/**************************************************************************/ /* renderer_canvas_render_rd.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "renderer_canvas_render_rd.h" #include "core/config/project_settings.h" #include "core/math/geometry_2d.h" #include "core/math/math_defs.h" #include "core/math/math_funcs.h" #include "core/math/transform_interpolator.h" #include "renderer_compositor_rd.h" #include "servers/rendering/renderer_rd/storage_rd/material_storage.h" #include "servers/rendering/renderer_rd/storage_rd/particles_storage.h" #include "servers/rendering/renderer_rd/storage_rd/texture_storage.h" #include "servers/rendering/rendering_server_default.h" void RendererCanvasRenderRD::_update_transform_2d_to_mat4(const Transform2D &p_transform, float *p_mat4) { p_mat4[0] = p_transform.columns[0][0]; p_mat4[1] = p_transform.columns[0][1]; p_mat4[2] = 0; p_mat4[3] = 0; p_mat4[4] = p_transform.columns[1][0]; p_mat4[5] = p_transform.columns[1][1]; p_mat4[6] = 0; p_mat4[7] = 0; p_mat4[8] = 0; p_mat4[9] = 0; p_mat4[10] = 1; p_mat4[11] = 0; p_mat4[12] = p_transform.columns[2][0]; p_mat4[13] = p_transform.columns[2][1]; p_mat4[14] = 0; p_mat4[15] = 1; } void RendererCanvasRenderRD::_update_transform_2d_to_mat2x4(const Transform2D &p_transform, float *p_mat2x4) { p_mat2x4[0] = p_transform.columns[0][0]; p_mat2x4[1] = p_transform.columns[1][0]; p_mat2x4[2] = 0; p_mat2x4[3] = p_transform.columns[2][0]; p_mat2x4[4] = p_transform.columns[0][1]; p_mat2x4[5] = p_transform.columns[1][1]; p_mat2x4[6] = 0; p_mat2x4[7] = p_transform.columns[2][1]; } void RendererCanvasRenderRD::_update_transform_2d_to_mat2x3(const Transform2D &p_transform, float *p_mat2x3) { p_mat2x3[0] = p_transform.columns[0][0]; p_mat2x3[1] = p_transform.columns[0][1]; p_mat2x3[2] = p_transform.columns[1][0]; p_mat2x3[3] = p_transform.columns[1][1]; p_mat2x3[4] = p_transform.columns[2][0]; p_mat2x3[5] = p_transform.columns[2][1]; } void RendererCanvasRenderRD::_update_transform_to_mat4(const Transform3D &p_transform, float *p_mat4) { p_mat4[0] = p_transform.basis.rows[0][0]; p_mat4[1] = p_transform.basis.rows[1][0]; p_mat4[2] = p_transform.basis.rows[2][0]; p_mat4[3] = 0; p_mat4[4] = p_transform.basis.rows[0][1]; p_mat4[5] = p_transform.basis.rows[1][1]; p_mat4[6] = p_transform.basis.rows[2][1]; p_mat4[7] = 0; p_mat4[8] = p_transform.basis.rows[0][2]; p_mat4[9] = p_transform.basis.rows[1][2]; p_mat4[10] = p_transform.basis.rows[2][2]; p_mat4[11] = 0; p_mat4[12] = p_transform.origin.x; p_mat4[13] = p_transform.origin.y; p_mat4[14] = p_transform.origin.z; p_mat4[15] = 1; } RendererCanvasRender::PolygonID RendererCanvasRenderRD::request_polygon(const Vector &p_indices, const Vector &p_points, const Vector &p_colors, const Vector &p_uvs, const Vector &p_bones, const Vector &p_weights) { // Care must be taken to generate array formats // in ways where they could be reused, so we will // put single-occuring elements first, and repeated // elements later. This way the generated formats are // the same no matter the length of the arrays. // This dramatically reduces the amount of pipeline objects // that need to be created for these formats. RendererRD::MeshStorage *mesh_storage = RendererRD::MeshStorage::get_singleton(); uint32_t vertex_count = p_points.size(); uint32_t stride = 2; //vertices always repeat if ((uint32_t)p_colors.size() == vertex_count || p_colors.size() == 1) { stride += 4; } if ((uint32_t)p_uvs.size() == vertex_count) { stride += 2; } if ((uint32_t)p_bones.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) { stride += 4; } uint32_t buffer_size = stride * p_points.size(); Vector polygon_buffer; polygon_buffer.resize(buffer_size * sizeof(float)); Vector descriptions; descriptions.resize(5); Vector buffers; buffers.resize(5); { uint8_t *r = polygon_buffer.ptrw(); float *fptr = reinterpret_cast(r); uint32_t *uptr = reinterpret_cast(r); uint32_t base_offset = 0; { //vertices RD::VertexAttribute vd; vd.format = RD::DATA_FORMAT_R32G32_SFLOAT; vd.offset = base_offset * sizeof(float); vd.location = RS::ARRAY_VERTEX; vd.stride = stride * sizeof(float); descriptions.write[0] = vd; const Vector2 *points_ptr = p_points.