAG_BILLBOARD_FIX_Y: { return instance->data.billboard_y; } break; case INSTANCE_FLAG_CAST_SHADOW: { return instance->cast_shadows; } break; case INSTANCE_FLAG_RECEIVE_SHADOWS: { return instance->receive_shadows; } break; case INSTANCE_FLAG_DEPH_SCALE: { return instance->data.depth_scale; } break; case INSTANCE_FLAG_VISIBLE_IN_ALL_ROOMS: { return instance->visible_in_all_rooms; } break; } return false; } void VisualServerRaster::instance_geometry_set_material_override(RID p_instance, RID p_material) { VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); instance->data.material_override=p_material; } RID VisualServerRaster::instance_geometry_get_material_override(RID p_instance) const{ Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance, RID() ); return instance->data.material_override; } void VisualServerRaster::instance_geometry_set_draw_range(RID p_instance,float p_min,float p_max){ VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); instance->draw_range_begin=p_min; instance->draw_range_end=p_max; } float VisualServerRaster::instance_geometry_get_draw_range_min(RID p_instance) const{ const Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance,0 ); return instance->draw_range_begin; } float VisualServerRaster::instance_geometry_get_draw_range_max(RID p_instance) const{ const Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance,0 ); return instance->draw_range_end; } void VisualServerRaster::instance_geometry_set_baked_light(RID p_instance,RID p_baked_light) { VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); if (instance->baked_light) { instance->baked_light->baked_light_info->owned_instances.erase(instance->BLE); instance->BLE=NULL; instance->baked_light=NULL; instance->data.baked_light=NULL; instance->data.baked_light_octree_xform=NULL; } if (!p_baked_light.is_valid()) return; Instance *bl_instance = instance_owner.get( p_baked_light ); ERR_FAIL_COND( !bl_instance ); ERR_FAIL_COND( bl_instance->base_type!=INSTANCE_BAKED_LIGHT ); instance->baked_light=bl_instance; instance->BLE=bl_instance->baked_light_info->owned_instances.push_back(instance); instance->data.baked_light=&bl_instance->baked_light_info->baked_light->data; instance->data.baked_light_octree_xform=&bl_instance->baked_light_info->affine_inverse; } RID VisualServerRaster::instance_geometry_get_baked_light(RID p_instance) const{ const Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance,RID() ); if (instance->baked_light) return instance->baked_light->self; return RID(); } void VisualServerRaster::instance_geometry_set_baked_light_sampler(RID p_instance,RID p_baked_light_sampler) { VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); if (instance->sampled_light) { instance->sampled_light->baked_light_sampler_info->owned_instances.erase(instance); instance->data.sampled_light=RID(); } if(p_baked_light_sampler.is_valid()) { Instance *sampler_instance = instance_owner.get( p_baked_light_sampler ); ERR_FAIL_COND( !sampler_instance ); ERR_FAIL_COND( sampler_instance->base_type!=INSTANCE_BAKED_LIGHT_SAMPLER ); instance->sampled_light=sampler_instance; instance->sampled_light->baked_light_sampler_info->owned_instances.insert(instance); } else { instance->sampled_light=NULL; } instance->data.sampled_light=RID(); } RID VisualServerRaster::instance_geometry_get_baked_light_sampler(RID p_instance) const { Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance,RID() ); if (instance->sampled_light) return instance->sampled_light->self; else return RID(); } void VisualServerRaster::instance_geometry_set_baked_light_texture_index(RID p_instance,int p_tex_id){ VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); instance->data.baked_lightmap_id=p_tex_id; } int VisualServerRaster::instance_geometry_get_baked_light_texture_index(RID p_instance) const{ const Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND_V( !instance,0 ); return instance->data.baked_lightmap_id; } void VisualServerRaster::_update_instance(Instance *p_instance) { p_instance->version++; if (p_instance->base_type == INSTANCE_LIGHT) { rasterizer->light_instance_set_transform( p_instance->light_info->instance, p_instance->data.transform ); } if (p_instance->aabb.has_no_surface()) return; if (p_instance->base_type == INSTANCE_PARTICLES) { rasterizer->particles_instance_set_transform( p_instance->particles_info->instance, p_instance->data.transform ); } if ((1<base_type)&INSTANCE_GEOMETRY_MASK) { //make sure lights are updated InstanceSet::Element *E=p_instance->lights.front(); while(E) { E->get()->version++; E=E->next(); } } else if (p_instance->base_type == INSTANCE_ROOM) { p_instance->room_info->affine_inverse=p_instance->data.transform.affine_inverse(); } else if (p_instance->base_type == INSTANCE_BAKED_LIGHT) { Transform scale; scale.basis.scale(p_instance->baked_light_info->baked_light->octree_aabb.size); scale.origin=p_instance->baked_light_info->baked_light->octree_aabb.pos; //print_line("scale: "+scale); p_instance->baked_light_info->affine_inverse=(p_instance->data.transform*scale).affine_inverse(); } p_instance->data.mirror = p_instance->data.transform.basis.determinant() < 0.0; AABB new_aabb; if (p_instance->base_type==INSTANCE_PORTAL) { //portals need to be transformed in a special way, so they don't become too wide if they have scale.. Transform portal_xform = p_instance->data.transform; portal_xform.basis.set_axis(2,portal_xform.basis.get_axis(2).normalized()); p_instance->portal_info->plane_cache=Plane( p_instance->data.transform.origin, portal_xform.basis.get_axis(2)); int point_count=p_instance->portal_info->portal->shape.size(); p_instance->portal_info->transformed_point_cache.resize(point_count); AABB portal_aabb; for(int i=0;iportal_info->portal->shape[i]; Vector3 point = portal_xform.xform(Vector3(src.x,src.y,0)); p_instance->portal_info->transformed_point_cache[i]=point; if (i==0) portal_aabb.pos=point; else portal_aabb.expand_to(point); } portal_aabb.grow_by(p_instance->portal_info->portal->connect_range); new_aabb = portal_aabb; } else { new_aabb = p_instance->data.transform.xform(p_instance->aabb); } for(InstanceSet::Element *E=p_instance->lights.front();E;E=E->next()) { Instance *light = E->get(); light->version++; } p_instance->transformed_aabb=new_aabb; if (!p_instance->scenario) { return; } if (p_instance->octree_id==0) { uint32_t base_type = 1<base_type; uint32_t pairable_mask=0; bool pairable=false; if (p_instance->base_type == INSTANCE_LIGHT) { pairable_mask=p_instance->light_info->enabled?INSTANCE_GEOMETRY_MASK:0; pairable=true; } if (p_instance->base_type == INSTANCE_PORTAL) { pairable_mask=(1<base_type == INSTANCE_BAKED_LIGHT_SAMPLER) { pairable_mask=(1<room && (1<base_type)&INSTANCE_GEOMETRY_MASK) { base_type|=INSTANCE_ROOMLESS_MASK; } if (p_instance->base_type == INSTANCE_ROOM) { pairable_mask=INSTANCE_ROOMLESS_MASK; pairable=true; } // not inside octree p_instance->octree_id = p_instance->scenario->octree.create(p_instance,new_aabb,0,pairable,base_type,pairable_mask); } else { // if (new_aabb==p_instance->data.transformed_aabb) // return; p_instance->scenario->octree.move(p_instance->octree_id,new_aabb); } if (p_instance->base_type==INSTANCE_PORTAL) { _portal_attempt_connect(p_instance); } if (!p_instance->room && (1<base_type)&INSTANCE_GEOMETRY_MASK) { _instance_validate_autorooms(p_instance); } if (p_instance->base_type == INSTANCE_ROOM) { for(Set::Element *E=p_instance->room_info->owned_autoroom_geometry.front();E;E=E->next()) _instance_validate_autorooms(E->get()); } } void VisualServerRaster::_update_instance_aabb(Instance *p_instance) { AABB new_aabb; ERR_FAIL_COND(p_instance->base_type!=INSTANCE_NONE && !p_instance->base_rid.is_valid()); switch(p_instance->base_type) { case VisualServer::INSTANCE_NONE: { // do nothing } break; case VisualServer::INSTANCE_MESH: { new_aabb = rasterizer->mesh_get_aabb(p_instance->base_rid,p_instance->data.skeleton); } break; case VisualServer::INSTANCE_MULTIMESH: { new_aabb = rasterizer->multimesh_get_aabb(p_instance->base_rid); } break; case VisualServer::INSTANCE_IMMEDIATE: { new_aabb = rasterizer->immediate_get_aabb(p_instance->base_rid); } break; case VisualServer::INSTANCE_PARTICLES: { new_aabb = rasterizer->particles_get_aabb(p_instance->base_rid); } break; case VisualServer::INSTANCE_LIGHT: { new_aabb = rasterizer->light_get_aabb(p_instance->base_rid); } break; case VisualServer::INSTANCE_ROOM: { Room *room = room_owner.get( p_instance->base_rid ); ERR_FAIL_COND(!room); new_aabb=room->bounds.get_aabb(); } break; case VisualServer::INSTANCE_PORTAL: { Portal *portal = portal_owner.get( p_instance->base_rid ); ERR_FAIL_COND(!portal); for (int i=0;ishape.size();i++) { Vector3 point( portal->shape[i].x, portal->shape[i].y, 0 ); if (i==0) { new_aabb.pos=point; new_aabb.size.z=0.01; // make it not flat for octree } else { new_aabb.expand_to(point); } } } break; case VisualServer::INSTANCE_BAKED_LIGHT: { BakedLight *baked_light = baked_light_owner.get( p_instance->base_rid ); ERR_FAIL_COND(!baked_light); new_aabb=baked_light->octree_aabb; } break; case VisualServer::INSTANCE_BAKED_LIGHT_SAMPLER: { BakedLightSampler *baked_light_sampler = baked_light_sampler_owner.get( p_instance->base_rid ); ERR_FAIL_COND(!baked_light_sampler); float radius = baked_light_sampler->params[VS::BAKED_LIGHT_SAMPLER_RADIUS]; new_aabb=AABB(Vector3(-radius,-radius,-radius),Vector3(radius*2,radius*2,radius*2)); } break; default: {} } if (p_instance->extra_margin) new_aabb.grow_by(p_instance->extra_margin); p_instance->aabb=new_aabb; } void VisualServerRaster::_update_instances() { while(instance_update_list) { Instance *instance=instance_update_list; instance_update_list=instance_update_list->update_next; if (instance->update_aabb) _update_instance_aabb(instance); _update_instance(instance); instance->update=false; instance->update_aabb=false; instance->update_next=0; } } void VisualServerRaster::instance_light_set_enabled(RID p_instance,bool p_enabled) { VS_CHANGED; Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); ERR_FAIL_COND( instance->base_type!=INSTANCE_LIGHT ); if (p_enabled==instance->light_info->enabled) return; instance->light_info->enabled=p_enabled; if (light_get_type(instance->base_rid)!=VS::LIGHT_DIRECTIONAL && instance->octree_id && instance->scenario) instance->scenario->octree.set_pairable(instance->octree_id,p_enabled,1<base_type!