#[compute] #version 450 #VERSION_DEFINES #ifdef MODE_JUMPFLOOD_OPTIMIZED #define GROUP_SIZE 8 layout(local_size_x = GROUP_SIZE, local_size_y = GROUP_SIZE, local_size_z = GROUP_SIZE) in; #elif defined(MODE_OCCLUSION) || defined(MODE_SCROLL) //buffer layout layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; #else //grid layout layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in; #endif #if defined(MODE_INITIALIZE_JUMP_FLOOD) || defined(MODE_INITIALIZE_JUMP_FLOOD_HALF) layout(r16ui, set = 0, binding = 1) uniform restrict readonly uimage3D src_color; layout(rgba8ui, set = 0, binding = 2) uniform restrict writeonly uimage3D dst_positions; #endif #ifdef MODE_UPSCALE_JUMP_FLOOD layout(r16ui, set = 0, binding = 1) uniform restrict readonly uimage3D src_color; layout(rgba8ui, set = 0, binding = 2) uniform restrict readonly uimage3D src_positions_half; layout(rgba8ui, set = 0, binding = 3) uniform restrict writeonly uimage3D dst_positions; #endif #if defined(MODE_JUMPFLOOD) || defined(MODE_JUMPFLOOD_OPTIMIZED) layout(rgba8ui, set = 0, binding = 1) uniform restrict readonly uimage3D src_positions; layout(rgba8ui, set = 0, binding = 2) uniform restrict writeonly uimage3D dst_positions; #endif #ifdef MODE_JUMPFLOOD_OPTIMIZED shared uvec4 group_positions[(GROUP_SIZE + 2) * (GROUP_SIZE + 2) * (GROUP_SIZE + 2)]; //4x4x4 with margins void group_store(ivec3 p_pos, uvec4 p_value) { uint offset = uint(p_pos.z * (GROUP_SIZE + 2) * (GROUP_SIZE + 2) + p_pos.y * (GROUP_SIZE + 2) + p_pos.x); group_positions[offset] = p_value; } uvec4 group_load(ivec3 p_pos) { uint offset = uint(p_pos.z * (GROUP_SIZE + 2) * (GROUP_SIZE + 2) + p_pos.y * (GROUP_SIZE + 2) + p_pos.x); return group_positions[offset]; } #endif #ifdef MODE_OCCLUSION layout(r16ui, set = 0, binding = 1) uniform restrict readonly uimage3D src_color; layout(r8, set = 0, binding = 2) uniform restrict image3D dst_occlusion[8]; layout(r32ui, set = 0, binding = 3) uniform restrict readonly uimage3D src_facing; const uvec2 group_size_offset[11] = uvec2[](uvec2(1, 0), uvec2(3, 1), uvec2(6, 4), uvec2(10, 10), uvec2(15, 20), uvec2(21, 35), uvec2(28, 56), uvec2(36, 84), uvec2(42, 120), uvec2(46, 162), uvec2(48, 208)); const uint group_pos[256] = uint[](0, 65536, 256, 1, 131072, 65792, 512, 65537, 257, 2, 196608, 131328, 66048, 768, 131073, 65793, 513, 65538, 258, 3, 262144, 196864, 131584, 66304, 1024, 196609, 131329, 66049, 769, 131074, 65794, 514, 65539, 259, 4, 327680, 262400, 197120, 131840, 66560, 1280, 262145, 196865, 131585, 66305, 1025, 196610, 131330, 66050, 770, 131075, 65795, 515, 65540, 260, 5, 393216, 327936, 262656, 197376, 132096, 66816, 1536, 327681, 262401, 197121, 131841, 66561, 1281, 262146, 196866, 131586, 66306, 1026, 196611, 131331, 66051, 771, 131076, 65796, 516, 65541, 261, 6, 458752, 393472, 328192, 262912, 197632, 132352, 67072, 1792, 393217, 327937, 262657, 197377, 132097, 66817, 1537, 327682, 262402, 197122, 131842, 66562, 1282, 262147, 196867, 131587, 66307, 1027, 196612, 131332, 66052, 772, 131077, 65797, 517, 65542, 262, 7, 459008, 393728, 328448, 263168, 197888, 132608, 67328, 458753, 393473, 328193, 262913, 197633, 132353, 67073, 1793, 393218, 327938, 262658, 197378, 132098, 66818, 1538, 327683, 262403, 197123, 131843, 66563, 1283, 262148, 196868, 131588, 66308, 1028, 196613, 131333, 66053, 773, 131078, 65798, 518, 65543, 263, 459264, 393984, 328704, 263424, 198144, 132864, 459009, 393729, 328449, 263169, 197889, 132609, 67329, 458754, 393474, 328194, 262914, 197634, 132354, 67074, 1794, 393219, 327939, 262659, 197379, 132099, 66819, 1539, 327684, 262404, 197124, 131844, 66564, 1284, 262149, 196869, 131589, 66309, 1029, 196614, 131334, 66054, 774, 131079, 65799, 519, 459520, 394240, 328960, 263680, 198400, 459265, 393985, 328705, 263425, 198145, 132865, 459010, 393730, 328450, 263170, 197890, 132610, 67330, 458755, 393475, 328195, 262915, 197635, 