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { fptr[base_offset + i * stride + 0] = points_ptr[i].x; fptr[base_offset + i * stride + 1] = points_ptr[i].y; } base_offset += 2; } //colors if ((uint32_t)p_colors.size() == vertex_count || p_colors.size() == 1) { RD::VertexAttribute vd; vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; vd.offset = base_offset * sizeof(float); vd.location = RS::ARRAY_COLOR; vd.stride = stride * sizeof(float); descriptions.write[1] = vd; if (p_colors.size() == 1) { Color color = p_colors[0]; for (uint32_t i = 0; i < vertex_count; i++) { fptr[base_offset + i * stride + 0] = color.r; fptr[base_offset + i * stride + 1] = color.g; fptr[base_offset + i * stride + 2] = color.b; fptr[base_offset + i * stride + 3] = color.a; } } else { const Color *color_ptr = p_colors.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { fptr[base_offset + i * stride + 0] = color_ptr[i].r; fptr[base_offset + i * stride + 1] = color_ptr[i].g; fptr[base_offset + i * stride + 2] = color_ptr[i].b; fptr[base_offset + i * stride + 3] = color_ptr[i].a; } } base_offset += 4; } else { RD::VertexAttribute vd; vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; vd.offset = 0; vd.location = RS::ARRAY_COLOR; vd.stride = 0; descriptions.write[1] = vd; buffers.write[1] = mesh_storage->mesh_get_default_rd_buffer(RendererRD::MeshStorage::DEFAULT_RD_BUFFER_COLOR); } //uvs if ((uint32_t)p_uvs.size() == vertex_count) { RD::VertexAttribute vd; vd.format = RD::DATA_FORMAT_R32G32_SFLOAT; vd.offset = base_offset * sizeof(float); vd.location = RS::ARRAY_TEX_UV; vd.stride = stride * sizeof(float); descriptions.write[2] = vd; const Vector2 *uv_ptr = p_uvs.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { fptr[base_offset + i * stride + 0] = uv_ptr[i].x; fptr[base_offset + i * stride + 1] = uv_ptr[i].y; } base_offset += 2; } else { RD::VertexAttribute vd; vd.format = RD::DATA_FORMAT_R32G32_SFLOAT; vd.offset = 0; vd.location = RS::ARRAY_TEX_UV; vd.stride = 0; descriptions.write[2] = vd; buffers.write[2] = mesh_storage->mesh_get_default_rd_buffer(RendererRD::MeshStorage::DEFAULT_RD_BUFFER_TEX_UV); } //bones if ((uint32_t)p_indices.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) { RD::VertexAttribute vd; vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT; vd.offset = base_offset * sizeof(float); vd.location = RS::ARRAY_BONES; vd.stride = stride * sizeof(float); descriptions.write[3] = vd; const int *bone_ptr = p_bones.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { uint16_t *bone16w = (uint16_t *)&uptr[base_offset + i * stride]; bone16w[0] = bone_ptr[i * 4 + 0]; bone16w[1] = bone_ptr[i * 4 + 1]; bone16w[2] = bone_ptr[i * 4 + 2]; bone16w[3] = bone_ptr[i * 4 + 3]; } base_offset += 2; } else { RD::VertexAttribute vd; vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT; vd.offset = 0; vd.location = RS::ARRAY_BONES; vd.stride = 0; descriptions.write[3] = vd; buffers.write[3] = mesh_storage->mesh_get_default_rd_buffer(RendererRD::MeshStorage::DEFAULT_RD_BUFFER_BONES); } //weights if ((uint32_t)p_weights.size() == vertex_count * 4) { RD::VertexAttribute vd; vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM; vd.offset = base_offset * sizeof(float); vd.location = RS::ARRAY_WEIGHTS; vd.stride = stride * sizeof(float); descriptions.write[4] = vd; const float *weight_ptr = p_weights.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { uint16_t *weight16w = (uint16_t *)&uptr[base_offset + i * stride]; weight16w[0] = CLAMP(weight_ptr[i * 4 + 0] * 65535, 0, 65535); weight16w[1] = CLAMP(weight_ptr[i * 4 + 1] * 65535, 0, 65535); weight16w[2] = CLAMP(weight_ptr[i * 4 + 2] * 65535, 0, 65535); weight16w[3] = CLAMP(weight_ptr[i * 4 + 3] * 65535, 0, 65535); } base_offset += 2; } else { RD::VertexAttribute vd; vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; vd.offset = 0; vd.location = RS::ARRAY_WEIGHTS; vd.stride = 0; descriptions.write[4] = vd; buffers.write[4] = mesh_storage->mesh_get_default_rd_buffer(RendererRD::MeshStorage::DEFAULT_RD_BUFFER_WEIGHTS); } //check that everything is as it should be ERR_FAIL_COND_V(base_offset != stride, 0); //bug } RD::VertexFormatID vertex_id = RD::get_singleton()->vertex_format_create(descriptions); ERR_FAIL_COND_V(vertex_id == RD::INVALID_ID, 0); PolygonBuffers pb; pb.vertex_buffer = RD::get_singleton()->vertex_buffer_create(polygon_buffer.size(), polygon_buffer); for (int i = 0; i < descriptions.size(); i++) { if (buffers[i] == RID()) { //if put in vertex, use as vertex buffers.write[i] = pb.vertex_buffer; } } pb.vertex_array = RD::get_singleton()->vertex_array_create(p_points.size(), vertex_id, buffers); pb.primitive_count = vertex_count; if (p_indices.size()) { //create indices, as indices were requested Vector index_buffer; index_buffer.resize(p_indices.size() * sizeof(int32_t)); { uint8_t *w = index_buffer.ptrw(); memcpy(w, p_indices.ptr(), sizeof(int32_t) * p_indices.size()); } pb.index_buffer = RD::get_singleton()->index_buffer_create(p_indices.size(), RD::INDEX_BUFFER_FORMAT_UINT32, index_buffer); pb.indices = RD::get_singleton()->index_array_create(pb.index_buffer, 0, p_indices.size()); pb.primitive_count = p_indices.size(); } pb.vertex_format_id = vertex_id; PolygonID id = polygon_buffers.last_id++; polygon_buffers.polygons[id] = pb; return id; } void RendererCanvasRenderRD::free_polygon(PolygonID p_polygon) { PolygonBuffers *pb_ptr = polygon_buffers.polygons.getptr(p_polygon); ERR_FAIL_NULL(pb_ptr); PolygonBuffers &pb = *pb_ptr; if (pb.indices.is_valid()) { RD::get_singleton()->free(pb.indices); } if (pb.index_buffer.is_valid()) { RD::get_singleton()->free(pb.index_buffer); } RD::get_singleton()->free(pb.vertex_array); RD::get_singleton()->free(pb.vertex_buffer); polygon_buffers.polygons.erase(p_polygon); } //////////////////// _FORCE_INLINE_ static uint32_t _indices_to_primitives(RS::PrimitiveType p_primitive, uint32_t p_indices) { static const uint32_t divisor[RS::PRIMITIVE_MAX] = { 1, 2, 1, 3, 1 }; static const uint32_t subtractor[RS::PRIMITIVE_MAX] = { 0, 0, 1, 0, 1 }; return (p_indices - subtractor[p_primitive]) / divisor[p_primitive]; } RID RendererCanvasRenderRD::_create_base_uniform_set(RID p_to_render_target, bool p_backbuffer) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton(); //re create canvas state Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 1; u.append_id(state.canvas_state_buffer); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 2; u.append_id(state.lights_uniform_buffer); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 3; u.append_id(RendererRD::TextureStorage::get_singleton()->decal_atlas_get_texture()); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 4; u.append_id(state.shadow_texture); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 5; u.append_id(state.shadow_sampler); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 6; RID screen; if (p_backbuffer) { screen = texture_storage->render_target_get_rd_texture(p_to_render_target); } else { screen = texture_storage->render_target_get_rd_backbuffer(p_to_render_target); if (screen.is_null()) { //unallocated backbuffer screen = RendererRD::TextureStorage::get_singleton()->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE); } } u.append_id(screen); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 7; RID sdf = texture_storage->render_target_get_sdf_texture(p_to_render_target); u.append_id(sdf); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 9; u.append_id(RendererRD::MaterialStorage::get_singleton()->global_shader_uniforms_get_storage_buffer()); uniforms.push_back(u); } uniforms.append_array(material_storage->samplers_rd_get_default().get_uniforms(SAMPLERS_BINDING_FIRST_INDEX)); RID uniform_set = RD::get_singleton()->uniform_set_create(uniforms, shader.default_version_rd_shader, BASE_UNIFORM_SET); if (p_backbuffer) { texture_storage->render_target_set_backbuffer_uniform_set(p_to_render_target, uniform_set); } else { texture_storage->render_target_set_framebuffer_uniform_set(p_to_render_target, uniform_set); } return uniform_set; } void RendererCanvasRenderRD::canvas_render_items(RID p_to_render_target, Item *p_item_list, const Color &p_modulate, Light *p_light_list, Light *p_directional_light_list, const Transform2D &p_canvas_transform, RenderingServer::CanvasItemTextureFilter p_default_filter, RenderingServer::CanvasItemTextureRepeat p_default_repeat, bool p_snap_2d_vertices_to_pixel, bool &r_sdf_used, RenderingMethod::RenderInfo *r_render_info) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton(); RendererRD::MeshStorage *mesh_storage = RendererRD::MeshStorage::get_singleton(); r_sdf_used = false; int item_count = 0; //setup canvas state uniforms if needed Transform2D canvas_transform_inverse = p_canvas_transform.affine_inverse(); //setup directional lights if exist uint32_t light_count = 0; uint32_t directional_light_count = 0; { Light *l = p_directional_light_list; uint32_t index = 0; while (l) { if (index == state.max_lights_per_render) { l->render_index_cache = -1; l = l->next_ptr; continue; } CanvasLight *clight = canvas_light_owner.get_or_null(l->light_internal); if (!clight) { //unused or invalid texture l->render_index_cache = -1; l = l->next_ptr; ERR_CONTINUE(!clight); } Vector2 canvas_light_dir = l->xform_cache.columns[1].normalized(); state.light_uniforms[index].position[0] = -canvas_light_dir.x; state.light_uniforms[index].position[1] = -canvas_light_dir.y; _update_transform_2d_to_mat2x4(clight->shadow.directional_xform, state.light_uniforms[index].shadow_matrix); state.light_uniforms[index].height = l->height; //0..1 here for (int i = 0; i < 4; i++) { state.light_uniforms[index].shadow_color[i] = uint8_t(CLAMP(int32_t(l->shadow_color[i] * 255.0), 0, 255)); state.light_uniforms[index].color[i] = l->color[i]; } state.light_uniforms[index].color[3] *= l->energy; //use alpha for energy, so base color can go separate if (state.shadow_fb.is_valid()) { state.light_uniforms[index].shadow_pixel_size = (1.0 / state.shadow_texture_size) * (1.0 + l->shadow_smooth); state.light_uniforms[index].shadow_z_far_inv = 1.0 / clight->shadow.z_far; state.light_uniforms[index].shadow_y_ofs = clight->shadow.y_offset; } else { state.light_uniforms[index].shadow_pixel_size = 1.0; state.light_uniforms[index].shadow_z_far_inv = 1.0; state.light_uniforms[index].shadow_y_ofs = 0; } state.light_uniforms[index].flags = l->blend_mode << LIGHT_FLAGS_BLEND_SHIFT; state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT; if (clight->shadow.enabled) { state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW; } l->render_index_cache = index; index++; l = l->next_ptr; } light_count = index; directional_light_count = light_count; using_directional_lights = directional_light_count > 0; } //setup lights if exist { Light *l = p_light_list; uint32_t index = light_count; while (l) { if (index == state.max_lights_per_render) { l->render_index_cache = -1; l = l->next_ptr; continue; } CanvasLight *clight = canvas_light_owner.get_or_null(l->light_internal); if (!clight) { //unused or invalid texture l->render_index_cache = -1; l = l->next_ptr; ERR_CONTINUE(!clight); } Transform2D final_xform; if (!RSG::canvas->_interpolation_data.interpolation_enabled || !l->interpolated) { final_xform = l->xform_curr; } else { real_t f = Engine::get_singleton()->get_physics_interpolation_fraction(); TransformInterpolator::interpolate_transform_2d(l->xform_prev, l->xform_curr, final_xform, f); } // Convert light position to canvas coordinates, as all computation is done in canvas coordinates to avoid precision loss. Vector2 canvas_light_pos = p_canvas_transform.xform(final_xform.get_origin()); state.light_uniforms[index].position[0] = canvas_light_pos.x; state.light_uniforms[index].position[1] = canvas_light_pos.y; _update_transform_2d_to_mat2x4(l->light_shader_xform.affine_inverse(), state.light_uniforms[index].matrix); _update_transform_2d_to_mat2x4(l->xform_cache.affine_inverse(), state.light_uniforms[index].shadow_matrix); state.light_uniforms[index].height = l->height * (p_canvas_transform.columns[0].length() + p_canvas_transform.columns[1].length()) * 0.5; //approximate height conversion to the canvas size, since all calculations are done in canvas coords to avoid precision loss for (int i = 0; i < 4; i++) { state.light_uniforms[index].shadow_color[i] = uint8_t(CLAMP(int32_t(l->shadow_color[i] * 255.0), 0, 255)); state.light_uniforms[index].color[i] = l->color[i]; } state.light_uniforms[index].color[3] *= l->energy; //use alpha for energy, so base color can go separate if (state.shadow_fb.is_valid()) { state.light_uniforms[index].shadow_pixel_size = (1.0 / state.shadow_texture_size) * (1.0 + l->shadow_smooth); state.light_uniforms[index].shadow_z_far_inv = 1.0 / clight->shadow.z_far; state.light_uniforms[index].shadow_y_ofs = clight->shadow.y_offset; } else { state.light_uniforms[index].shadow_pixel_size = 1.0; state.light_uniforms[index].shadow_z_far_inv = 1.0; state.light_uniforms[index].shadow_y_ofs = 0; } state.light_uniforms[index].flags = l->blend_mode << LIGHT_FLAGS_BLEND_SHIFT; state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT; if (clight->shadow.enabled) { state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW; } if (clight->texture.is_valid()) { Rect2 atlas_rect = RendererRD::TextureStorage::get_singleton()->decal_atlas_get_texture_rect(clight->texture); state.light_uniforms[index].atlas_rect[0] = atlas_rect.position.x; state.light_uniforms[index].atlas_rect[1] = atlas_rect.position.y; state.light_uniforms[index].atlas_rect[2] = atlas_rect.size.width; state.light_uniforms[index].atlas_rect[3] = atlas_rect.size.height; } else { state.light_uniforms[index].atlas_rect[0] = 0; state.light_uniforms[index].atlas_rect[1] = 0; state.light_uniforms[index].atlas_rect[2] = 0; state.light_uniforms[index].atlas_rect[3] = 0; } l->render_index_cache = index; index++; l = l->next_ptr; } light_count = index; } if (light_count > 0) { RD::get_singleton()->buffer_update(state.lights_uniform_buffer, 0, sizeof(LightUniform) * light_count, &state.light_uniforms[0]); } { //update canvas