=INSTANCE_LIGHT,false ); return instance->light_info->enabled; } /****** CANVAS *********/ RID VisualServerRaster::canvas_create() { Canvas * canvas = memnew( Canvas ); ERR_FAIL_COND_V(!canvas,RID()); RID rid = canvas_owner.make_rid( canvas ); return rid; } void VisualServerRaster::canvas_set_item_mirroring(RID p_canvas,RID p_item,const Point2& p_mirroring) { Canvas * canvas = canvas_owner.get(p_canvas); ERR_FAIL_COND(!canvas); CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); int idx = canvas->find_item(canvas_item); ERR_FAIL_COND(idx==-1); canvas->child_items[idx].mirror=p_mirroring; } Point2 VisualServerRaster::canvas_get_item_mirroring(RID p_canvas,RID p_item) const { Canvas * canvas = canvas_owner.get(p_canvas); ERR_FAIL_COND_V(!canvas,Point2()); CanvasItem *canvas_item = memnew( CanvasItem ); ERR_FAIL_COND_V(!canvas_item,Point2()); int idx = canvas->find_item(canvas_item); ERR_FAIL_COND_V(idx==-1,Point2()); return canvas->child_items[idx].mirror; } RID VisualServerRaster::canvas_item_create() { CanvasItem *canvas_item = memnew( CanvasItem ); ERR_FAIL_COND_V(!canvas_item,RID()); return canvas_item_owner.make_rid( canvas_item ); } void VisualServerRaster::canvas_item_set_parent(RID p_item,RID p_parent) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); if (canvas_item->parent.is_valid()) { if (canvas_owner.owns(canvas_item->parent)) { Canvas *canvas = canvas_owner.get(canvas_item->parent); canvas->erase_item(canvas_item); } else if (canvas_item_owner.owns(canvas_item->parent)) { CanvasItem *item_owner = canvas_item_owner.get(canvas_item->parent); item_owner->child_items.erase(canvas_item); } canvas_item->parent=RID(); } if (p_parent.is_valid()) { if (canvas_owner.owns(p_parent)) { Canvas *canvas = canvas_owner.get(p_parent); Canvas::ChildItem ci; ci.item=canvas_item; canvas->child_items.push_back(ci); } else if (canvas_item_owner.owns(p_parent)) { CanvasItem *item_owner = canvas_item_owner.get(p_parent); item_owner->child_items.push_back(canvas_item); } else { ERR_EXPLAIN("Invalid parent"); ERR_FAIL(); } } canvas_item->parent=p_parent; } RID VisualServerRaster::canvas_item_get_parent(RID p_canvas_item) const { CanvasItem *canvas_item = canvas_item_owner.get( p_canvas_item ); ERR_FAIL_COND_V(!canvas_item,RID()); return canvas_item->parent; } void VisualServerRaster::canvas_item_set_visible(RID p_item,bool p_visible) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->visible=p_visible; } bool VisualServerRaster::canvas_item_is_visible(RID p_item) const { CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND_V(!canvas_item,RID()); return canvas_item->visible; } void VisualServerRaster::canvas_item_set_blend_mode(RID p_canvas_item,MaterialBlendMode p_blend) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_canvas_item ); if (!canvas_item) { printf("!canvas_item\n"); }; ERR_FAIL_COND(!canvas_item); if (canvas_item->blend_mode==p_blend) return; VS_CHANGED; canvas_item->blend_mode=p_blend; } void VisualServerRaster::canvas_item_attach_viewport(RID p_canvas_item, RID p_viewport) { CanvasItem *canvas_item = canvas_item_owner.get( p_canvas_item ); ERR_FAIL_COND(!canvas_item); VS_CHANGED; canvas_item->viewport=p_viewport; } /* void VisualServerRaster::canvas_item_set_rect(RID p_item, const Rect2& p_rect) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->rect=p_rect; }*/ void VisualServerRaster::canvas_item_set_clip(RID p_item, bool p_clip) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->clip=p_clip; } void VisualServerRaster::canvas_item_set_transform(RID p_item, const Matrix32& p_transform) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->xform=p_transform; } void VisualServerRaster::canvas_item_set_custom_rect(RID p_item, bool p_custom_rect,const Rect2& p_rect) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->custom_rect=p_custom_rect; if (p_custom_rect) canvas_item->rect=p_rect; } void VisualServerRaster::canvas_item_set_opacity(RID p_item, float p_opacity) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->opacity=p_opacity; } float VisualServerRaster::canvas_item_get_opacity(RID p_item, float p_opacity) const { CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND_V(!canvas_item,-1); return canvas_item->opacity; } void VisualServerRaster::canvas_item_set_on_top(RID p_item, bool p_on_top) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->ontop=p_on_top; } bool VisualServerRaster::canvas_item_is_on_top(RID p_item) const{ const CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND_V(!canvas_item,false); return canvas_item->ontop; } void VisualServerRaster::canvas_item_set_self_opacity(RID p_item, float p_self_opacity) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->self_opacity=p_self_opacity; } float VisualServerRaster::canvas_item_get_self_opacity(RID p_item, float p_self_opacity) const { CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND_V(!canvas_item,-1); return canvas_item->self_opacity; } void VisualServerRaster::canvas_item_add_line(RID p_item, const Point2& p_from, const Point2& p_to,const Color& p_color,float p_width) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandLine * line = memnew( CanvasItem::CommandLine ); ERR_FAIL_COND(!line); line->color=p_color; line->from=p_from; line->to=p_to; line->width=p_width; canvas_item->rect_dirty=true; canvas_item->commands.push_back(line); } void VisualServerRaster::canvas_item_add_rect(RID p_item, const Rect2& p_rect, const Color& p_color) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandRect * rect = memnew( CanvasItem::CommandRect ); ERR_FAIL_COND(!rect); rect->modulate=p_color; rect->rect=p_rect; canvas_item->rect_dirty=true; canvas_item->commands.push_back(rect); } void VisualServerRaster::canvas_item_add_circle(RID p_item, const Point2& p_pos, float p_radius,const Color& p_color) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandCircle * circle = memnew( CanvasItem::CommandCircle ); ERR_FAIL_COND(!circle); circle->color=p_color; circle->pos=p_pos; circle->radius=p_radius; canvas_item->commands.push_back(circle); } void VisualServerRaster::canvas_item_add_texture_rect(RID p_item, const Rect2& p_rect, RID p_texture,bool p_tile,const Color& p_modulate) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandRect * rect = memnew( CanvasItem::CommandRect ); ERR_FAIL_COND(!rect); rect->modulate=p_modulate; rect->rect=p_rect; rect->flags=0; if (p_tile) rect->flags|=Rasterizer::CANVAS_RECT_TILE; if (p_rect.size.x<0) { rect->flags|=Rasterizer::CANVAS_RECT_FLIP_H; rect->rect.size.x = -rect->rect.size.x; } if (p_rect.size.y<0) { rect->flags|=Rasterizer::CANVAS_RECT_FLIP_V; rect->rect.size.y = -rect->rect.size.y; } rect->texture=p_texture; canvas_item->rect_dirty=true; canvas_item->commands.push_back(rect); } void VisualServerRaster::canvas_item_add_texture_rect_region(RID p_item, const Rect2& p_rect, RID p_texture,const Rect2& p_src_rect,const Color& p_modulate) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandRect * rect = memnew( CanvasItem::CommandRect ); ERR_FAIL_COND(!rect); rect->modulate=p_modulate; rect->rect=p_rect; rect->texture=p_texture; rect->source=p_src_rect; rect->flags=Rasterizer::CANVAS_RECT_REGION; if (p_rect.size.x<0) { rect->flags|=Rasterizer::CANVAS_RECT_FLIP_H; rect->rect.size.x = -rect->rect.size.x; } if (p_rect.size.y<0) { rect->flags|=Rasterizer::CANVAS_RECT_FLIP_V; rect->rect.size.y = -rect->rect.size.y; } canvas_item->rect_dirty=true; canvas_item->commands.push_back(rect); } void VisualServerRaster::canvas_item_add_style_box(RID p_item, const Rect2& p_rect, RID p_texture,const Vector2& p_topleft, const Vector2& p_bottomright, bool p_draw_center,const Color& p_modulate) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandStyle * style = memnew( CanvasItem::CommandStyle ); ERR_FAIL_COND(!style); style->texture=p_texture; style->rect=p_rect; style->draw_center=p_draw_center; style->color=p_modulate; style->margin[MARGIN_LEFT]=p_topleft.x; style->margin[MARGIN_TOP]=p_topleft.y; style->margin[MARGIN_RIGHT]=p_bottomright.x; style->margin[MARGIN_BOTTOM]=p_bottomright.y; canvas_item->rect_dirty=true; canvas_item->commands.push_back(style); } void VisualServerRaster::canvas_item_add_primitive(RID p_item,const Vector& p_points, const Vector& p_colors,const Vector& p_uvs, RID p_texture,float p_width) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandPrimitive * prim = memnew( CanvasItem::CommandPrimitive ); ERR_FAIL_COND(!prim); prim->texture=p_texture; prim->points=p_points; prim->uvs=p_uvs; prim->colors=p_colors; prim->width=p_width; canvas_item->rect_dirty=true; canvas_item->commands.push_back(prim); } void VisualServerRaster::canvas_item_add_polygon(RID p_item, const Vector& p_points, const Vector& p_colors,const Vector& p_uvs, RID p_texture) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); #ifdef DEBUG_ENABLED int pointcount = p_points.size(); ERR_FAIL_COND(pointcount<3); int color_size=p_colors.size(); int uv_size=p_uvs.size(); ERR_FAIL_COND(color_size!=0 && color_size!=1 && color_size!=pointcount); ERR_FAIL_COND(uv_size!=0 && (uv_size!=pointcount || !p_texture.is_valid())); #endif Vector indices = Geometry::triangulate_polygon(p_points); if (indices.empty()) { ERR_EXPLAIN("Bad Polygon!"); ERR_FAIL_V(); } CanvasItem::CommandPolygon * polygon = memnew( CanvasItem::CommandPolygon ); ERR_FAIL_COND(!polygon); polygon->texture=p_texture; polygon->points=p_points; polygon->uvs=p_uvs; polygon->colors=p_colors; polygon->indices=indices; polygon->count=indices.size(); canvas_item->rect_dirty=true; canvas_item->commands.push_back(polygon); } void VisualServerRaster::canvas_item_add_triangle_array_ptr(RID p_item, int p_count, const int* p_indices, const Point2* p_points, const Color* p_colors,const Point2* p_uvs, RID p_texture) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); ERR_FAIL_COND(p_count <= 0); ERR_FAIL_COND(p_points == NULL); CanvasItem::CommandPolygonPtr * polygon = memnew( CanvasItem::CommandPolygonPtr ); ERR_FAIL_COND(!polygon); polygon->texture=p_texture; polygon->points=p_points; polygon->uvs=p_uvs; polygon->colors=p_colors; polygon->indices=p_indices; polygon->count = p_count * 3; canvas_item->rect_dirty=true; canvas_item->commands.push_back(polygon); }; void VisualServerRaster::canvas_item_add_triangle_array(RID p_item, const Vector& p_indices, const Vector& p_points, const Vector& p_colors,const Vector& p_uvs, RID p_texture, int p_count) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); int ps = p_points.size(); ERR_FAIL_COND(!p_colors.empty() && p_colors.size()!=ps && p_colors.size()!=1); ERR_FAIL_COND(!p_uvs.empty() && p_uvs.size()!