132355, 67075, 1795, 393220, 327940, 262660, 197380, 132100, 66820, 1540, 327685, 262405, 197125, 131845, 66565, 1285, 262150, 196870, 131590, 66310, 1030, 196615, 131335, 66055, 775); shared uint occlusion_facing[((OCCLUSION_SIZE * 2) * (OCCLUSION_SIZE * 2) * (OCCLUSION_SIZE * 2)) / 4]; uint get_facing(ivec3 p_pos) { uint ofs = uint(p_pos.z * OCCLUSION_SIZE * 2 * OCCLUSION_SIZE * 2 + p_pos.y * OCCLUSION_SIZE * 2 + p_pos.x); uint v = occlusion_facing[ofs / 4]; return (v >> ((ofs % 4) * 8)) & 0xFF; } #endif #ifdef MODE_STORE layout(rgba8ui, set = 0, binding = 1) uniform restrict readonly uimage3D src_positions; layout(r16ui, set = 0, binding = 2) uniform restrict readonly uimage3D src_albedo; layout(r8, set = 0, binding = 3) uniform restrict readonly image3D src_occlusion[8]; layout(r32ui, set = 0, binding = 4) uniform restrict readonly uimage3D src_light; layout(r32ui, set = 0, binding = 5) uniform restrict readonly uimage3D src_light_aniso; layout(r32ui, set = 0, binding = 6) uniform restrict readonly uimage3D src_facing; layout(r8, set = 0, binding = 7) uniform restrict writeonly image3D dst_sdf; layout(r16ui, set = 0, binding = 8) uniform restrict writeonly uimage3D dst_occlusion; layout(set = 0, binding = 10, std430) restrict buffer DispatchData { uint x; uint y; uint z; uint total_count; } dispatch_data; struct ProcessVoxel { uint position; // xyz 7 bit packed, extra 11 bits for neighbors. uint albedo; //rgb bits 0-15 albedo, bits 16-21 are normal bits (set if geometry exists toward that side), extra 11 bits for neighbours uint light; //rgbe8985 encoded total saved light, extra 2 bits for neighbours uint light_aniso; //55555 light anisotropy, extra 2 bits for neighbours //total neighbours: 26 }; layout(set = 0, binding = 11, std430) restrict buffer writeonly ProcessVoxels { ProcessVoxel data[]; } dst_process_voxels; shared ProcessVoxel store_positions[4 * 4 * 4]; shared uint store_position_count; shared uint store_from_index; #endif #ifdef MODE_SCROLL layout(r16ui, set = 0, binding = 1) uniform restrict writeonly uimage3D dst_albedo; layout(r32ui, set = 0, binding = 2) uniform restrict writeonly uimage3D dst_facing; layout(r32ui, set = 0, binding = 3) uniform restrict writeonly uimage3D dst_light; layout(r32ui, set = 0, binding = 4) uniform restrict writeonly uimage3D dst_light_aniso; layout(set = 0, binding = 5, std430) restrict buffer readonly DispatchData { uint x; uint y; uint z; uint total_count; } dispatch_data; struct ProcessVoxel { uint position; // xyz 7 bit packed, extra 11 bits for neighbors. uint albedo; //rgb bits 0-15 albedo, bits 16-21 are normal bits (set if geometry exists toward that side), extra 11 bits for neighbours uint light; //rgbe8985 encoded total saved light, extra 2 bits for neighbours uint light_aniso; //55555 light anisotropy, extra 2 bits for neighbours //total neighbours: 26 }; layout(set = 0, binding = 6, std430) restrict buffer readonly ProcessVoxels { ProcessVoxel data[]; } src_process_voxels; #endif #ifdef MODE_SCROLL_OCCLUSION layout(r8, set = 0, binding = 1) uniform restrict image3D dst_occlusion[8]; layout(r16ui, set = 0, binding = 2) uniform restrict readonly uimage3D src_occlusion; #endif layout(push_constant, binding = 0, std430) uniform Params { ivec3 scroll; int grid_size; ivec3 probe_offset; int step_size; bool half_size; uint occlusion_index; int cascade; uint pad; } params; void main() { #ifdef MODE_SCROLL // Pixel being shaded int index = int(gl_GlobalInvocationID.x); if (index >= dispatch_data.total_count) { //too big return; } ivec3 read_pos = (ivec3(src_process_voxels.data[index].position) >> ivec3(0, 7, 14)) & ivec3(0x7F); ivec3 write_pos = read_pos + params.scroll; if (any(lessThan(write_pos, ivec3(0))) || any(greaterThanEqual(write_pos, ivec3(params.grid_size)))) { return; // Fits outside the 3D texture, don't do anything. } uint albedo = ((src_process_voxels.data[index].albedo & 0x7FFF) << 1) | 1; //add solid bit imageStore(dst_albedo, write_pos, uvec4(albedo)); uint facing = (src_process_voxels.data[index].albedo >> 15) & 0x3F; //6 anisotropic facing bits imageStore(dst_facing, write_pos, uvec4(facing)); uint light = src_process_voxels.data[index].light & 0x3fffffff; //30 bits of RGBE8985 imageStore(dst_light, write_pos, uvec4(light)); uint light_aniso = src_process_voxels.data[index].light_aniso & 0x3fffffff; //30 bits of 6 anisotropic 5 bits values imageStore(dst_light_aniso, write_pos, uvec4(light_aniso)); #endif #ifdef MODE_SCROLL_OCCLUSION ivec3 pos = ivec3(gl_GlobalInvocationID.xyz); if (any(greaterThanEqual(pos, ivec3(params.grid_size) - abs(params.scroll)))) { //too large, do nothing return; } ivec3 read_pos = pos + max(ivec3(0), -params.scroll); ivec3 write_pos = pos + max(ivec3(0), params.scroll); read_pos.z += params.cascade * params.grid_size; uint occlusion = imageLoad(src_occlusion, read_pos).r; read_pos.x += params.grid_size; occlusion |= imageLoad(src_occlusion, read_pos).r << 16; const uint occlusion_shift[8] = uint[](12, 8, 4, 0, 28, 24, 20, 16); for (uint i = 0; i < 8; i++) { float o = float((occlusion >> occlusion_shift[i]) & 0xF) / 15.0; imageStore(dst_occlusion[i], write_pos, vec4(o)); } #endif #ifdef MODE_INITIALIZE_JUMP_FLOOD ivec3 pos = ivec3(gl_GlobalInvocationID.xyz); uint c = imageLoad(src_color, pos).r; uvec4 v; if (bool(c & 0x1)) { //bit set means this is solid v.xyz = uvec3(pos); v.w = 255; //not zero means used } else { v.xyz = uvec3(0); v.w = 0; // zero means unused } imageStore(dst_positions, pos, v); #endif #ifdef MODE_INITIALIZE_JUMP_FLOOD_HALF ivec3 pos = ivec3(gl_GlobalInvocationID.xyz); ivec3 base_pos = pos * 2; //since we store in half size, lets kind of randomize what we store, so //the half size jump flood has a bit better chance to find something uvec4 closest[8]; int closest_count = 0; for (uint i = 0; i < 8; i++) { ivec3 src_pos = base_pos + ((ivec3(i) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1)); uint c = imageLoad(src_color, src_pos).r; if (bool(c & 1)) { uvec4 v = uvec4(uvec3(src_pos), 255); closest[closest_count] = v; closest_count++; } } if (closest_count == 0) { imageStore(dst_positions, pos, uvec4(0)); } else { ivec3 indexv = (pos & ivec3(1, 1, 1)) * ivec3(1, 2, 4); int index = (indexv.x | indexv.y | indexv.z) % closest_count; imageStore(dst_positions, pos, closest[index]); } #endif #ifdef MODE_JUMPFLOOD //regular jumpflood, efficient for large steps, inefficient for small steps ivec3 pos = ivec3(gl_GlobalInvocationID.xyz); vec3 posf = vec3(pos); if (params.half_size) { posf = posf * 2.0 + 0.5; } uvec4 p = imageLoad(src_positions, pos); if (!params.half_size && p == uvec4(uvec3(pos), 255)) { imageStore(dst_positions, pos, p); return; //points to itself and valid, nothing better can be done, just pass } float p_dist; if (p.w != 0) { p_dist = distance(posf, vec3(p.xyz)); } else { p_dist = 0.0; //should not matter } const uint offset_count = 26; const ivec3 offsets[offset_count] = ivec3[]( ivec3(-1, -1, -1), ivec3(-1, -1, 0), ivec3(-1, -1, 1), ivec3(-1, 0, -1), ivec3(-1, 0, 0), ivec3(-1, 0, 1), ivec3(-1, 1, -1), ivec3(-1, 1, 0), ivec3(-1, 1, 1), ivec3(0, -1, -1), ivec3(0, -1, 0), ivec3(0, -1, 1), ivec3(0, 0, -1), ivec3(0, 0, 1), ivec3(0, 1, -1), ivec3(0, 1, 0), ivec3(0, 1, 1), ivec3(1, -1, -1), ivec3(1, -1, 0), ivec3(1, -1, 1), ivec3(1, 0, -1), ivec3(1, 0, 0), ivec3(1, 0, 1), ivec3(1, 1, -1), ivec3(1, 1, 0), ivec3(1, 1, 1)); for (uint i = 0; i < offset_count; i++) { ivec3 ofs = pos + offsets[i] * params.step_size; if (any(lessThan(ofs, ivec3(0))) || any(greaterThanEqual(ofs, ivec3(params.grid_size)))) { continue; } uvec4 q = imageLoad(src_positions, ofs); if (q.w == 0) { continue; //was not initialized yet, ignore } float q_dist = distance(posf, vec3(q.xyz)); if (p.w == 0 || q_dist < p_dist) { p = q; //just replace