=ps); Vector indices = p_indices; int count = p_count * 3; if (indices.empty()) { ERR_FAIL_COND( ps % 3 != 0 ); if (p_count == -1) count = ps; } else { ERR_FAIL_COND( indices.size() % 3 != 0 ); if (p_count == -1) count = indices.size(); } CanvasItem::CommandPolygon * polygon = memnew( CanvasItem::CommandPolygon ); ERR_FAIL_COND(!polygon); polygon->texture=p_texture; polygon->points=p_points; polygon->uvs=p_uvs; polygon->colors=p_colors; polygon->indices=indices; polygon->count = count; canvas_item->rect_dirty=true; canvas_item->commands.push_back(polygon); } void VisualServerRaster::canvas_item_add_set_transform(RID p_item,const Matrix32& p_transform) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandTransform * tr = memnew( CanvasItem::CommandTransform ); ERR_FAIL_COND(!tr); tr->xform=p_transform; canvas_item->commands.push_back(tr); } void VisualServerRaster::canvas_item_add_set_blend_mode(RID p_item, MaterialBlendMode p_blend) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandBlendMode * bm = memnew( CanvasItem::CommandBlendMode ); ERR_FAIL_COND(!bm); bm->blend_mode = p_blend; canvas_item->commands.push_back(bm); }; void VisualServerRaster::canvas_item_set_z(RID p_item, int p_z) { ERR_FAIL_COND(p_zCANVAS_ITEM_Z_MAX); VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->z=p_z; } void VisualServerRaster::canvas_item_set_z_as_relative_to_parent(RID p_item, bool p_enable) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->z_relative=p_enable; } void VisualServerRaster::canvas_item_set_use_parent_shader(RID p_item, bool p_enable) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->use_parent_shader=p_enable; } void VisualServerRaster::canvas_item_set_shader(RID p_item, RID p_shader) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->shader=p_shader; } RID VisualServerRaster::canvas_item_get_shader(RID p_item) const{ CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND_V(!canvas_item,RID()); return canvas_item->shader; } void VisualServerRaster::canvas_item_set_shader_param(RID p_canvas_item, const StringName& p_param, const Variant& p_value){ VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_canvas_item ); ERR_FAIL_COND(!canvas_item); if (p_value.get_type()==Variant::NIL) canvas_item->shader_param.erase(p_param); else canvas_item->shader_param[p_param]=p_value; } Variant VisualServerRaster::canvas_item_get_shader_param(RID p_canvas_item, const StringName& p_param) const{ CanvasItem *canvas_item = canvas_item_owner.get( p_canvas_item ); ERR_FAIL_COND_V(!canvas_item,Variant()); if (!canvas_item->shader_param.has(p_param)) { ERR_FAIL_COND_V(!canvas_item->shader.is_valid(),Variant()); return rasterizer->shader_get_default_param(canvas_item->shader,p_param); } return canvas_item->shader_param[p_param]; } void VisualServerRaster::canvas_item_set_sort_children_by_y(RID p_item, bool p_enable) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->sort_y=p_enable; } void VisualServerRaster::canvas_item_add_clip_ignore(RID p_item, bool p_ignore) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandClipIgnore * ci = memnew( CanvasItem::CommandClipIgnore); ERR_FAIL_COND(!ci); ci->ignore=p_ignore; canvas_item->commands.push_back(ci); } void VisualServerRaster::canvas_item_clear(RID p_item) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->clear(); } void VisualServerRaster::canvas_item_raise(RID p_item) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); if (canvas_item->parent.is_valid()) { if (canvas_owner.owns(canvas_item->parent)) { Canvas *canvas = canvas_owner.get(canvas_item->parent); int idx = canvas->find_item(canvas_item); ERR_FAIL_COND(idx<0); Canvas::ChildItem ci = canvas->child_items[idx]; canvas->child_items.remove(idx); canvas->child_items.push_back(ci); } else if (canvas_item_owner.owns(canvas_item->parent)) { CanvasItem *item_owner = canvas_item_owner.get(canvas_item->parent); int idx = item_owner->child_items.find(canvas_item); ERR_FAIL_COND(idx<0); item_owner->child_items.remove(idx); item_owner->child_items.push_back(canvas_item); } } } /******** CANVAS *********/ void VisualServerRaster::cursor_set_rotation(float p_rotation, int p_cursor) { VS_CHANGED; ERR_FAIL_INDEX(p_cursor, MAX_CURSORS); cursors[p_cursor].rot = p_rotation; }; void VisualServerRaster::cursor_set_texture(RID p_texture, const Point2 &p_center_offset, int p_cursor) { VS_CHANGED; ERR_FAIL_INDEX(p_cursor, MAX_CURSORS); cursors[p_cursor].texture = p_texture; cursors[p_cursor].center = p_center_offset; }; void VisualServerRaster::cursor_set_visible(bool p_visible, int p_cursor) { VS_CHANGED; ERR_FAIL_INDEX(p_cursor, MAX_CURSORS); cursors[p_cursor].visible = p_visible; }; void VisualServerRaster::cursor_set_pos(const Point2& p_pos, int p_cursor) { ERR_FAIL_INDEX(p_cursor, MAX_CURSORS); if (cursors[p_cursor].pos==p_pos) return; VS_CHANGED; cursors[p_cursor].pos = p_pos; }; void VisualServerRaster::black_bars_set_margins(int p_left, int p_top, int p_right, int p_bottom) { black_margin[MARGIN_LEFT]=p_left; black_margin[MARGIN_TOP]=p_top; black_margin[MARGIN_RIGHT]=p_right; black_margin[MARGIN_BOTTOM]=p_bottom; } void VisualServerRaster::black_bars_set_images(RID p_left, RID p_top, RID p_right, RID p_bottom) { black_image[MARGIN_LEFT]=p_left; black_image[MARGIN_TOP]=p_top; black_image[MARGIN_RIGHT]=p_right; black_image[MARGIN_BOTTOM]=p_bottom; } void VisualServerRaster::_free_attached_instances(RID p_rid,bool p_free_scenario) { Map< RID, Set >::Element * E = instance_dependency_map.find( p_rid ); if (E) { // has instances while( E->get().size() ) { // erase all attached instances if (p_free_scenario) instance_set_scenario( E->get().front()->get(), RID() ); else instance_set_base( E->get().front()->get(), RID() ); } } instance_dependency_map.erase(p_rid); } void VisualServerRaster::custom_shade_model_set_shader(int p_model, RID p_shader) { VS_CHANGED; // rasterizer->custom_shade_model_set_shader(p_model,p_shader); } RID VisualServerRaster::custom_shade_model_get_shader(int p_model) const { //return rasterizer->custom_shade_model_get_shader(p_model); return RID(); } void VisualServerRaster::custom_shade_model_set_name(int p_model, const String& p_name) { //rasterizer->custom_shade_model_set_name(p_model,p_name); } String VisualServerRaster::custom_shade_model_get_name(int p_model) const { //return rasterizer->custom_shade_model_get_name(p_model); return ""; } void VisualServerRaster::custom_shade_model_set_param_info(int p_model, const List& p_info) { VS_CHANGED; //rasterizer->custom_shade_model_set_param_info(p_model,p_info); } void VisualServerRaster::custom_shade_model_get_param_info(int p_model, List* p_info) const { //rasterizer->custom_shade_model_get_param_info(p_model,p_info); } void VisualServerRaster::free( RID p_rid ) { VS_CHANGED; if (rasterizer->is_texture(p_rid) || rasterizer->is_material(p_rid) || rasterizer->is_shader(p_rid)) { rasterizer->free(p_rid); } else if (rasterizer->is_skeleton(p_rid)) { Map< RID, Set >::Element *E=skeleton_dependency_map.find(p_rid); if (E) { //detach skeletons for (Set::Element *F=E->get().front();F;F=F->next()) { F->get()->data.skeleton=RID(); } skeleton_dependency_map.erase(E); } rasterizer->free(p_rid); } else if (rasterizer->is_mesh(p_rid) || rasterizer->is_multimesh(p_rid) || rasterizer->is_light(p_rid) || rasterizer->is_particles(p_rid) ) { //delete the resource _free_attached_instances(p_rid); rasterizer->free(p_rid); } else if (room_owner.owns(p_rid)) { _free_attached_instances(p_rid); Room *room = room_owner.get(p_rid); ERR_FAIL_COND(!room); room_owner.free(p_rid); memdelete(room); } else if (portal_owner.owns(p_rid)) { _free_attached_instances(p_rid); Portal *portal = portal_owner.get(p_rid); ERR_FAIL_COND(!portal); portal_owner.free(p_rid); memdelete(portal); } else if (baked_light_owner.owns(p_rid)) { _free_attached_instances(p_rid); BakedLight *baked_light = baked_light_owner.get(p_rid); ERR_FAIL_COND(!baked_light); if (baked_light->data.octree_texture.is_valid()) rasterizer->free(baked_light->data.octree_texture); baked_light_owner.free(p_rid); memdelete(baked_light); } else if (baked_light_sampler_owner.owns(p_rid)) { _free_attached_instances(p_rid); BakedLightSampler *baked_light_sampler = baked_light_sampler_owner.get(p_rid); ERR_FAIL_COND(!baked_light_sampler); //if (baked_light->data.octree_texture.is_valid()) // rasterizer->free(baked_light->data.octree_texture); baked_light_sampler_owner.free(p_rid); memdelete(baked_light_sampler); } else if (camera_owner.owns(p_rid)) { // delete te camera Camera *camera = camera_owner.get(p_rid); ERR_FAIL_COND(!camera); camera_owner.free( p_rid ); memdelete(camera); } else if (viewport_owner.owns(p_rid)) { // delete the viewport Viewport *viewport = viewport_owner.get( p_rid ); ERR_FAIL_COND(!viewport); // Viewport *parent=NULL; rasterizer->free(viewport->viewport_data); if (viewport->render_target.is_valid()) { rasterizer->free(viewport->render_target); } if (viewport->update_list.in_list()) viewport_update_list.remove(&viewport->update_list); if (screen_viewports.has(p_rid)) screen_viewports.erase(p_rid); while(viewport->canvas_map.size()) { Canvas *c = viewport->canvas_map.front()->get().canvas; c->viewports.erase(p_rid); viewport->canvas_map.erase(viewport->canvas_map.front()); } viewport_owner.free(p_rid); memdelete(viewport); } else if (instance_owner.owns(p_rid)) { // delete the instance _update_instances(); // be sure Instance *instance = instance_owner.get(p_rid); ERR_FAIL_COND(!instance); instance_set_room(p_rid,RID()); instance_set_scenario(p_rid,RID()); instance_geometry_set_baked_light(p_rid,RID()); instance_geometry_set_baked_light_sampler(p_rid,RID()); instance_set_base(p_rid,RID()); if (instance->data.skeleton.is_valid()) instance_attach_skeleton(p_rid,RID()); instance_owner.free(p_rid); memdelete(instance); } else if (canvas_owner.owns(p_rid)) { Canvas *canvas = canvas_owner.get(p_rid); ERR_FAIL_COND(!canvas); while(canvas->viewports.size()) { Viewport *vp = viewport_owner.get(canvas->viewports.front()->get()); ERR_FAIL_COND(!vp); Map::Element *E=vp->canvas_map.find(p_rid); ERR_FAIL_COND(!E); vp->canvas_map.erase(p_rid); canvas->viewports.erase( canvas->viewports.front() ); } for (int i=0;ichild_items.size();i++) { canvas->child_items[i].item->parent=RID(); } canvas_owner.free( p_rid ); memdelete( canvas ); } else if (canvas_item_owner.owns(p_rid)) { CanvasItem *canvas_item = canvas_item_owner.get(p_rid); ERR_FAIL_COND(!canvas_item); if (canvas_item->parent.is_valid()) { if (canvas_owner.owns(canvas_item->parent)) { Canvas *canvas = canvas_owner.get(canvas_item->parent); canvas->erase_item(canvas_item); } else if (canvas_item_owner.owns(canvas_item->parent)) { CanvasItem *item_owner = canvas_item_owner.get(canvas_item->parent); item_owner->child_items.erase(canvas_item); } } for (int i=0;ichild_items.size();i++) { canvas_item->child_items[i]->parent=RID(); } canvas_item_owner.free( p_rid ); memdelete( canvas_item ); } else if (scenario_owner.owns(p_rid)) { Scenario *scenario=scenario_owner.get(p_rid); ERR_FAIL_COND(!scenario); _update_instances(); // be sure _free_attached_instances(p_rid,true); //rasterizer->free( scenario->environment ); scenario_owner.free(p_rid); memdelete(scenario); } else { ERR_FAIL(); } } void VisualServerRaster::_instance_draw(Instance *p_instance) { if (p_instance->light_cache_dirty) { int l=0; //add positional lights InstanceSet::Element *LE=p_instance->lights.front(); p_instance->data.light_instances.resize(p_instance->lights.size()); while(LE) { p_instance->data.light_instances[l++]=LE->get()->light_info->instance; LE=LE->next(); } p_instance->light_cache_dirty=false; } switch(p_instance->base_type) { case INSTANCE_MESH: { const float *morphs = NULL; if (!p_instance->data.morph_values.empty()) { morphs=&p_instance->data.morph_values[0]; } rasterizer->add_mesh(p_instance->base_rid, &p_instance->data); } break; case INSTANCE_MULTIMESH: { rasterizer->add_multimesh(p_instance->base_rid, &p_instance->data); } break; case INSTANCE_IMMEDIATE: { rasterizer->add_immediate(p_instance->base_rid, &p_instance->data); } break; case INSTANCE_PARTICLES: { rasterizer->add_particles(p_instance->particles_info->instance, &p_instance->data); } break; default: {}; } } Vector VisualServerRaster::_camera_generate_endpoints(Instance *p_light,Camera *p_camera,float p_range_min, float p_range_max) { // setup a camera matrix for that range! CameraMatrix camera_matrix; switch(p_camera->type) { case Camera::ORTHOGONAL: { camera_matrix.set_orthogonal(p_camera->size,viewport_rect.width / (float)viewport_rect.height,p_range_min,p_range_max,p_camera->vaspect); } break; case Camera::PERSPECTIVE: { camera_matrix.set_perspective( p_camera->fov, viewport_rect.width / (float)viewport_rect.height, p_range_min, p_range_max, p_camera->vaspect ); } break; } //obtain the frustum endpoints Vector endpoints; endpoints.resize(8); bool res = camera_matrix.get_endpoints(p_camera->transform,&endpoints[0]); ERR_FAIL_COND_V(!res,Vector()); return endpoints; } Vector VisualServerRaster::_camera_generate_orthogonal_planes(Instance *p_light,Camera *p_camera,float p_range_min, float p_range_max) { Vector endpoints=_camera_generate_endpoints(p_light,p_camera,p_range_min,p_range_max); // frustum plane endpoints ERR_FAIL_COND_V(endpoints.empty(),Vector()); // obtain the light frustm ranges (given endpoints) Vector3 x_vec=p_light->data.transform.basis.get_axis( Vector3::AXIS_X ).normalized(); Vector3 y_vec=p_light->data.transform.basis.get_axis( Vector3::AXIS_Y ).normalized(); Vector3 z_vec=p_light->data.transform.basis.get_axis( Vector3::AXIS_Z ).normalized(); float x_min,x_max; float y_min,y_max; float z_min,z_max; for(int j=0;j<8;j++) { float d_x=x_vec.dot(endpoints[j]); float d_y=y_vec.dot(endpoints[j]); float d_z=z_vec.dot(endpoints[j]); if (j==0 || d_xx_max) x_max=d_x; if (j==0 || d_yy_max) y_max=d_y; if (j==0 || d_zz_max) z_max=d_z; } //now that we now all ranges, we can proceed to make the light frustum planes, for culling octree Vector light_frustum_planes; light_frustum_planes.resize(6); //right/left light_frustum_planes[0]=Plane( x_vec, x_max ); light_frustum_planes[1]=Plane( -x_vec, -x_min ); //top/bottom light_frustum_planes[2]=Plane( y_vec, y_max ); light_frustum_planes[3]=Plane( -y_vec, -y_min ); //near/far light_frustum_planes[4]=Plane( z_vec, z_max+1e6 ); light_frustum_planes[5]=Plane( -z_vec, -z_min ); // z_min is ok, since casters further than far-light plane are not needed //TODO@ add more actual frustum planes to minimize get return light_frustum_planes; } void VisualServerRaster::_light_instance_update_pssm_shadow(Instance *p_light,Scenario *p_scenario,Camera *p_camera,const CullRange& p_cull_range) { int splits = rasterizer->light_instance_get_shadow_passes( p_light->light_info->instance ); float split_weight=rasterizer->light_directional_get_shadow_param(p_light->base_rid,LIGHT_DIRECTIONAL_SHADOW_PARAM_PSSM_SPLIT_WEIGHT); float distances[5]; float texsize=rasterizer->light_instance_get_shadow_size( p_light->light_info->instance ); // float cull_min=p_cull_range.min; //float cull_max=p_cull_range.max; bool overlap = rasterizer->light_instance_get_pssm_shadow_overlap(p_light->light_info->instance); float cull_min=p_camera->znear; float cull_max=p_camera->zfar; float max_dist = rasterizer->light_directional_get_shadow_param(p_light->base_rid,VS::LIGHT_DIRECTIONAL_SHADOW_PARAM_MAX_DISTANCE); if (max_dist>0.0) cull_max=MIN(cull_max,max_dist); for(int i = 0; i < splits; i++) { float idm = i / (float)splits; float lg = cull_min * Math::pow(cull_max/cull_min, idm); float uniform = cull_min + (cull_max - cull_min) * idm; distances[i] = lg * split_weight + uniform * (1.0 - split_weight); } distances[0]=cull_min; distances[splits]=cull_max; for (int i=0;itype) { case Camera::ORTHOGONAL: { camera_matrix.set_orthogonal( p_camera->size, viewport_rect.width / (float)viewport_rect.height, distances[(i==0 || !overlap )?i:i-1], distances[i+1], p_camera->vaspect ); } break; case Camera::PERSPECTIVE: { camera_matrix.set_perspective( p_camera->fov, viewport_rect.width / (float)viewport_rect.height, distances[(i==0 || !overlap )?i:i-1], distances[i+1], p_camera->vaspect ); } break; } //obtain the frustum endpoints Vector3 endpoints[8]; // frustum plane endpoints bool res = camera_matrix.get_endpoints(p_camera->transform,endpoints); ERR_CONTINUE(!res); // obtain the light frustm ranges (given endpoints) Vector3 x_vec=p_light->data.transform.basis.get_axis( Vector3::AXIS_X ).normalized(); Vector3 y_vec=p_light->data.transform.basis.get_axis( Vector3::AXIS_Y ).normalized(); Vector3 z_vec=p_light->data.transform.basis.get_axis( Vector3::AXIS_Z ).normalized(); //z_vec points agsint the camera, like in default opengl float x_min,x_max; float y_min,y_max; float z_min,z_max; float x_min_cam,x_max_cam; float y_min_cam,y_max_cam; float z_min_cam,z_max_cam; //used for culling for(int j=0;j<8;j++) { float d_x=x_vec.dot(endpoints[j]); float d_y=y_vec.dot(endpoints[j]); float d_z=z_vec.dot(endpoints[j]); if (j==0 || d_xx_max) x_max=d_x; if (j==0 || d_yy_max) y_max=d_y; if (j==0 || d_zz_max) z_max=d_z; } { //camera viewport stuff //this trick here is what stabilizes the shadow (make potential jaggies to not move) //at the cost of some wasted resolution. Still the quality increase is very well worth it Vector3 center; for(int j=0;j<8;j++) { center+=endpoints[j]; } center/=8.0; //center=x_vec*(x_max-x_min)*0.5 + y_vec*(y_max-y_min)*0.5 + z_vec*(z_max-z_min)*0.5; float radius=0; for(int j=0;j<8;j++) { float d = center.distance_to(endpoints[j]); if (d>radius) radius=d; } radius *= texsize/(texsize-2.0); //add a texel by each side, so stepified texture will always fit x_max_cam=x_vec.dot(center)+radius; x_min_cam=x_vec.dot(center)-radius; y_max_cam=y_vec.dot(center)+radius; y_min_cam=y_vec.dot(center)-radius; z_max_cam=z_vec.dot(center)+radius; z_min_cam=z_vec.dot(center)-radius; float unit = radius*2.0/texsize; x_max_cam=Math::stepify(x_max_cam,unit); x_min_cam=Math::stepify(x_min_cam,unit); y_max_cam=Math::stepify(y_max_cam,unit); y_min_cam=Math::stepify(y_min_cam,unit); } //now that we now all ranges, we can proceed to make the light frustum planes, for culling octree Vector light_frustum_planes; light_frustum_planes.resize(6); //right/left light_frustum_planes[0]=Plane( x_vec, x_max ); light_frustum_planes[1]=Plane( -x_vec, -x_min ); //top/bottom light_frustum_planes[2]=Plane( y_vec, y_max ); light_frustum_planes[3]=Plane( -y_vec, -y_min ); //near/far light_frustum_planes[4]=Plane( z_vec, z_max+1e6 ); light_frustum_planes[5]=Plane( -z_vec, -z_min ); // z_min is ok, since casters further than far-light plane are not needed int caster_cull_count = p_scenario->octree.cull_convex(light_frustum_planes,instance_shadow_cull_result,MAX_INSTANCE_CULL,INSTANCE_GEOMETRY_MASK); // a pre pass will need to be needed to determine the actual z-near to be used for(int j=0;jvisible || !ins->cast_shadows) continue; ins->transformed_aabb.project_range_in_plane(Plane(z_vec,0),min,max); if (max>z_max) z_max=max; } { CameraMatrix ortho_camera; real_t half_x = (x_max_cam-x_min_cam) * 0.5; real_t half_y = (y_max_cam-y_min_cam) * 0.5; ortho_camera.set_orthogonal( -half_x, half_x,-half_y,half_y, 0, (z_max-z_min_cam) ); Transform ortho_transform; ortho_transform.basis=p_light->data.transform.basis; ortho_transform.origin=x_vec*(x_min_cam+half_x)+y_vec*(y_min_cam+half_y)+z_vec*z_max; rasterizer->light_instance_set_shadow_transform(p_light->light_info->instance, i, ortho_camera, ortho_transform,distances[i],distances[i+1] ); } rasterizer->begin_shadow_map( p_light->light_info->instance, i ); for (int j=0;jvisible || !instance->cast_shadows) continue; _instance_draw(instance); } rasterizer->end_shadow_map(); } } CameraMatrix _lispm_look( const Vector3 pos, const Vector3 dir, const Vector3 up) { Vector3 dirN; Vector3 upN; Vector3 lftN; lftN=dir.cross(up); lftN.normalize(); upN=lftN.cross(dir); upN.normalize(); dirN=dir.normalized(); CameraMatrix cmout; float *output=&cmout.matrix[0][0]; output[ 0] = lftN[0]; output[ 1] = upN[0]; output[ 2] = -dirN[0]; output[ 3] = 0.0; output[ 4] = lftN[1]; output[ 5] = upN[1]; output[ 6] = -dirN[1]; output[ 7] = 0.0; output[ 8] = lftN[2]; output[ 9] = upN[2]; output[10] = -dirN[2]; output[11] = 0.0; output[12] = -lftN.dot(pos); output[13] = -upN.dot(pos); output[14] = dirN.dot(pos); output[15] = 1.0; return cmout; } #if 1 void VisualServerRaster::_light_instance_update_lispsm_shadow(Instance *p_light,Scenario *p_scenario,Camera *p_camera,const CullRange& p_cull_range) { Vector3 light_vec = -p_light->data.transform.basis.get_axis(2); Vector3 view_vec = -p_camera->transform.basis.get_axis(2); float viewdot = light_vec.normalized().dot(view_vec.normalized()); float near_dist=1; Vector light_frustum_planes = _camera_generate_orthogonal_planes(p_light,p_camera,p_cull_range.min,p_cull_range.max); int caster_count = p_scenario->octree.cull_convex(light_frustum_planes,instance_shadow_cull_result,MAX_INSTANCE_CULL,INSTANCE_GEOMETRY_MASK); // this could be faster by just getting supports from the AABBs.. // but, safer to do as the original implementation explains for now.. Vector caster_pointcloud; caster_pointcloud.resize(caster_count*8); int caster_pointcloud_size=0; { //fill pointcloud Vector3* caster_pointcloud_ptr=&caster_pointcloud[0]; for(int i=0;ivisible || !ins->cast_shadows) continue; for(int j=0;j<8;j++) { Vector3 v = ins->aabb.get_endpoint(j); v = ins->data.transform.xform(v); caster_pointcloud_ptr[caster_pointcloud_size+j]=v; } caster_pointcloud_size+=8; } } // now generate a pointcloud that contains the maximum bound (camera extruded by light) Vector camera_pointcloud = _camera_generate_endpoints(p_light,p_camera,p_cull_range.min,p_cull_range.max); int cpcsize=camera_pointcloud.size(); camera_pointcloud.resize( cpcsize*2 ); for(int i=0;i frustum_points=_camera_generate_endpoints(p_light,p_camera,p_cull_range.min,p_cull_range.max); // compute the "light-space" basis, using the algorithm described in the paper // note: since bodyB is defined in eye space, all of these vectors should also be defined in eye space Vector3 eye = p_camera->transform.origin; Vector3 up = light_vec.cross(view_vec).cross(light_vec).normalized(); CameraMatrix light_space_basis = _lispm_look(eye,light_vec,up); AABB light_space_aabb; { //create an optimal AABB from both the camera pointcloud and the objects pointcloud AABB light_space_pointcloud_aabb; AABB light_space_camera_aabb; //xform pointcloud const Vector3* caster_pointcloud_ptr=&caster_pointcloud[0]; for(int i=0;ilight_instance_set_shadow_transform(p_light->light_info->instance,0, projection , light_space_basis2.inverse() ); rasterizer->begin_shadow_map( p_light->light_info->instance, 0 ); for(int i=0;ivisible || !instance->cast_shadows) continue; _instance_draw(instance); } rasterizer->end_shadow_map(); } #else void VisualServerRaster::_light_instance_update_lispsm_shadow(Instance *p_light,Scenario *p_scenario,Camera *p_camera,const CullRange& p_cull_range) { /* STEP 1: GENERATE LIGHT