because current is unused p_dist = q_dist; } } imageStore(dst_positions, pos, p); #endif #ifdef MODE_JUMPFLOOD_OPTIMIZED //optimized version using shared compute memory ivec3 group_offset = ivec3(gl_WorkGroupID.xyz) % params.step_size; ivec3 group_pos = group_offset + (ivec3(gl_WorkGroupID.xyz) / params.step_size) * ivec3(GROUP_SIZE * params.step_size); //load data into local group memory if (all(lessThan(ivec3(gl_LocalInvocationID.xyz), ivec3((GROUP_SIZE + 2) / 2)))) { //use this thread for loading, this method uses less threads for this but its simpler and less divergent ivec3 base_pos = ivec3(gl_LocalInvocationID.xyz) * 2; for (uint i = 0; i < 8; i++) { ivec3 load_pos = base_pos + ((ivec3(i) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1)); ivec3 load_global_pos = group_pos + (load_pos - ivec3(1)) * params.step_size; uvec4 q; if (all(greaterThanEqual(load_global_pos, ivec3(0))) && all(lessThan(load_global_pos, ivec3(params.grid_size)))) { q = imageLoad(src_positions, load_global_pos); } else { q = uvec4(0); //unused } group_store(load_pos, q); } } ivec3 global_pos = group_pos + ivec3(gl_LocalInvocationID.xyz) * params.step_size; if (any(lessThan(global_pos, ivec3(0))) || any(greaterThanEqual(global_pos, ivec3(params.grid_size)))) { return; //do nothing else, end here because outside range } //sync groupMemoryBarrier(); barrier(); ivec3 local_pos = ivec3(gl_LocalInvocationID.xyz) + ivec3(1); const uint offset_count = 27; const ivec3 offsets[offset_count] = ivec3[]( ivec3(-1, -1, -1), ivec3(-1, -1, 0), ivec3(-1, -1, 1), ivec3(-1, 0, -1), ivec3(-1, 0, 0), ivec3(-1, 0, 1), ivec3(-1, 1, -1), ivec3(-1, 1, 0), ivec3(-1, 1, 1), ivec3(0, -1, -1), ivec3(0, -1, 0), ivec3(0, -1, 1), ivec3(0, 0, -1), ivec3(0, 0, 0), ivec3(0, 0, 1), ivec3(0, 1, -1), ivec3(0, 1, 0), ivec3(0, 1, 1), ivec3(1, -1, -1), ivec3(1, -1, 0), ivec3(1, -1, 1), ivec3(1, 0, -1), ivec3(1, 0, 0), ivec3(1, 0, 1), ivec3(1, 1, -1), ivec3(1, 1, 0), ivec3(1, 1, 1)); //only makes sense if point is inside screen uvec4 closest = uvec4(0); float closest_dist = 0.0; vec3 posf = vec3(global_pos); if (params.half_size) { posf = posf * 2.0 + 0.5; } for (uint i = 0; i < offset_count; i++) { uvec4 point = group_load(local_pos + offsets[i]); if (point.w == 0) { continue; //was not initialized yet, ignore } float dist = distance(posf, vec3(point.xyz)); if (closest.w == 0 || dist < closest_dist) { closest = point; closest_dist = dist; } } imageStore(dst_positions, global_pos, closest); #endif #ifdef MODE_UPSCALE_JUMP_FLOOD ivec3 pos = ivec3(gl_GlobalInvocationID.xyz); uint c = imageLoad(src_color, pos).r; uvec4 v; if (bool(c & 1)) { //bit set means this is solid v.xyz = uvec3(pos); v.w = 255; //not zero means used } else { v = imageLoad(src_positions_half, pos >> 1); float d = length(vec3(ivec3(v.xyz) - pos)); ivec3 vbase = ivec3(v.xyz - (v.xyz & uvec3(1))); //search around if there is a better candidate from the same block for (int i = 0; i < 8; i++) { ivec3 bits = ((ivec3(i) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1)); ivec3 p = vbase + bits; float d2 = length(vec3(p - pos)); if (d2 < d) { //check valid distance before test so we avoid a read uint c2 = imageLoad(src_color, p).r; if (bool(c2 & 1)) { v.xyz = uvec3(p); d = d2; } } } //could validate better position.. } imageStore(dst_positions, pos, v); #endif #ifdef MODE_OCCLUSION uint invocation_idx = uint(gl_LocalInvocationID.x); ivec3 region = ivec3(gl_WorkGroupID); ivec3 region_offset = -ivec3(OCCLUSION_SIZE); region_offset += region * OCCLUSION_SIZE * 2; region_offset += params.probe_offset * OCCLUSION_SIZE; if (params.scroll != ivec3(0)) { //validate scroll region ivec3 region_offset_to = region_offset + ivec3(OCCLUSION_SIZE * 2); uvec3 scroll_mask = uvec3(notEqual(params.scroll, ivec3(0))); //save which axes acre scrolling ivec3 scroll_from = mix(ivec3(0), ivec3(params.grid_size) + params.scroll, lessThan(params.scroll, ivec3(0))); ivec3 