TRANSFORM */ Vector3 light_vec = -p_light->data.transform.basis.get_axis(2); Vector3 view_vec = -p_camera->transform.basis.get_axis(2); float viewdot = Math::absf(light_vec.dot(view_vec)); Vector3 up = light_vec.cross(view_vec).cross(light_vec).normalized(); Transform light_transform; light_transform.set_look_at(Vector3(),light_vec,up); /* STEP 2: GENERATE WORDLSPACE PLANES AND VECTORS*/ float range_min=0.01; //p_cull_range.min float range_max=20;//p_cull_range.max; Vector camera_endpoints=_camera_generate_endpoints(p_light,p_camera,range_min,range_max); // frustum plane endpoints ERR_FAIL_COND(camera_endpoints.empty()); // obtain the light frustm ranges (given endpoints) Vector3 light_x_vec=light_transform.basis.get_axis( Vector3::AXIS_X ).normalized(); Vector3 light_y_vec=light_transform.basis.get_axis( Vector3::AXIS_Y ).normalized(); Vector3 light_z_vec=light_transform.basis.get_axis( Vector3::AXIS_Z ).normalized(); Vector3 light_axis_max; Vector3 light_axis_min; for(int j=0;j<8;j++) { float d_x=light_x_vec.dot(camera_endpoints[j]); float d_y=light_y_vec.dot(camera_endpoints[j]); float d_z=light_z_vec.dot(camera_endpoints[j]); if (j==0 || d_xlight_axis_max.x) light_axis_max.x=d_x; if (j==0 || d_ylight_axis_max.y) light_axis_max.y=d_y; if (j==0 || d_zlight_axis_max.z) light_axis_max.z=d_z; } //now that we now all ranges, we can proceed to make the light frustum planes, for culling octree Vector light_cull_planes; light_cull_planes.resize(6); //right/left light_cull_planes[0]=Plane( light_x_vec, light_axis_max.x ); light_cull_planes[1]=Plane( -light_x_vec, -light_axis_min.x ); //top/bottom light_cull_planes[2]=Plane( light_y_vec, light_axis_max.y ); light_cull_planes[3]=Plane( -light_y_vec, -light_axis_min.y ); //near/far light_cull_planes[4]=Plane( light_z_vec, light_axis_max.z+1e6 ); light_cull_planes[5]=Plane( -light_z_vec, -light_axis_min.z ); // z_min is ok, since casters further than far-light plane are not needed /* STEP 3: CULL CASTERS */ int caster_count = p_scenario->octree.cull_convex(light_cull_planes,instance_shadow_cull_result,MAX_INSTANCE_CULL,INSTANCE_GEOMETRY_MASK); /* STEP 4: ADJUST FAR Z PLANE */ float caster_max_z=1e-1; for(int i=0;ivisible || !ins->cast_shadows) continue; //@TODO optimize using support mapping for(int j=0;j<8;j++) { Vector3 v=ins->data.transform.xform(ins->aabb.get_endpoint(j)); float d = light_z_vec.dot(v); if (d>caster_max_z) caster_max_z=d; } } float expand = caster_max_z-light_axis_max.z; if (expand<0) expand=0; light_axis_max.z=MAX(caster_max_z,light_axis_max.z); /* STEP 5: CREATE ORTHOGONAL PROJECTION */ CameraMatrix light_projection; real_t half_x = (light_axis_max.x-light_axis_min.x) * 0.5; real_t half_y = (light_axis_max.y-light_axis_min.y) * 0.5; light_projection.set_orthogonal( -half_x, half_x,half_y, -half_y, 0, (light_axis_max.z-light_axis_min.z) ); light_transform.origin=light_x_vec*(light_axis_min.x+half_x)+light_y_vec*(light_axis_min.y+half_y)+light_z_vec*light_axis_max.z; if (/*false &&*/ viewdot<0.96) { float lvdp = light_vec.dot(view_vec); float near_dist=1.0; float sin_gamma = Math::sqrt(1.0-lvdp*lvdp); //use the formulas of the paper to get n (and f) float factor = 1.0/sin_gamma; float z_n = factor*near_dist; //often 1 float d = Math::abs(light_axis_max.y-light_axis_min.y); //perspective transform depth //light space y extents float z_f = z_n + d*sin_gamma; float n = (z_n+Math::sqrt(z_f*z_n))/sin_gamma; float f = n+d; CameraMatrix lisp_matrix; lisp_matrix.matrix[1][1]=(f+n)/(f-n); lisp_matrix.matrix[3][1]=-2*f*n/(f-n); lisp_matrix.matrix[1][3]=1; lisp_matrix.matrix[3][3]=0; Vector3 pos = p_camera->transform.origin - up*(n-near_dist); CameraMatrix world2light = _lispm_look(pos,light_vec,up); CameraMatrix projection = lisp_matrix * world2light; AABB projection_bounds; for(int i=0;ilight_instance_set_shadow_transform(p_light->light_info->instance,0, projection, world2light.inverse(), viewdot); } else { //orthogonal rasterizer->light_instance_set_shadow_transform(p_light->light_info->instance,0, light_projection , light_transform, viewdot); } rasterizer->begin_shadow_map( p_light->light_info->instance, 0 ); for(int i=0;ivisible || !instance->cast_shadows) continue; _instance_draw(instance); } rasterizer->end_shadow_map(); } #endif void VisualServerRaster::_light_instance_update_shadow(Instance *p_light,Scenario *p_scenario,Camera *p_camera,const CullRange& p_cull_range) { if (!rasterizer->shadow_allocate_near( p_light->light_info->instance )) return; // shadow could not be updated /* VisualServerRaster supports for many shadow techniques, using the one the rasterizer requests */ Rasterizer::ShadowType shadow_type = rasterizer->light_instance_get_shadow_type(p_light->light_info->instance); switch(shadow_type) { case Rasterizer::SHADOW_SIMPLE: { /* SPOT SHADOW */ rasterizer->begin_shadow_map( p_light->light_info->instance, 0 ); //using this one ensures that raster deferred will have it float far = rasterizer->light_get_var( p_light->base_rid, VS::LIGHT_PARAM_RADIUS); float angle = rasterizer->light_get_var( p_light->base_rid, VS::LIGHT_PARAM_SPOT_ANGLE ); CameraMatrix cm; cm.set_perspective( angle*2.0, 1.0, 0.001, far ); Vector planes = cm.get_projection_planes(p_light->data.transform); int cull_count = p_scenario->octree.cull_convex(planes,instance_shadow_cull_result,MAX_INSTANCE_CULL,INSTANCE_GEOMETRY_MASK); for (int i=0;ivisible || !instance->cast_shadows) continue; _instance_draw(instance); } rasterizer->end_shadow_map(); } break; case Rasterizer::SHADOW_DUAL_PARABOLOID: { /* OMNI SHADOW */ int passes = rasterizer->light_instance_get_shadow_passes( p_light->light_info->instance ); if (passes==2) { for(int i=0;i<2;i++) { rasterizer->begin_shadow_map( p_light->light_info->instance, i ); //using this one ensures that raster deferred will have it float radius = rasterizer->light_get_var( p_light->base_rid, VS::LIGHT_PARAM_RADIUS); float z =i==0?-1:1; Vector planes; planes.resize(5); planes[0]=p_light->data.transform.xform(Plane(Vector3(0,0,z),radius)); planes[1]=p_light->data.transform.xform(Plane(Vector3(1,0,z).normalized(),radius)); planes[2]=p_light->data.transform.xform(Plane(Vector3(-1,0,z).normalized(),radius)); planes[3]=p_light->data.transform.xform(Plane(Vector3(0,1,z).normalized(),radius)); planes[4]=p_light->data.transform.xform(Plane(Vector3(0,-1,z).normalized(),radius)); int cull_count = p_scenario->octree.cull_convex(planes,instance_shadow_cull_result,MAX_INSTANCE_CULL,INSTANCE_GEOMETRY_MASK); for (int j=0;jvisible || !instance->cast_shadows) continue; _instance_draw(instance); } rasterizer->end_shadow_map(); } } else if (passes==1) { //one go } } break; case Rasterizer::SHADOW_CUBE: { // todo } break; case Rasterizer::SHADOW_ORTHOGONAL: { _light_instance_update_pssm_shadow(p_light,p_scenario,p_camera,p_cull_range); } break; case Rasterizer::SHADOW_PSSM: { _light_instance_update_pssm_shadow(p_light,p_scenario,p_camera,p_cull_range); } break; case Rasterizer::SHADOW_PSM: { _light_instance_update_lispsm_shadow(p_light,p_scenario,p_camera,p_cull_range); // todo } break; default: {} } } void VisualServerRaster::_portal_disconnect(Instance *p_portal,bool p_cleanup) { if (p_portal->portal_info->connected) { //disconnect first p_portal->portal_info->connected->portal_info->connected=NULL; p_portal->portal_info->connected=NULL; } if (p_portal->room && p_portal->room->room) { if (p_cleanup) { p_portal->room->room->room_info->disconnected_child_portals.erase(p_portal); //p_portal->room->room->room_info->disconnected_child_portals.erase(p_portal); } else { p_portal->room->room->room_info->disconnected_child_portals.insert(p_portal); } } } void VisualServerRaster::_instance_validate_autorooms(Instance *p_geometry) { if (p_geometry->auto_rooms.size()==0) return; p_geometry->valid_auto_rooms.clear(); int point_count = aabb_random_points.size(); const Vector3 * src_points = &aabb_random_points[0]; for(Set::Element *E=p_geometry->valid_auto_rooms.front();E;E=E->next()) { Instance *room = E->get(); Vector3 *dst_points=&transformed_aabb_random_points[0]; //generate points for(int i=0;iroom_info->affine_inverse.xform(p_geometry->data.transform.xform((src_points[i]*p_geometry->transformed_aabb.size)+p_geometry->transformed_aabb.pos)); } int pass = room->room_info->room->bounds.get_points_inside(dst_points,point_count); float ratio = (float)pass / point_count; if (ratio>0.5) // should make some constant p_geometry->valid_auto_rooms.insert(room); } } void VisualServerRaster::_portal_attempt_connect(Instance *p_portal) { _portal_disconnect(p_portal); Vector3 A_norm = p_portal->data.transform.basis.get_axis(Vector3::AXIS_Z).normalized(); Plane A_plane( p_portal->data.transform.origin, A_norm ); float A_surface = p_portal->portal_info->portal->bounds.get_area(); if (A_surface==0) return; //wtf Instance *found=NULL; Transform affine_inverse = p_portal->data.transform.affine_inverse(); for(Set::Element *E=p_portal->portal_info->candidate_set.front();E;E=E->next()) { Instance *B = E->get(); if (B->portal_info->connected) continue; // in use Vector3 B_norm = B->data.transform.basis.get_axis(Vector3::AXIS_Z).normalized(); // check that they are in front of another float dot = A_norm.dot(-B_norm); if (dot<0.707) // 45 degrees, TODO unharcode this continue; // check the max distance to the other portal bool valid=true; Rect2 local_bounds; for(int i=0;iportal_info->portal->shape.size();i++) { Point2 point2 = B->portal_info->portal->shape[i]; Vector3 point = B->data.transform.xform( Vector3( point2.x, point2.y, 0 ) ); float dist = Math::abs(A_plane.distance_to(point)); if ( dist>p_portal->portal_info->portal->connect_range || dist>B->portal_info->portal->connect_range ) { valid=false; break; } Vector3 point_local = affine_inverse.xform(A_plane.project(point)); point2 = Point2(point_local.x,point_local.y); if (i==0) local_bounds.pos=point2; else local_bounds.expand_to(point2); } if (!valid) continue; float B_surface = B->portal_info->portal->bounds.get_area(); if (B_surface==0) continue; //wtf float clip_area = p_portal->portal_info->portal->bounds.clip(local_bounds).get_area(); //check that most of the area is shared if ( (clip_area/A_surface) < 0.5 || (clip_area/B_surface) < 0.5) // TODO change for something else continue; found=B; break; } if (!found) { if (p_portal->room && p_portal->room->room) { p_portal->room->room->room_info->disconnected_child_portals.insert(p_portal); } return; } p_portal->portal_info->connected=found; found->portal_info->connected=p_portal; } void* VisualServerRaster::instance_pair(void *p_self, OctreeElementID, Instance *p_A,int, OctreeElementID, Instance *p_B,int) { VisualServerRaster *self = (VisualServerRaster*)p_self; Instance *A = p_A; Instance *B = p_B; if (A->base_type==INSTANCE_PORTAL) { ERR_FAIL_COND_V( B->base_type!=INSTANCE_PORTAL,NULL ); A->portal_info->candidate_set.insert(B); B->portal_info->candidate_set.insert(A); self->_portal_attempt_connect(A); //attempt to conncet portal A (will go through B anyway) //this is a little hackish, but works fine in practice } else if (A->base_type==INSTANCE_BAKED_LIGHT || B->base_type==INSTANCE_BAKED_LIGHT) { if (B->base_type==INSTANCE_BAKED_LIGHT) { SWAP(A,B); } ERR_FAIL_COND_V(B->base_type!=INSTANCE_BAKED_LIGHT_SAMPLER,NULL); B->baked_light_sampler_info->baked_lights.insert(A); } else if (A->base_type==INSTANCE_ROOM || B->base_type==INSTANCE_ROOM) { if (B->base_type==INSTANCE_ROOM) SWAP(A,B); ERR_FAIL_COND_V(! ((1<base_type)&INSTANCE_GEOMETRY_MASK ),NULL); B->auto_rooms.insert(A); A->room_info->owned_autoroom_geometry.insert(B); self->_instance_validate_autorooms(B); } else { if (B->base_type==INSTANCE_LIGHT) { SWAP(A,B); } else if (A->base_type!=INSTANCE_LIGHT) { return NULL; } A->light_info->affected.insert(B); B->lights.insert(A); B->light_cache_dirty=true; } return NULL; } void VisualServerRaster::instance_unpair(void *p_self, OctreeElementID, Instance *p_A,int, OctreeElementID, Instance *p_B,int,void*) { VisualServerRaster *self = (VisualServerRaster*)p_self; Instance *A = p_A; Instance *B = p_B; if (A->base_type==INSTANCE_PORTAL) { ERR_FAIL_COND( B->base_type!=INSTANCE_PORTAL ); A->portal_info->candidate_set.erase(B); B->portal_info->candidate_set.erase(A); //after disconnecting them, see if they can connect again self->_portal_attempt_connect(A); self->_portal_attempt_connect(B); } else if (A->base_type==INSTANCE_BAKED_LIGHT || B->base_type==INSTANCE_BAKED_LIGHT) { if (B->base_type==INSTANCE_BAKED_LIGHT) { SWAP(A,B); } ERR_FAIL_COND(B->base_type!=INSTANCE_BAKED_LIGHT_SAMPLER); B->baked_light_sampler_info->baked_lights.erase(A); } else if (A->base_type==INSTANCE_ROOM || B->base_type==INSTANCE_ROOM) { if (B->base_type==INSTANCE_ROOM) SWAP(A,B); ERR_FAIL_COND(! ((1<base_type)&INSTANCE_GEOMETRY_MASK )); B->auto_rooms.erase(A); B->valid_auto_rooms.erase(A); A->room_info->owned_autoroom_geometry.erase(B); }else { if (B->base_type==INSTANCE_LIGHT) { SWAP(A,B); } else if (A->base_type!=INSTANCE_LIGHT) { return; } A->light_info->affected.erase(B); B->lights.erase(A); B->light_cache_dirty=true; } } bool VisualServerRaster::_test_portal_cull(Camera *p_camera, Instance *p_from_portal, Instance *p_to_portal) { int src_point_count=p_from_portal->portal_info->transformed_point_cache.size(); int dst_point_count=p_to_portal->portal_info->transformed_point_cache.size(); if (src_point_count<2 || dst_point_count<2) return false; const Vector3 *src_points=&p_from_portal->portal_info->transformed_point_cache[0]; const Vector3 *dst_points=&p_to_portal->portal_info->transformed_point_cache[0]; bool outside=false; bool clockwise = !p_from_portal->portal_info->plane_cache.is_point_over(p_camera->transform.origin); for(int i=0;itransform.origin,point,point_prev):Plane(p_camera->transform.origin,point_prev,point); bool all_over=true; for(int j=0;jscenario); //scenario outside Instance *portal = p_portal; if (!portal->room) { return; //portals need all to belong to a room, it may be unconfigured yet } else if (portal->last_render_pass!=render_pass) { return; //invalid portal, ignore } else if (portal->portal_info->last_visited_pass==render_pass) { return; //portal already visited } else if (portal==p_from_portal) { return; // came from this portal, don't even bother testing } /* TEST DISABLE DISTANCE */ float disable_distance = p_portal->portal_info->portal->disable_distance; if (disable_distance) { //has disable distance.. float distance = p_camera->transform.origin.distance_to(portal->data.transform.origin); if (disable_distance < distance) { return; } } /* TEST PORTAL NOT FACING OPTIMIZATION */ if (p_portal->portal_info->connected) { //connected portal means, it must face against the camera to be seen if (p_portal->portal_info->plane_cache.is_point_over(p_camera->transform.origin)) { //portal facing against camera (exterior) return; } } else { //disconencted portals (go from room to parent room or exterior) must face towards the canera if (!p_portal->portal_info->plane_cache.is_point_over(p_camera->transform.origin)) { //portal facing against camera (exterior) return; } } if (p_from_portal && !_test_portal_cull(p_camera, p_from_portal, portal)) { return; // portal not visible (culled) } portal->portal_info->last_visited_pass=render_pass; if (portal->portal_info->connected) { //interior<->interior portal Instance *to_room = portal->portal_info->connected->room; if (!to_room) { return; //wtf.. oh well, connected to a roomless (invalid) portal } _cull_room(p_camera, to_room, portal->portal_info->connected); } else { //to exterior/to parent roomportal Instance *parent_room = portal->room->room; _cull_room(p_camera, parent_room, portal); } } void VisualServerRaster::_cull_room(Camera *p_camera, Instance *p_room,Instance *p_from_portal) { if (p_room==NULL) { //exterior exterior_visited=true; for(int i=0;iscenario); if (p_room->last_render_pass!=render_pass) return; //this room is invalid //interior //first of all, validate the room p_room->room_info->last_visited_pass=render_pass; //see about going around portals if (!p_room->room_info->room->occlude_exterior) exterior_visited=true; for(List::Element * E=p_room->room_info->owned_portal_instances.front();E;E=E->next()) { _cull_portal(p_camera, E->get(),p_from_portal); } for(Set::Element * E=p_room->room_info->disconnected_child_portals.front();E;E=E->next()) { _cull_portal(p_camera, E->get(),p_from_portal); } } } void VisualServerRaster::_process_sampled_light(const Transform& p_camera,Instance *p_sampled_light,bool p_linear_colorspace) { BakedLightSampler *sampler_opts = p_sampled_light->baked_light_sampler_info->sampler; int res = sampler_opts->resolution; int dp_size = res*res*2; Color * dp_map = (Color*)alloca( sizeof(Color)*dp_size); //allocate the dual parabolloid colors Vector3 * dp_normals = (Vector3*)alloca( sizeof(Vector3)*dp_size); //allocate the dual parabolloid normals const Vector3 * dp_src_normals = p_sampled_light->baked_light_sampler_info->sampler->dp_cache.ptr(); if (!p_sampled_light->baked_light_sampler_info->sampled_light.is_valid() || p_sampled_light->baked_light_sampler_info->resolution!=sampler_opts->resolution) { if (p_sampled_light->baked_light_sampler_info->sampled_light.is_valid()) { rasterizer->free(p_sampled_light->baked_light_sampler_info->sampled_light); } p_sampled_light->baked_light_sampler_info->resolution=sampler_opts->resolution; p_sampled_light->baked_light_sampler_info->sampled_light=rasterizer->sampled_light_dp_create(sampler_opts->resolution,sampler_opts->resolution*2); } zeromem(dp_map,sizeof(Color)*dp_size); bool valid=false; int samples=0; for(Set::Element *E=p_sampled_light->baked_light_sampler_info->baked_lights.front();E;E=E->next()) { Instance *bl = E->get(); if (bl->baked_light_info->baked_light->sampler.size()==0) continue; //not usable Matrix3 norm_xform = bl->baked_light_info->affine_inverse.basis;//.inverse(); for(int i=0;iparams[VS::BAKED_LIGHT_SAMPLER_RADIUS]; float att = sampler_opts->params[VS::BAKED_LIGHT_SAMPLER_ATTENUATION]; float str = sampler_opts->params[VS::BAKED_LIGHT_SAMPLER_STRENGTH]; Vector3 s = p_sampled_light->data.transform.basis.get_scale(); r*=MAX(MAX(s.x,s.y),s.z); AABB sample_aabb= bl->data.transform.affine_inverse().xform(AABB(Vector3(-r,-r,-r)+p_sampled_light->data.transform.origin,Vector3(r*2,r*2,r*2))); //ok got octree local AABB DVector::Read rp = bl->baked_light_info->baked_light->sampler.read(); const int *rptr = rp.ptr(); int first = rptr[1]; int depth = rptr[2]; bool islinear = rptr[3]&1; depth+=1; AABB aabb; aabb.pos.x=decode_float((const uint8_t*)&rptr[4]); aabb.pos.y=decode_float((const uint8_t*)&rptr[5]); aabb.pos.z=decode_float((const uint8_t*)&rptr[6]); aabb.size.x=decode_float((const uint8_t*)&rptr[7]); aabb.size.y=decode_float((const uint8_t*)&rptr[8]); aabb.size.z=decode_float((const uint8_t*)&rptr[9]); uint32_t *stack=(uint32_t*)alloca(depth*sizeof(uint32_t)); int *stack_ptr=(int*)alloca(depth*sizeof(int)); AABB *aabb_stack=(AABB*)alloca(depth*sizeof(AABB)); stack[0]=0; stack_ptr[0]=first; aabb_stack[0]=aabb; Vector3 center = sample_aabb.pos + sample_aabb.size * 0.5; int stack_pos=0; Color max_col; //int reso = sampler_opts->params[VS::BAKED_LIGHT_SAMPLER_DETAIL_RATIO]; int lalimit = sample_aabb.get_longest_axis_index(); float limit = sampler_opts->params[VS::BAKED_LIGHT_SAMPLER_DETAIL_RATIO]*sample_aabb.size[lalimit]; while(true) { bool leaf = (rptr[ stack_ptr[stack_pos] ]>>16)==0; if (aabb_stack[stack_pos].size[lalimit]>16)/256.0); col.b = ((rptr[ stack_ptr[stack_pos]+1 ]&0xFFFF)/256.0); max_col.r = MAX(max_col.r,col.r); max_col.g = MAX(max_col.g,col.g); max_col.b = MAX(max_col.b,col.b); if (!islinear && p_linear_colorspace) { col=col.to_linear(); } float distance; if (aabb_stack[stack_pos].has_point(center)) { distance=0; } else { Vector3 support = aabb_stack[stack_pos].get_support(norm); distance = Math::absf(norm.dot(support)-norm.dot(center)); } if (distance>r) distance=r; float mult = Math::pow(1.0-distance/r,att)*str; if (mult>0) { col.r*=mult; col.g*=mult; col.b*=mult; for(int i=0;i>8); if (!((rptr[ stack_ptr[stack_pos] ]>>16)&(1<=depth); stack[stack_pos]=0; stack_ptr[stack_pos]=rptr[ stack_ptr[stack_pos-1]+2+base ]; aabb_stack[stack_pos]=child_aabb; } else { stack_pos--; if (stack_pos<0) break; } } } //print_line("samples "+itos(samples) ); if (valid) { for(int i=0;isampled_light_dp_update(p_sampled_light->baked_light_sampler_info->sampled_light,dp_map,1.0); for(Set::Element *F=p_sampled_light->baked_light_sampler_info->owned_instances.front();F;F=F->next()) { F->get()->data.sampled_light=p_sampled_light->baked_light_sampler_info->sampled_light; } } else { for(Set::Element *F=p_sampled_light->baked_light_sampler_info->owned_instances.front();F;F=F->next()) { F->get()->data.sampled_light=RID(); //do not use because nothing close } } /* highp vec3 vtx = vertex_interp; vtx.z*=dual_paraboloid.y; //side to affect vtx.z+=0.01; dp_clip=vtx.z; highp float len=length( vtx ); vtx=normalize(vtx); vtx.xy/=1.0+vtx.z; vtx.z = len*dual_paraboloid.x; // it's a reciprocal(len - z_near) / (z_far - z_near); vtx+=normalize(vtx)*0.025; vtx.z = vtx.z * 2.0 - 1.0; // fit to clipspace vertex_interp=vtx; */ } void VisualServerRaster::_render_camera(Viewport *p_viewport,Camera *p_camera, Scenario *p_scenario) { uint64_t t = OS::get_singleton()->get_ticks_usec(); render_pass++; uint32_t camera_layer_mask=p_camera->visible_layers; /* STEP 1 - SETUP CAMERA */ CameraMatrix camera_matrix; switch(p_camera->type) { case Camera::ORTHOGONAL: { camera_matrix.set_orthogonal( p_camera->size, viewport_rect.width / (float)viewport_rect.height, p_camera->znear, p_camera->zfar, p_camera->vaspect ); } break; case Camera::PERSPECTIVE: { camera_matrix.set_perspective( p_camera->fov, viewport_rect.width / (float)viewport_rect.height, p_camera->znear, p_camera->zfar, p_camera->vaspect ); } break; } rasterizer->set_camera(p_camera->transform, camera_matrix); Vector planes = camera_matrix.get_projection_planes(p_camera->transform); CullRange cull_range; // cull range is used for PSSM, and having an idea of the rendering depth cull_range.nearp=Plane(p_camera->transform.origin,-p_camera->transform.basis.get_axis(2).normalized()); cull_range.z_near=camera_matrix.get_z_near(); cull_range.z_far=camera_matrix.get_z_far(); cull_range.min=cull_range.z_far; cull_range.max=cull_range.z_near; /* STEP 2 - CULL */ int cull_count = p_scenario->octree.cull_convex(planes,instance_cull_result,MAX_INSTANCE_CULL); light_cull_count=0; light_samplers_culled=0; /* print_line("OT: "+rtos( (OS::get_singleton()->get_ticks_usec()-t)/1000.0)); print_line("OTO: "+itos(p_scenario->octree.get_octant_count())); // print_line("OTE: "+itos(p_scenario->octree.get_elem_count())); print_line("OTP: "+itos(p_scenario->octree.get_pair_count())); */ /* STEP 3 - PROCESS PORTALS, VALIDATE ROOMS */ // compute portals exterior_visited=false; exterior_portal_cull_count=0; if (room_cull_enabled) { for(int i=0;ilast_render_pass=render_pass; if (ins->base_type!