scroll_to = mix(ivec3(params.grid_size), params.scroll, greaterThan(params.scroll, ivec3(0))); if ((uvec3(lessThanEqual(region_offset_to, scroll_from)) | uvec3(greaterThanEqual(region_offset, scroll_to))) * scroll_mask == scroll_mask) { //all axes that scroll are out, exit return; //region outside scroll bounds, quit } } #define OCC_HALF_SIZE (OCCLUSION_SIZE / 2) ivec3 local_ofs = ivec3(uvec3(invocation_idx % OCC_HALF_SIZE, (invocation_idx % (OCC_HALF_SIZE * OCC_HALF_SIZE)) / OCC_HALF_SIZE, invocation_idx / (OCC_HALF_SIZE * OCC_HALF_SIZE))) * 4; /* for(int i=0;i<64;i++) { ivec3 offset = region_offset + local_ofs + ((ivec3(i) >> ivec3(0,2,4)) & ivec3(3,3,3)); uint facig = if (all(greaterThanEqual(offset,ivec3(0))) && all(lessThan(offset,ivec3(params.grid_size)))) {*/ for (int i = 0; i < 16; i++) { //skip x, so it can be packed ivec3 offset = local_ofs + ((ivec3(i * 4) >> ivec3(0, 2, 4)) & ivec3(3, 3, 3)); uint facing_pack = 0; for (int j = 0; j < 4; j++) { ivec3 foffset = region_offset + offset + ivec3(j, 0, 0); if (all(greaterThanEqual(foffset, ivec3(0))) && all(lessThan(foffset, ivec3(params.grid_size)))) { uint f = imageLoad(src_facing, foffset).r; facing_pack |= f << (j * 8); } } occlusion_facing[(offset.z * (OCCLUSION_SIZE * 2 * OCCLUSION_SIZE * 2) + offset.y * (OCCLUSION_SIZE * 2) + offset.x) / 4] = facing_pack; } //sync occlusion saved groupMemoryBarrier(); barrier(); //process occlusion #define OCC_STEPS (OCCLUSION_SIZE * 3 - 2) #define OCC_HALF_STEPS (OCC_STEPS / 2) for (int step = 0; step < OCC_STEPS; step++) { bool shrink = step >= OCC_HALF_STEPS; int occ_step = shrink ? OCC_HALF_STEPS - (step - OCC_HALF_STEPS) - 1 : step; if (invocation_idx < group_size_offset[occ_step].x) { uint pv = group_pos[group_size_offset[occ_step].y + invocation_idx]; ivec3 proc_abs = (ivec3(int(pv)) >> ivec3(0, 8, 16)) & ivec3(0xFF); if (shrink) { proc_abs = ivec3(OCCLUSION_SIZE) - proc_abs - ivec3(1); } for (int i = 0; i < 8; i++) { ivec3 bits = ((ivec3(i) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1)); ivec3 proc_sign = bits * 2 - 1; ivec3 local_offset = ivec3(OCCLUSION_SIZE) + proc_abs * proc_sign - (ivec3(1) - bits); ivec3 offset = local_offset + region_offset; if (all(greaterThanEqual(offset, ivec3(0))) && all(lessThan(offset, ivec3(params.grid_size)))) { float occ; uint facing = get_facing(local_offset); if (facing != 0) { //solid occ = 0.0; } else if (step == 0) { #if 0 occ = 0.0; if (get_facing(local_offset - ivec3(proc_sign.x,0,0))==0) { occ+=1.0; } if (get_facing(local_offset - ivec3(0,proc_sign.y,0))==0) { occ+=1.0; } if (get_facing(local_offset - ivec3(0,0,proc_sign.z))==0) { occ+=1.0; } /* if (get_facing(local_offset - proc_sign)==0) { occ+=1.0; }*/ occ/=3.0; #endif occ = 1.0; } else { ivec3 read_dir = -proc_sign; ivec3 major_axis; if (proc_abs.x < proc_abs.y) { if (proc_abs.z < proc_abs.y) { major_axis = ivec3(0, 1, 0); } else { major_axis = ivec3(0, 0, 1); } } else { if (proc_abs.z < proc_abs.x) { major_axis = ivec3(1, 0, 0); } else { major_axis = ivec3(0, 0, 1); } } float avg = 0.0; occ = 0.0; ivec3 read_x = offset + ivec3(read_dir.x, 0, 0) + (proc_abs.x == 0 ? major_axis * read_dir : ivec3(0)); ivec3 read_y = offset + ivec3(0, read_dir.y, 0) + (proc_abs.y == 0 ? major_axis * read_dir : ivec3(0)); ivec3 read_z = offset + ivec3(0, 0, read_dir.z) + (proc_abs.z == 0 ? major_axis * read_dir : ivec3(0)); uint facing_x = get_facing(read_x - region_offset); if (facing_x == 0) { if (all(greaterThanEqual(read_x, ivec3(0))) && all(lessThan(read_x, ivec3(params.grid_size)))) { occ += imageLoad(dst_occlusion[params.occlusion_index], read_x).r; avg += 1.0; } } else { if (proc_abs.x != 0) { //do not occlude from voxels in the opposite octant avg += 1.0; } } uint facing_y = get_facing(read_y - region_offset); if (facing_y == 0) { if (all(greaterThanEqual(read_y, ivec3(0))) && all(lessThan(read_y, ivec3(params.grid_size)))) { occ += imageLoad(dst_occlusion[params.occlusion_index], read_y).r; avg += 1.0; } } else { if (proc_abs.y != 0) { avg += 1.0; } } uint facing_z = get_facing(read_z - region_offset); if (facing_z == 0) { if (all(greaterThanEqual(read_z, ivec3(0))) && all(lessThan(read_z, ivec3(params.grid_size)))) { occ += imageLoad(dst_occlusion[params.occlusion_index], read_z).r; avg += 1.0; } } else { if (proc_abs.z != 0) { avg += 1.0; } } if (avg > 0.0) { occ /= avg; } } imageStore(dst_occlusion[params.occlusion_index], offset, vec4(occ)); } } } groupMemoryBarrier(); barrier(); } #if 1 //bias solid voxels away for (int i = 0; i < 64; i++) { ivec3 local_offset = local_ofs + ((ivec3(i) >> ivec3(0, 2, 4)) & ivec3(3, 3, 3)); ivec3 offset = region_offset + local_offset; if (all(greaterThanEqual(offset, ivec3(0))) && all(lessThan(offset, ivec3(params.grid_size)))) { uint facing = get_facing(local_offset); if (facing != 0) { //only work on solids ivec3 proc_pos = local_offset - ivec3(OCCLUSION_SIZE); proc_pos += mix(ivec3(0), ivec3(1), greaterThanEqual(proc_pos, ivec3(0))); float avg = 0.0; float occ = 0.0; ivec3 read_dir = -sign(proc_pos); ivec3 read_dir_x = ivec3(read_dir.x, 0, 0); ivec3 read_dir_y = ivec3(0, read_dir.y, 0); ivec3 read_dir_z = ivec3(0, 0, read_dir.z); //solid #if 0 uvec3 facing_pos_base = (uvec3(facing) >> uvec3(0,1,2)) & uvec3(1,1,1); uvec3 facing_neg_base = (uvec3(facing) >> uvec3(3,4,5)) & uvec3(1,1,1); uvec3 facing_pos= facing_pos_base &((~facing_neg_base)&uvec3(1,1,1)); uvec3 facing_neg= facing_neg_base &((~facing_pos_base)&uvec3(1,1,1)); #else uvec3 facing_pos = (uvec3(facing) >> uvec3(0, 1, 2)) & uvec3(1, 1, 1); uvec3 facing_neg = (uvec3(facing) >> uvec3(3, 4, 5)) & uvec3(1, 1, 1); #endif bvec3 read_valid = bvec3(mix(facing_neg, facing_pos, greaterThan(read_dir, ivec3(0)))); //sides if (read_valid.x) { ivec3 read_offset = local_offset + read_dir_x; uint f = get_facing(read_offset); if (f == 0) { read_offset += region_offset; if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) { occ += imageLoad(dst_occlusion[params.occlusion_index], read_offset).r; avg += 1.0; } } } if (read_valid.y) { ivec3 read_offset = local_offset + read_dir_y; uint f = get_facing(read_offset); if (f == 0) { read_offset += region_offset; if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) { occ += imageLoad(dst_occlusion[params.occlusion_index], read_offset).r; avg += 1.0; } } } if (read_valid.z) { ivec3 read_offset = local_offset + read_dir_z; uint f = get_facing(read_offset); if (f == 0) { read_offset += region_offset; if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) { occ += imageLoad(dst_occlusion[params.occlusion_index], read_offset).r; avg += 1.0; } } } //adjacents if (all(read_valid.yz)) { ivec3 read_offset = local_offset + read_dir_y + read_dir_z; uint f = get_facing(read_offset); if (f == 0) { read_offset += region_offset; if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) { occ += imageLoad(dst_occlusion[params.occlusion_index], read_offset).r; avg += 1.0; } } } if (all(read_valid.xz)) { ivec3 read_offset = local_offset + read_dir_x + read_dir_z; uint f = get_facing(read_offset); if (f == 0) { read_offset += region_offset; if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) { occ += imageLoad(dst_occlusion[params.occlusion_index], read_offset).r; avg += 1.0; } } } if (all(read_valid.xy)) { ivec3 read_offset = local_offset + read_dir_x + read_dir_y; uint f = get_facing(read_offset); if (f == 0) { read_offset += region_offset; if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) { occ += imageLoad(dst_occlusion[params.occlusion_index], read_offset).r; avg += 1.0; } } } //diagonal if (all(read_valid)) { ivec3 read_offset = local_offset + read_dir; uint f = get_facing(read_offset); if (f == 0) { read_offset += region_offset; if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) { occ += imageLoad(dst_occlusion[params.occlusion_index], read_offset).r; avg += 1.0; } } } if (avg > 0.0) { occ /= avg; } imageStore(dst_occlusion[params.occlusion_index], offset, vec4(occ)); } } } #endif #if 1 groupMemoryBarrier(); barrier(); for (int i = 0; i < 64; i++) { ivec3 local_offset = local_ofs + ((ivec3(i) >> ivec3(0, 2, 4)) & ivec3(3, 3, 3)); ivec3 offset = region_offset + local_offset; if (all(greaterThanEqual(offset, ivec3(0))) && all(lessThan(offset, ivec3(params.grid_size)))) { uint facing = get_facing(local_offset); if (facing == 0) { ivec3 proc_pos = local_offset - ivec3(OCCLUSION_SIZE); proc_pos += mix(ivec3(0), ivec3(1), greaterThanEqual(proc_pos, ivec3(0))); ivec3 proc_abs = abs(proc_pos); ivec3 read_dir = sign(proc_pos); //opposite direction ivec3 read_dir_x = ivec3(read_dir.x, 0, 0); ivec3 read_dir_y = ivec3(0, read_dir.y, 0); ivec3 read_dir_z = ivec3(0, 0, read_dir.z); //solid uvec3 read_mask = mix(uvec3(1, 2, 4), uvec3(8, 16, 32), greaterThan(read_dir, ivec3(0))); //match positive with negative normals uvec3 block_mask = mix(uvec3(1, 2, 4), uvec3(8, 16, 32), lessThan(read_dir, ivec3(0))); //match positive with negative normals block_mask = uvec3(0); float visible = 0.0; float occlude_total = 0.0; if (proc_abs.x < OCCLUSION_SIZE) { ivec3 read_offset = local_offset + read_dir_x; uint x_mask = get_facing(read_offset); if (x_mask != 0) { read_offset += region_offset; if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) { occlude_total += 1.0; if (bool(x_mask & read_mask.x) && !bool(x_mask & block_mask.x)) { visible += 1.0; } } } } if (proc_abs.y < OCCLUSION_SIZE) { ivec3 read_offset = local_offset + read_dir_y; uint y_mask = get_facing(read_offset); if (y_mask != 0) { read_offset += region_offset; if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) { occlude_total += 1.0; if (bool(y_mask & read_mask.y) && !bool(y_mask & block_mask.y)) { visible += 1.0; } } } } if (proc_abs.z < OCCLUSION_SIZE) { ivec3 read_offset = local_offset + read_dir_z; uint z_mask = get_facing(read_offset); if (z_mask != 0) { read_offset += region_offset; if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) { occlude_total += 1.0; if (bool(z_mask & read_mask.z) && !bool(z_mask & block_mask.z)) { visible += 1.0; } } } } //if near the cartesian plane, test in opposite direction too read_mask = mix(uvec3(1, 2, 4), uvec3(8, 16, 32), lessThan(read_dir, ivec3(0))); //match negative with positive normals block_mask = mix(uvec3(1, 2, 4), uvec3(8, 16, 32), greaterThan(read_dir, ivec3(0))); //match negative with positive normals block_mask = uvec3(0); if (proc_abs.x == 1) { ivec3 read_offset = local_offset - read_dir_x; uint x_mask = get_facing(read_offset); if (x_mask != 0) { read_offset += region_offset; if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) { occlude_total += 1.0; if (bool(x_mask & read_mask.x) && !bool(x_mask & block_mask.x)) { visible += 1.0; } } } } if (proc_abs.y == 1) { ivec3 read_offset = local_offset - read_dir_y; uint y_mask = get_facing(read_offset); if (y_mask != 0) { read_offset += region_offset; if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) { occlude_total += 1.0; if (bool(y_mask & read_mask.y) && !bool(y_mask & block_mask.y)) { visible += 1.0; } } } } if (proc_abs.z == 1) { ivec3 read_offset = local_offset - read_dir_z; uint z_mask = get_facing(read_offset); if (z_mask != 0) { read_offset += region_offset; if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) { occlude_total += 1.0; if (bool(z_mask & read_mask.z) && !bool(z_mask & block_mask.z)) { visible += 1.0; } } } } if (occlude_total > 0.0) { float occ = imageLoad(dst_occlusion[params.occlusion_index], offset).r; occ *= visible / occlude_total; imageStore(dst_occlusion[params.occlusion_index], offset, vec4(occ)); } } } } #endif /* for(int i=0;i<8;i++) { ivec3 local_offset = local_pos + ((ivec3(i) >> ivec3(2,1,0)) & ivec3(1,1,1)) * OCCLUSION_SIZE; ivec3 offset = local_offset - ivec3(OCCLUSION_SIZE); //looking around probe, so starts negative offset += region * OCCLUSION_SIZE * 2; //offset by region offset += params.probe_offset * OCCLUSION_SIZE; // offset by probe offset if (all(greaterThanEqual(offset,ivec3(0))) && all(lessThan(offset,ivec3(params.grid_size)))) { imageStore(dst_occlusion[params.occlusion_index],offset,vec4( occlusion_data[ to_linear(local_offset) ] )); //imageStore(dst_occlusion[params.occlusion_index],offset,vec4( occlusion_solid[ to_linear(local_offset) ] )); } } */ #endif #ifdef MODE_STORE ivec3 local = ivec3(gl_LocalInvocationID.xyz); ivec3 pos = ivec3(gl_GlobalInvocationID.xyz); // store SDF uvec4 p = imageLoad(src_positions, pos); bool solid = false; float d; if (ivec3(p.xyz) == pos) { //solid block d = 0; solid = true; } else { //distance block d = 1.0 + length(vec3(p.xyz) - vec3(pos)); } d /= 255.0; imageStore(dst_sdf, pos, vec4(d)); // STORE OCCLUSION uint occlusion = 0; const uint occlusion_shift[8] = uint[](12, 8, 4, 0, 28, 24, 20, 16); for (int i = 0; i < 8; i++) { float occ = imageLoad(src_occlusion[i], pos).r; occlusion |= uint(clamp(occ * 15.0, 0.0, 15.0)) << occlusion_shift[i]; } { ivec3 occ_pos = pos; occ_pos.z += params.cascade * params.grid_size; imageStore(dst_occlusion, occ_pos, uvec4(occlusion & 0xFFFF)); occ_pos.x += params.grid_size; imageStore(dst_occlusion, occ_pos, uvec4(occlusion >> 16)); } // STORE POSITIONS if (local == ivec3(0)) { store_position_count = 0; //base one stores as zero, the others wait } groupMemoryBarrier(); barrier(); if (solid) { uint index = atomicAdd(store_position_count, 1); // At least do the conversion work in parallel store_positions[index].position = uint(pos.x | (pos.y << 7) | (pos.z << 14)); //see around which voxels point to this one, add them to the list uint bit_index = 0; uint neighbour_bits = 0; for (int i = -1; i <= 1; i++) { for (int j = -1; j <= 1; j++) { for (int k = -1; k <= 1; k++) { if (i == 0 && j == 0 && k == 0) { continue; } ivec3 npos = pos + ivec3(i, j, k); if (all(greaterThanEqual(npos, ivec3(0))) && all(lessThan(npos, ivec3(params.grid_size)))) { p = imageLoad(src_positions, npos); if (ivec3(p.xyz) == pos) { neighbour_bits |= (1 << bit_index); } } bit_index++; } } } uint rgb = imageLoad(src_albedo, pos).r; uint facing = imageLoad(src_facing, pos).r; store_positions[index].albedo = rgb >> 1; //store as it comes (555) to avoid precision loss (and move away the alpha bit) store_positions[index].albedo |= (facing & 0x3F) << 15; // store facing in bits 15-21 store_positions[index].albedo |= neighbour_bits << 21; //store lower 11 bits of neighbours with remaining albedo store_positions[index].position |= (neighbour_bits >> 11) << 21; //store 11 bits more of neighbours with position store_positions[index].light = imageLoad(src_light, pos).r; store_positions[index].light_aniso = imageLoad(src_light_aniso, pos).r; //add neighbours store_positions[index].light |= (neighbour_bits >> 22) << 30; //store 2 bits more of neighbours with light store_positions[index].light_aniso |= (neighbour_bits >> 24) << 30; //store 2 bits more of neighbours with aniso } groupMemoryBarrier(); barrier(); // global increment only once per group, to reduce pressure if (local == ivec3(0) && store_position_count > 0) { store_from_index = atomicAdd(dispatch_data.total_count, store_position_count); uint group_count = (store_from_index + store_position_count - 1) / 64 + 1; atomicMax(dispatch_data.x, group_count); } groupMemoryBarrier(); barrier(); uint read_index = uint(local.z * 4 * 4 + local.y * 4 + local.x); uint write_index = store_from_index + read_index; if (read_index < store_position_count) { dst_process_voxels.data[write_index] = store_positions[read_index]; } if (pos == ivec3(0)) { //this thread clears y and z dispatch_data.y = 1; dispatch_data.z = 1; } #endif }