=INSTANCE_PORTAL) continue; if (ins->room) continue; ERR_CONTINUE(exterior_portal_cull_count>=MAX_EXTERIOR_PORTALS); exterior_portal_cull_result[exterior_portal_cull_count++]=ins; } room_cull_count = p_scenario->octree.cull_point(p_camera->transform.origin,room_cull_result,MAX_ROOM_CULL,NULL,(1< current_rooms; Set portal_rooms; //add to set for(int i=0;ibase_type==INSTANCE_ROOM) { current_rooms.insert(room_cull_result[i]); } if (room_cull_result[i]->base_type==INSTANCE_PORTAL) { //assume inside that room if also inside the portal.. if (room_cull_result[i]->room) { portal_rooms.insert(room_cull_result[i]->room); } SWAP(room_cull_result[i],room_cull_result[room_cull_count-1]); room_cull_count--; i--; } } //remove from set if it has a parent room or BSP doesn't contain for(int i=0;iroom_info->affine_inverse.xform( p_camera->transform.origin ); if (!portal_rooms.has(r) && !r->room_info->room->bounds.point_is_inside(room_local_point)) { current_rooms.erase(r); continue; } //check parent while (r->room) {// has parent room current_rooms.erase(r); r=r->room; } } if (current_rooms.size()) { //camera is inside a room // go through rooms for(Set::Element *E=current_rooms.front();E;E=E->next()) { _cull_room(p_camera,E->get()); } } else { //start from exterior _cull_room(p_camera,NULL); } } /* STEP 4 - REMOVE FURTHER CULLED OBJECTS, ADD LIGHTS */ for(int i=0;ilayer_mask)==0) { //failure } else if (ins->base_type==INSTANCE_LIGHT) { if (light_cull_countlight_instance_set_active_hint(ins->light_info->instance); { //compute distance to camera using aabb support Vector3 n = ins->data.transform.basis.xform_inv(cull_range.nearp.normal).normalized(); Vector3 s = ins->data.transform.xform(ins->aabb.get_support(n)); ins->light_info->dtc=cull_range.nearp.distance_to(s); } } } else if ((1<base_type)&INSTANCE_GEOMETRY_MASK && ins->visible) { bool discarded=false; if (ins->draw_range_end>0) { float d = cull_range.nearp.distance_to(ins->data.transform.origin); if (d<0) d=0; discarded=(ddraw_range_begin || d>=ins->draw_range_end); } if (!discarded) { // test if this geometry should be visible if (room_cull_enabled) { if (ins->visible_in_all_rooms) { keep=true; } else if (ins->room) { if (ins->room->room_info->last_visited_pass==render_pass) keep=true; } else if (ins->auto_rooms.size()) { for(Set::Element *E=ins->auto_rooms.front();E;E=E->next()) { if (E->get()->room_info->last_visited_pass==render_pass) { keep=true; break; } } } else if(exterior_visited) keep=true; } else { keep=true; } } if (keep) { // update cull range float min,max; ins->transformed_aabb.project_range_in_plane(cull_range.nearp,min,max); if (mincull_range.max) cull_range.max=max; if (ins->sampled_light && ins->sampled_light->baked_light_sampler_info->last_pass!=render_pass) { if (light_samplers_culledsampled_light; ins->sampled_light->baked_light_sampler_info->last_pass=render_pass; } } } } if (!keep) { // remove, no reason to keep cull_count--; SWAP( instance_cull_result[i], instance_cull_result[ cull_count ] ); i--; ins->last_render_pass=0; // make invalid } else { ins->last_render_pass=render_pass; } } if (cull_range.max > cull_range.z_far ) cull_range.max=cull_range.z_far; if (cull_range.min < cull_range.z_near ) cull_range.min=cull_range.z_near; /* STEP 5 - PROCESS LIGHTS */ rasterizer->shadow_clear_near(); //clear near shadows, will be recreated // directional lights { List::Element *E=p_scenario->directional_lights.front(); while(E) { Instance *light = E->get().is_valid()?instance_owner.get(E->get()):NULL; if (light && light->light_info->enabled && rasterizer->light_has_shadow(light->base_rid)) { //rasterizer->light_instance_set_active_hint(light->light_info->instance); _light_instance_update_shadow(light,p_scenario,p_camera,cull_range); } E=E->next(); } } //discard lights not affecting anything (useful for deferred rendering, shadowmaps, etc) for (int i=0;ilight_info->affected.front(); while(E) { if (E->get()->last_render_pass==render_pass) { valid=true; // early out. break; } E=E->next(); } if (!valid) { light_cull_count--; SWAP( light_cull_result[i], light_cull_result[ light_cull_count ] ); i--; } } } { //this should eventually change to //assign shadows by distance to camera SortArray sorter; sorter.sort(light_cull_result,light_cull_count); for (int i=0;ilight_has_shadow(ins->base_rid) || !shadows_enabled) continue; /* for far shadows? if (ins->version == ins->light_info->last_version && rasterizer->light_instance_has_far_shadow(ins->light_info->instance)) continue; // didn't change */ _light_instance_update_shadow(ins,p_scenario,p_camera,cull_range); ins->light_info->last_version=ins->version; } } /* ENVIRONMENT */ RID environment; if (p_camera->env.is_valid()) //camera has more environment priority environment=p_camera->env; else if (p_scenario->environment.is_valid()) environment=p_scenario->environment; else environment=p_scenario->fallback_environment; /* STEP 6 - SAMPLE BAKED LIGHT */ bool islinear =false; if (environment.is_valid()) { islinear = rasterizer->environment_is_fx_enabled(environment,VS::ENV_FX_SRGB); } for(int i=0;itransform,light_sampler_cull_result[i],islinear); } /* STEP 7 - PROCESS GEOMETRY AND DRAW SCENE*/ rasterizer->begin_scene(p_viewport->viewport_data,environment,p_scenario->debug); rasterizer->set_viewport(viewport_rect); // add lights { List::Element *E=p_scenario->directional_lights.front(); for(;E;E=E->next()) { Instance *light = E->get().is_valid()?instance_owner.get(E->get()):NULL; ERR_CONTINUE(!light); if (!light->light_info->enabled) continue; rasterizer->add_light(light->light_info->instance); light->light_info->last_add_pass=render_pass; } for (int i=0;iadd_light(ins->light_info->instance); ins->light_info->last_add_pass=render_pass; } } // add geometry for(int i=0;ibase_type)&INSTANCE_GEOMETRY_MASK)); _instance_draw(ins); } rasterizer->end_scene(); } void VisualServerRaster::_render_canvas_item_tree(CanvasItem *p_canvas_item,const Matrix32& p_transform,const Rect2& p_clip_rect) { static const int z_range = CANVAS_ITEM_Z_MAX-CANVAS_ITEM_Z_MIN+1; Rasterizer::CanvasItem *z_list[z_range]; Rasterizer::CanvasItem *z_last_list[z_range]; for(int i=0;icanvas_render_items(z_list[i]); } } void VisualServerRaster::_render_canvas_item_viewport(VisualServer* p_self,void *p_vp,const Rect2& p_rect) { VisualServerRaster *self=(VisualServerRaster*)(p_self); Viewport *vp=(Viewport*)p_vp; self->_draw_viewport(vp,p_rect.pos.x,p_rect.pos.y,p_rect.size.x,p_rect.size.y); self->rasterizer->canvas_begin(); } void VisualServerRaster::_render_canvas_item(CanvasItem *p_canvas_item,const Matrix32& p_transform,const Rect2& p_clip_rect, float p_opacity,int p_z,Rasterizer::CanvasItem **z_list,Rasterizer::CanvasItem **z_last_list,CanvasItem *p_canvas_clip,CanvasItem *p_shader_owner) { CanvasItem *ci = p_canvas_item; if (!ci->visible) return; if (p_opacity<0.007) return; Rect2 rect = ci->get_rect(); Matrix32 xform = p_transform * ci->xform; Rect2 global_rect = xform.xform(rect); global_rect.pos+=p_clip_rect.pos; if (global_rect.intersects(p_clip_rect) && ci->viewport.is_valid() && viewport_owner.owns(ci->viewport)) { Viewport *vp = viewport_owner.get(ci->viewport); Point2i from = xform.get_origin() + Point2(viewport_rect.x,viewport_rect.y); Point2i size = rect.size; size.x *= xform[0].length(); size.y *= xform[1].length(); ci->vp_render = memnew( Rasterizer::CanvasItem::ViewportRender ); ci->vp_render->owner=this; ci->vp_render->udata=vp; ci->vp_render->rect=Rect2(from.x, from.y, size.x, size.y); /* _draw_viewport(vp, from.x, from.y, size.x, size.y); */ //rasterizer->canvas_begin(); } else { ci->vp_render=NULL; } if (ci->use_parent_shader && p_shader_owner) ci->shader_owner=p_shader_owner; else { p_shader_owner=ci; ci->shader_owner=NULL; } float opacity = ci->opacity * p_opacity; int child_item_count=ci->child_items.size(); CanvasItem **child_items=(CanvasItem**)alloca(child_item_count*sizeof(CanvasItem*)); copymem(child_items,ci->child_items.ptr(),child_item_count*sizeof(CanvasItem*)); if (ci->clip) { ci->final_clip_rect=global_rect; ci->final_clip_owner=ci; } else { ci->final_clip_owner=p_canvas_clip; } if (ci->sort_y) { SortArray sorter; sorter.sort(child_items,child_item_count); } for(int i=0;iontop) continue; _render_canvas_item(child_items[i],xform,p_clip_rect,opacity,p_z,z_list,z_last_list,(CanvasItem*)ci->final_clip_owner,p_shader_owner); } if ((!ci->commands.empty() && p_clip_rect.intersects(global_rect)) || ci->vp_render) { //something to draw? ci->final_transform=xform; ci->final_opacity=opacity * ci->self_opacity; if (ci->z_relative) p_z=CLAMP(p_z+ci->z,CANVAS_ITEM_Z_MIN,CANVAS_ITEM_Z_MAX); else p_z=ci->z; int zidx = p_z-CANVAS_ITEM_Z_MIN; if (z_last_list[zidx]) { z_last_list[zidx]->next=ci; z_last_list[zidx]=ci; } else { z_list[zidx]=ci; z_last_list[zidx]=ci; } ci->next=NULL; } for(int i=0;iontop) continue; _render_canvas_item(child_items[i],xform,p_clip_rect,opacity,p_z,z_list,z_last_list,(CanvasItem*)ci->final_clip_owner,p_shader_owner); } } void VisualServerRaster::_render_canvas(Canvas *p_canvas,const Matrix32 &p_transform) { rasterizer->canvas_begin(); int l = p_canvas->child_items.size(); Canvas::ChildItem *ci=p_canvas->child_items.ptr(); bool has_mirror=false; for(int i=0;icanvas_render_items(z_list[i]); } } else { for(int i=0;ichild_items[i]; _render_canvas_item_tree(ci.item,p_transform,clip_rect); //mirroring (useful for scrolling backgrounds) if (ci.mirror.x!=0) { Matrix32 xform2 = p_transform * Matrix32(0,Vector2(ci.mirror.x,0)); _render_canvas_item_tree(ci.item,xform2,clip_rect); } if (ci.mirror.y!=0) { Matrix32 xform2 = p_transform * Matrix32(0,Vector2(0,ci.mirror.y)); _render_canvas_item_tree(ci.item,xform2,clip_rect); } if (ci.mirror.y!=0 && ci.mirror.x!=0) { Matrix32 xform2 = p_transform * Matrix32(0,ci.mirror); _render_canvas_item_tree(ci.item,xform2,clip_rect); } } } } void VisualServerRaster::_draw_viewport(Viewport *p_viewport,int p_ofs_x, int p_ofs_y,int p_parent_w,int p_parent_h) { ViewportRect desired_rect=p_viewport->rect; ViewportRect old_rect = viewport_rect; // bool vpchanged=false; // convert default expanding viewports to actual size //if (desired_rect.x==0 && desired_rect.y==0 && desired_rect.width==0 && desired_rect.height==0) { if (p_parent_w != 0 && p_parent_h != 0) { desired_rect.width=p_parent_w; desired_rect.height=p_parent_h; } ERR_FAIL_COND(desired_rect.width<=0 || desired_rect.height<=0); desired_rect.x+=p_ofs_x; desired_rect.y+=p_ofs_y; // if the viewport is different than the actual one, change it if ( p_viewport->render_target.is_valid() || viewport_rect.x != desired_rect.x || viewport_rect.y != desired_rect.y || viewport_rect.width != desired_rect.width || viewport_rect.height != desired_rect.height ) { viewport_rect=desired_rect; rasterizer->set_viewport(viewport_rect); } /* Camera should always be BEFORE any other 3D */ if (!p_viewport->hide_scenario && camera_owner.owns(p_viewport->camera) && scenario_owner.owns(p_viewport->scenario)) { Camera *camera = camera_owner.get( p_viewport->camera ); Scenario *scenario = scenario_owner.get( p_viewport->scenario ); _update_instances(); // check dirty instances before rendering _render_camera(p_viewport, camera,scenario ); } else if (true /*|| !p_viewport->canvas_list.empty()*/){ //clear the viewport black because of no camera? i seriously should.. rasterizer->clear_viewport(clear_color); } if (!p_viewport->hide_canvas) { int i=0; Map canvas_map; for (Map::Element *E=p_viewport->canvas_map.front();E;E=E->next()) { canvas_map[ Viewport::CanvasKey( E->key(), E->get().layer) ]=&E->get(); } for (Map::Element *E=canvas_map.front();E;E=E->next()) { // print_line("canvas "+itos(i)+" size: "+itos(I->get()->canvas->child_items.size())); //print_line("GT "+p_viewport->global_transform+". CT: "+E->get()->transform); Matrix32 xform = p_viewport->global_transform * E->get()->transform; _render_canvas( E->get()->canvas,xform ); i++; } } //capture if (p_viewport->queue_capture) { rasterizer->capture_viewport(&p_viewport->capture); p_viewport->queue_capture = false; } //restore if ( viewport_rect.x != old_rect.x || viewport_rect.y != old_rect.y || viewport_rect.width != old_rect.width || viewport_rect.height != old_rect.height ) { viewport_rect=old_rect; rasterizer->set_viewport(viewport_rect); } } void VisualServerRaster::_draw_viewports() { //draw viewports for render targets List to_blit; List to_disable; for(SelfList *E=viewport_update_list.first();E;E=E->next()) { Viewport *vp = E->self(); ERR_CONTINUE(!vp); if ( vp->render_target_update_mode==RENDER_TARGET_UPDATE_WHEN_VISIBLE && !vp->rendered_in_prev_frame && !vp->queue_capture ) { continue; } if (vp->rt_to_screen_rect!=Rect2()) to_blit.push_back(vp); rasterizer->set_render_target(vp->render_target,vp->transparent_bg,vp->render_target_vflip); _draw_viewport(vp,0,0,vp->rect.width,vp->rect.height); if ( (vp->queue_capture && vp->render_target_update_mode==RENDER_TARGET_UPDATE_DISABLED) || vp->render_target_update_mode==RENDER_TARGET_UPDATE_ONCE) { //was only enabled for capture to_disable.push_back(vp); vp->render_target_update_mode=RENDER_TARGET_UPDATE_DISABLED; } } rasterizer->set_render_target(RID()); while(to_disable.size()) { //disable again because it was only for capture viewport_update_list.remove(&to_disable.front()->get()->update_list); to_disable.pop_front(); } //draw RTs directly to screen when requested for (List::Element *E=to_blit.front();E;E=E->next()) { int window_w = OS::get_singleton()->get_video_mode().width; int window_h = OS::get_singleton()->get_video_mode().height; ViewportRect desired_rect; desired_rect.x = desired_rect.y = 0; desired_rect.width = window_w; desired_rect.height = window_h; if ( viewport_rect.x != desired_rect.x || viewport_rect.y != desired_rect.y || viewport_rect.width != desired_rect.width || viewport_rect.height != desired_rect.height ) { viewport_rect=desired_rect; rasterizer->set_viewport(viewport_rect); } rasterizer->canvas_begin(); rasterizer->canvas_disable_blending(); rasterizer->canvas_begin_rect(Matrix32()); rasterizer->canvas_draw_rect(E->get()->rt_to_screen_rect,0,Rect2(Point2(),E->get()->rt_to_screen_rect.size),E->get()->render_target_texture,Color(1,1,1)); } //draw viewports attached to screen for(Map::Element *E=screen_viewports.front();E;E=E->next()) { Viewport *vp = viewport_owner.get(E->key()); ERR_CONTINUE(!vp); int window_w = OS::get_singleton()->get_video_mode(E->get()).width; int window_h = OS::get_singleton()->get_video_mode(E->get()).height; Rect2 r(0,0,vp->rect.width,vp->rect.height); if (r.size.width==0) r.size.width=window_w; if (r.size.height==0) r.size.height=window_w; _draw_viewport(vp,r.pos.x,r.pos.y,r.size.width,r.size.height); } //check when a viewport associated to a render target was drawn for(SelfList *E=viewport_update_list.first();E;E=E->next()) { Viewport *vp = E->self(); ERR_CONTINUE(!vp); if (vp->render_target_update_mode!=RENDER_TARGET_UPDATE_WHEN_VISIBLE) continue; vp->rendered_in_prev_frame=rasterizer->render_target_renedered_in_frame(vp->render_target); } } void VisualServerRaster::_draw_cursors_and_margins() { int window_w = OS::get_singleton()->get_video_mode().width; int window_h = OS::get_singleton()->get_video_mode().height; ViewportRect desired_rect; desired_rect.x = desired_rect.y = 0; desired_rect.width = window_w; desired_rect.height = window_h; if ( viewport_rect.x != desired_rect.x || viewport_rect.y != desired_rect.y || viewport_rect.width != desired_rect.width || viewport_rect.height != desired_rect.height ) { viewport_rect=desired_rect; rasterizer->set_viewport(viewport_rect); } rasterizer->canvas_begin(); rasterizer->canvas_begin_rect(Matrix32()); for (int i=0; icanvas_draw_rect(Rect2(cursors[i].pos, size), 0, Rect2(), tex, Color(1, 1, 1, 1)); }; if (black_image[MARGIN_LEFT].is_valid()) { Size2 sz(rasterizer->texture_get_width(black_image[MARGIN_LEFT]),rasterizer->texture_get_height(black_image[MARGIN_LEFT])); rasterizer->canvas_draw_rect(Rect2(0,0,black_margin[MARGIN_LEFT],window_h),0,Rect2(0,0,sz.x,sz.y),black_image[MARGIN_LEFT],Color(1,1,1)); } else if (black_margin[MARGIN_LEFT]) rasterizer->canvas_draw_rect(Rect2(0,0,black_margin[MARGIN_LEFT],window_h),0,Rect2(0,0,1,1),RID(),Color(0,0,0)); if (black_image[MARGIN_RIGHT].is_valid()) { Size2 sz(rasterizer->texture_get_width(black_image[MARGIN_RIGHT]),rasterizer->texture_get_height(black_image[MARGIN_RIGHT])); rasterizer->canvas_draw_rect(Rect2(window_w-black_margin[MARGIN_RIGHT],0,black_margin[MARGIN_RIGHT],window_h),0,Rect2(0,0,sz.x,sz.y),black_image[MARGIN_RIGHT],Color(1,1,1)); } else if (black_margin[MARGIN_RIGHT]) rasterizer->canvas_draw_rect(Rect2(window_w-black_margin[MARGIN_RIGHT],0,black_margin[MARGIN_RIGHT],window_h),0,Rect2(0,0,1,1),RID(),Color(0,0,0)); if (black_margin[MARGIN_TOP]) rasterizer->canvas_draw_rect(Rect2(0,0,window_w,black_margin[MARGIN_TOP]),0,Rect2(0,0,1,1),RID(),Color(0,0,0)); if (black_margin[MARGIN_BOTTOM]) rasterizer->canvas_draw_rect(Rect2(0,window_h-black_margin[MARGIN_BOTTOM],window_w,black_margin[MARGIN_BOTTOM]),0,Rect2(0,0,1,1),RID(),Color(0,0,0)); rasterizer->canvas_end_rect(); }; void VisualServerRaster::flush() { //do none } void VisualServerRaster::draw() { //if (changes) // print_line("changes: "+itos(changes)); changes=0; shadows_enabled=GLOBAL_DEF("render/shadows_enabled",true); room_cull_enabled = GLOBAL_DEF("render/room_cull_enabled",true); light_discard_enabled = GLOBAL_DEF("render/light_discard_enabled",true); rasterizer->begin_frame(); _draw_viewports(); _draw_cursors_and_margins(); rasterizer->end_frame(); draw_extra_frame=rasterizer->needs_to_draw_next_frame(); } bool VisualServerRaster::has_changed() const { return changes>0 || draw_extra_frame; } int VisualServerRaster::get_render_info(RenderInfo p_info) { return rasterizer->get_render_info(p_info); } bool VisualServerRaster::has_feature(Features p_feature) const { return rasterizer->has_feature(p_feature); // lies for now } void VisualServerRaster::set_default_clear_color(const Color& p_color) { clear_color=p_color; } void VisualServerRaster::set_boot_image(const Image& p_image, const Color& p_color) { if (p_image.empty()) return; rasterizer->begin_frame(); int window_w = OS::get_singleton()->get_video_mode(0).width; int window_h = OS::get_singleton()->get_video_mode(0).height; ViewportRect vr; vr.x=0; vr.y=0; vr.width=OS::get_singleton()->get_video_mode(0).width; vr.height=OS::get_singleton()->get_video_mode(0).height; rasterizer->set_viewport(vr); rasterizer->clear_viewport(p_color); rasterizer->canvas_begin(); RID texture = texture_create(); texture_allocate(texture,p_image.get_width(),p_image.get_height(),p_image.get_format(),TEXTURE_FLAG_FILTER); texture_set_data(texture,p_image); rasterizer->canvas_begin_rect(Matrix32()); Rect2 imgrect(0,0,p_image.get_width(),p_image.get_height()); Rect2 screenrect=imgrect; screenrect.pos+=((Size2(vr.width,vr.height)-screenrect.size)/2.0).floor(); rasterizer->canvas_draw_rect(screenrect,0,imgrect,texture,Color(1,1,1,0)); rasterizer->canvas_draw_rect(screenrect,0,imgrect,texture,Color(1,1,1,1)); rasterizer->canvas_end_rect(); rasterizer->end_frame(); rasterizer->flush_frame(); free(texture); // free since it's only one frame that stays there } void VisualServerRaster::init() { rasterizer->init(); shadows_enabled=GLOBAL_DEF("render/shadows_enabled",true); //default_scenario = scenario_create(); //default_viewport = viewport_create(); for(int i=0;i<4;i++) black_margin[i]=0; Image img; img.create(default_mouse_cursor_xpm); //img.convert(Image::FORMAT_RGB); default_cursor_texture = texture_create_from_image(img, 0); aabb_random_points.resize( GLOBAL_DEF("render/aabb_random_points",16) ); for(int i=0;i rids; p_owner->get_owned_list(&rids); int lost=0; for(List::Element *I=rids.front();I;I=I->next()) { if (OS::get_singleton()->is_stdout_verbose()) { lost++; } free(I->get()); } if (lost) print_line("VisualServerRaster: WARNING: Lost "+itos(lost)+" RIDs of type "+p_type); } void VisualServerRaster::finish() { free(default_cursor_texture); _clean_up_owner( &room_owner,"Room" ); _clean_up_owner( &portal_owner,"Portal" ); _clean_up_owner( &camera_owner,"Camera" ); _clean_up_owner( &viewport_owner,"Viewport" ); _clean_up_owner( &scenario_owner,"Scenario" ); _clean_up_owner( &instance_owner,"Instance" ); _clean_up_owner( &canvas_owner,"Canvas" ); _clean_up_owner( &canvas_item_owner,"CanvasItem" ); rasterizer->finish(); octree_allocator.clear(); if (instance_dependency_map.size()) { print_line("base resources missing "+itos(instance_dependency_map.size())); } ERR_FAIL_COND( instance_dependency_map.size() ); } RID VisualServerRaster::get_test_cube() { if (test_cube.is_valid()) return test_cube; test_cube=_make_test_cube(); return test_cube; } VisualServerRaster::VisualServerRaster(Rasterizer *p_rasterizer) { rasterizer=p_rasterizer; rasterizer->draw_viewport_func=_render_canvas_item_viewport; instance_update_list=NULL; render_pass=0; clear_color=Color(0.3,0.3,0.3,1.0); OctreeAllocator::allocator=&octree_allocator; draw_extra_frame=false; } VisualServerRaster::~VisualServerRaster() { }