state uniform buffer State::Buffer state_buffer; Size2i ssize = texture_storage->render_target_get_size(p_to_render_target); Transform3D screen_transform; screen_transform.translate_local(-(ssize.width / 2.0f), -(ssize.height / 2.0f), 0.0f); screen_transform.scale(Vector3(2.0f / ssize.width, 2.0f / ssize.height, 1.0f)); _update_transform_to_mat4(screen_transform, state_buffer.screen_transform); _update_transform_2d_to_mat4(p_canvas_transform, state_buffer.canvas_transform); Transform2D normal_transform = p_canvas_transform; normal_transform.columns[0].normalize(); normal_transform.columns[1].normalize(); normal_transform.columns[2] = Vector2(); _update_transform_2d_to_mat4(normal_transform, state_buffer.canvas_normal_transform); bool use_linear_colors = texture_storage->render_target_is_using_hdr(p_to_render_target); Color modulate = p_modulate; if (use_linear_colors) { modulate = p_modulate.srgb_to_linear(); } state_buffer.canvas_modulate[0] = modulate.r; state_buffer.canvas_modulate[1] = modulate.g; state_buffer.canvas_modulate[2] = modulate.b; state_buffer.canvas_modulate[3] = modulate.a; Size2 render_target_size = texture_storage->render_target_get_size(p_to_render_target); state_buffer.screen_pixel_size[0] = 1.0 / render_target_size.x; state_buffer.screen_pixel_size[1] = 1.0 / render_target_size.y; state_buffer.time = state.time; state_buffer.use_pixel_snap = p_snap_2d_vertices_to_pixel; state_buffer.directional_light_count = directional_light_count; Vector2 canvas_scale = p_canvas_transform.get_scale(); state_buffer.sdf_to_screen[0] = render_target_size.width / canvas_scale.x; state_buffer.sdf_to_screen[1] = render_target_size.height / canvas_scale.y; state_buffer.screen_to_sdf[0] = 1.0 / state_buffer.sdf_to_screen[0]; state_buffer.screen_to_sdf[1] = 1.0 / state_buffer.sdf_to_screen[1]; Rect2 sdf_rect = texture_storage->render_target_get_sdf_rect(p_to_render_target); Rect2 sdf_tex_rect(sdf_rect.position / canvas_scale, sdf_rect.size / canvas_scale); state_buffer.sdf_to_tex[0] = 1.0 / sdf_tex_rect.size.width; state_buffer.sdf_to_tex[1] = 1.0 / sdf_tex_rect.size.height; state_buffer.sdf_to_tex[2] = -sdf_tex_rect.position.x / sdf_tex_rect.size.width; state_buffer.sdf_to_tex[3] = -sdf_tex_rect.position.y / sdf_tex_rect.size.height; //print_line("w: " + itos(ssize.width) + " s: " + rtos(canvas_scale)); state_buffer.tex_to_sdf = 1.0 / ((canvas_scale.x + canvas_scale.y) * 0.5); RD::get_singleton()->buffer_update(state.canvas_state_buffer, 0, sizeof(State::Buffer), &state_buffer); } { //default filter/repeat default_filter = p_default_filter; default_repeat = p_default_repeat; } Item *ci = p_item_list; //fill the list until rendering is possible. bool material_screen_texture_cached = false; bool material_screen_texture_mipmaps_cached = false; Rect2 back_buffer_rect; bool backbuffer_copy = false; bool backbuffer_gen_mipmaps = false; Item *canvas_group_owner = nullptr; bool skip_item = false; state.last_instance_index = 0; bool update_skeletons = false; bool time_used = false; bool backbuffer_cleared = false; RenderTarget to_render_target; to_render_target.render_target = p_to_render_target; bool use_linear_colors = texture_storage->render_target_is_using_hdr(p_to_render_target); to_render_target.base_flags = use_linear_colors ? FLAGS_CONVERT_ATTRIBUTES_TO_LINEAR : 0; while (ci) { if (ci->copy_back_buffer && canvas_group_owner == nullptr) { backbuffer_copy = true; if (ci->copy_back_buffer->full) { back_buffer_rect = Rect2(); } else { back_buffer_rect = ci->copy_back_buffer->rect; } } RID material = ci->material_owner == nullptr ? ci->material : ci->material_owner->material; if (material.is_valid()) { CanvasMaterialData *md = static_cast(material_storage->material_get_data(material, RendererRD::MaterialStorage::SHADER_TYPE_2D)); if (md && md->shader_data->valid) { if (md->shader_data->uses_screen_texture && canvas_group_owner == nullptr) { if (!material_screen_texture_cached) { backbuffer_copy = true; back_buffer_rect = Rect2(); backbuffer_gen_mipmaps = md->shader_data->uses_screen_texture_mipmaps; } else if (!material_screen_texture_mipmaps_cached) { backbuffer_gen_mipmaps = md->shader_data->uses_screen_texture_mipmaps; } } if (md->shader_data->uses_sdf) { r_sdf_used = true; } if (md->shader_data->uses_time) { time_used = true; } } } if (ci->skeleton.is_valid()) { const Item::Command *c = ci->commands; while (c) { if (c->type == Item::Command::TYPE_MESH) { const Item::CommandMesh *cm = static_cast(c); if (cm->mesh_instance.is_valid()) { mesh_storage->mesh_instance_check_for_update(cm->mesh_instance); mesh_storage->mesh_instance_set_canvas_item_transform(cm->mesh_instance, canvas_transform_inverse * ci->final_transform); update_skeletons = true; } } c = c->next; } } if (ci->canvas_group_owner != nullptr) { if (canvas_group_owner == nullptr) { // Canvas group begins here, render until before this item if (update_skeletons) { mesh_storage->update_mesh_instances(); update_skeletons = false; } _render_batch_items(to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, false, r_render_info); item_count = 0; if (ci->canvas_group_owner->canvas_group->mode != RS::CANVAS_GROUP_MODE_TRANSPARENT) { Rect2i group_rect = ci->canvas_group_owner->global_rect_cache; texture_storage->render_target_copy_to_back_buffer(p_to_render_target, group_rect, false); if (ci->canvas_group_owner->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) { ci->canvas_group_owner->use_canvas_group = false; items[item_count++] = ci->canvas_group_owner; } } else if (!backbuffer_cleared) { texture_storage->render_target_clear_back_buffer(p_to_render_target, Rect2i(), Color(0, 0, 0, 0)); backbuffer_cleared = true; } backbuffer_copy = false; canvas_group_owner = ci->canvas_group_owner; //continue until owner found } ci->canvas_group_owner = nullptr; //must be cleared } if (canvas_group_owner == nullptr && ci->canvas_group != nullptr && ci->canvas_group->mode != RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) { skip_item = true; } if (ci == canvas_group_owner) { if (update_skeletons) { mesh_storage->update_mesh_instances(); update_skeletons = false; } _render_batch_items(to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, true, r_render_info); item_count = 0; if (ci->canvas_group->blur_mipmaps) { texture_storage->render_target_gen_back_buffer_mipmaps(p_to_render_target, ci->global_rect_cache); } canvas_group_owner = nullptr; // Backbuffer is dirty now and needs to be re-cleared if another CanvasGroup needs it. backbuffer_cleared = false; // Tell the renderer to paint this as a canvas group ci->use_canvas_group = true; } else { ci->use_canvas_group = false; } if (backbuffer_copy) { //render anything pending, including clearing if no items if (update_skeletons) { mesh_storage->update_mesh_instances(); update_skeletons = false; } _render_batch_items(to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, false, r_render_info); item_count = 0; texture_storage->render_target_copy_to_back_buffer(p_to_render_target, back_buffer_rect, backbuffer_gen_mipmaps); backbuffer_copy = false; material_screen_texture_cached = true; // After a backbuffer copy, screen texture makes no further copies. material_screen_texture_mipmaps_cached = backbuffer_gen_mipmaps; backbuffer_gen_mipmaps = false; } if (backbuffer_gen_mipmaps) { texture_storage->render_target_gen_back_buffer_mipmaps(p_to_render_target, back_buffer_rect); backbuffer_gen_mipmaps = false; material_screen_texture_mipmaps_cached = true; } if (skip_item) { skip_item = false; } else { items[item_count++] = ci; } if (!ci->next || item_count == MAX_RENDER_ITEMS - 1) { if (update_skeletons) { mesh_storage->update_mesh_instances(); update_skeletons = false; } _render_batch_items(to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, canvas_group_owner != nullptr, r_render_info); //then reset item_count = 0; } ci = ci->next; } if (time_used) { RenderingServerDefault::redraw_request(); } state.current_data_buffer_index = (state.current_data_buffer_index + 1) % state.canvas_instance_data_buffers.size(); state.current_instance_buffer_index = 0; } RID RendererCanvasRenderRD::light_create() { CanvasLight canvas_light; return canvas_light_owner.make_rid(canvas_light); } void RendererCanvasRenderRD::light_set_texture(RID p_rid, RID p_texture) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); ERR_FAIL_NULL(cl); if (cl->texture == p_texture) { return; } ERR_FAIL_COND(p_texture.is_valid() && !texture_storage->owns_texture(p_texture)); if (cl->texture.is_valid()) { texture_storage->texture_remove_from_decal_atlas(cl->texture); } cl->texture = p_texture; if (cl->texture.is_valid()) { texture_storage->texture_add_to_decal_atlas(cl->texture); } } void RendererCanvasRenderRD::light_set_use_shadow(RID p_rid, bool p_enable) { CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); ERR_FAIL_NULL(cl); cl->shadow.enabled = p_enable; } void RendererCanvasRenderRD::_update_shadow_atlas() { if (state.shadow_fb == RID()) { //ah, we lack the shadow texture.. RD::get_singleton()->free(state.shadow_texture); //erase placeholder Vector fb_textures; { //texture RD::TextureFormat tf; tf.texture_type = RD::TEXTURE_TYPE_2D; tf.width = state.shadow_texture_size; tf.height = state.max_lights_per_render * 2; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; tf.format = RD::DATA_FORMAT_R32_SFLOAT; state.shadow_texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); fb_textures.push_back(state.shadow_texture); } { RD::TextureFormat tf; tf.texture_type = RD::TEXTURE_TYPE_2D; tf.width = state.shadow_texture_size; tf.height = state.max_lights_per_render * 2; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; tf.format = RD::DATA_FORMAT_D32_SFLOAT; //chunks to write state.shadow_depth_texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); fb_textures.push_back(state.shadow_depth_texture); } state.shadow_fb = RD::get_singleton()->framebuffer_create(fb_textures); } } void RendererCanvasRenderRD::light_update_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, LightOccluderInstance *p_occluders) { CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); ERR_FAIL_COND(!cl->shadow.enabled); _update_shadow_atlas(); cl->shadow.z_far = p_far; cl->shadow.y_offset = float(p_shadow_index * 2 + 1) / float(state.max_lights_per_render * 2); Vector cc; cc.push_back(Color(p_far, p_far, p_far, 1.0)); for (int i = 0; i < 4; i++) { //make sure it remains orthogonal, makes easy to read angle later //light.basis.scale(Vector3(to_light.elements[0].length(),to_light.elements[1].length(),1)); Rect2i rect((state.shadow_texture_size / 4) * i, p_shadow_index * 2, (state.shadow_texture_size / 4), 2); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(state.shadow_fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, cc, 1.0, 0, rect); Projection projection; { real_t fov = 90; real_t nearp = p_near; real_t farp = p_far; real_t aspect = 1.0; real_t ymax = nearp * Math::tan(Math::deg_to_rad(fov * 0.5)); real_t ymin = -ymax; real_t xmin = ymin * aspect; real_t xmax = ymax * aspect; projection.set_frustum(xmin, xmax, ymin, ymax, nearp, farp); } Vector3 cam_target = Basis::from_euler(Vector3(0, 0, Math_TAU * ((i + 3) / 4.0))).xform(Vector3(0, 1, 0)); projection = projection * Projection(Transform3D().looking_at(cam_target, Vector3(0, 0, -1)).affine_inverse()); ShadowRenderPushConstant push_constant; for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) { push_constant.projection[y * 4 + x] = projection.columns[y][x]; } } static const Vector2 directions[4] = { Vector2(1, 0), Vector2(0, 1), Vector2(-1, 0), Vector2(0, -1) }; push_constant.direction[0] = directions[i].x; push_constant.direction[1] = directions[i].y; push_constant.z_far = p_far; push_constant.pad = 0; LightOccluderInstance *instance = p_occluders; while (instance) { OccluderPolygon *co = occluder_polygon_owner.get_or_null(instance->occluder); if (!co || co->index_array.is_null() || !(p_light_mask & instance->light_mask)) { instance = instance->next; continue; } _update_transform_2d_to_mat2x4(p_light_xform * instance->xform_cache, push_constant.modelview); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, shadow_render.render_pipelines[co->cull_mode]); RD::get_singleton()->draw_list_bind_vertex_array(draw_list, co->vertex_array); RD::get_singleton()->draw_list_bind_index_array(draw_list, co->index_array); RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowRenderPushConstant)); RD::get_singleton()->draw_list_draw(draw_list, true); instance = instance->next; } RD::get_singleton()->draw_list_end(); } } void RendererCanvasRenderRD::light_update_directional_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_cull_distance, const Rect2 &p_clip_rect, LightOccluderInstance *p_occluders) { CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); ERR_FAIL_COND(!cl->shadow.enabled); _update_shadow_atlas(); Vector2 light_dir = p_light_xform.columns[1].normalized(); Vector2 center = p_clip_rect.get_center(); float to_edge_distance = ABS(light_dir.dot(p_clip_rect.get_support(-light_dir)) - light_dir.dot(center)); Vector2 from_pos = center - light_dir * (to_edge_distance + p_cull_distance); float distance = to_edge_distance * 2.0 + p_cull_distance; float half_size = p_clip_rect.size.length() * 0.5; //shadow length, must keep this no matter the angle cl->shadow.z_far = distance; cl->shadow.y_offset = float(p_shadow_index * 2 + 1) / float(state.max_lights_per_render * 2); Transform2D to_light_xform; to_light_xform[2] = from_pos; to_light_xform[1] = light_dir; to_light_xform[0] = -light_dir.orthogonal(); to_light_xform.invert(); Vector cc; cc.push_back(Color(1, 1, 1, 1)); Rect2i rect(0, p_shadow_index * 2, state.shadow_texture_size, 2); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(state.shadow_fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, cc, 1.0, 0, rect); Projection projection; projection.set_orthogonal(-half_size, half_size, -0.5, 0.5, 0.0, distance); projection = projection * Projection(Transform3D().looking_at(Vector3(0, 1, 0), Vector3(0, 0, -1)).affine_inverse()); ShadowRenderPushConstant push_constant; for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) { push_constant.projection[y * 4 + x] = projection.columns[y][x]; } } push_constant.direction[0] = 0.0; push_constant.direction[1] = 1.0; push_constant.z_far = distance; push_constant.pad = 0; LightOccluderInstance *instance = p_occluders; while (instance) { OccluderPolygon *co = occluder_polygon_owner.get_or_null(instance->occluder); if (!co || co->index_array.is_null() || !(p_light_mask & instance->light_mask)) { instance = instance->next; continue; } _update_transform_2d_to_mat2x4(to_light_xform * instance->xform_cache, push_constant.modelview); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, shadow_render.render_pipelines[co->cull_mode]); RD::get_singleton()->draw_list_bind_vertex_array(draw_list, co->vertex_array); RD::get_singleton()->draw_list_bind_index_array(draw_list, co->index_array); RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowRenderPushConstant)); RD::get_singleton()->draw_list_draw(draw_list, true); instance = instance->next; } RD::get_singleton()->draw_list_end(); Transform2D to_shadow; to_shadow.columns[0].x = 1.0 / -(half_size * 2.0); to_shadow.columns[2].x = 0.5; cl->shadow.directional_xform = to_shadow * to_light_xform; } void RendererCanvasRenderRD::render_sdf(RID p_render_target, LightOccluderInstance *p_occluders) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); RID fb = texture_storage->render_target_get_sdf_framebuffer(p_render_target); Rect2i rect = texture_storage->render_target_get_sdf_rect(p_render_target); Transform2D to_sdf; to_sdf.columns[0] *= rect.size.width; to_sdf.columns[1] *= rect.size.height; to_sdf.columns[2] = rect.position; Transform2D to_clip; to_clip.columns[0] *= 2.0; to_clip.columns[1] *= 2.0; to_clip.columns[2] = -Vector2(1.0, 1.0); to_clip = to_clip * to_sdf.affine_inverse(); Vector cc; cc.push_back(Color(0, 0, 0, 0)); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, cc); Projection projection; ShadowRenderPushConstant push_constant; for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) { push_constant.projection[y * 4 + x] = projection.columns[y][x]; } } push_constant.direction[0] = 0.0; push_constant.direction[1] = 0.0; push_constant.z_far = 0; push_constant.pad = 0; LightOccluderInstance *instance = p_occluders; while (instance) { OccluderPolygon *co = occluder_polygon_owner.get_or_null(instance->occluder); if (!co || co->sdf_index_array.is_null() || !instance->sdf_collision) { instance = instance->next; continue; } _update_transform_2d_to_mat2x4(to_clip * instance->xform_cache, push_constant.modelview); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, shadow_render.sdf_render_pipelines[co->sdf_is_lines ? SHADOW_RENDER_SDF_LINES : SHADOW_RENDER_SDF_TRIANGLES]); RD::get_singleton()->draw_list_bind_vertex_array(draw_list, co->sdf_vertex_array); RD::get_singleton()->draw_list_bind_index_array(draw_list, co->sdf_index_array); RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowRenderPushConstant)); RD::get_singleton()->draw_list_draw(draw_list, true); instance = instance->next; } RD::get_singleton()->draw_list_end(); texture_storage->render_target_sdf_process(p_render_target); //done rendering, process it } RID RendererCanvasRenderRD::occluder_polygon_create() { OccluderPolygon occluder; occluder.line_point_count = 0; occluder.sdf_point_count = 0; occluder.sdf_index_count = 0; occluder.cull_mode = RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED; return occluder_polygon_owner.make_rid(occluder); } void RendererCanvasRenderRD::occluder_polygon_set_shape(RID p_occluder, const Vector &p_points, bool p_closed) { OccluderPolygon *oc = occluder_polygon_owner.get_or_null(p_occluder); ERR_FAIL_NULL(oc); Vector lines; if (p_points.size()) { int lc = p_points.size() * 2; lines.resize(lc - (p_closed ? 0 : 2)); { Vector2 *w = lines.ptrw(); const Vector2 *r = p_points.ptr(); int max = lc / 2; if (!p_closed) { max--; } for (int i = 0; i < max; i++) { Vector2 a = r[i]; Vector2 b = r[(i + 1) % (lc / 2)]; w[i * 2 + 0] = a; w[i * 2 + 1] = b; } } } if ((oc->line_point_count != lines.size() || lines.size() == 0) && oc->vertex_array.is_valid()) { RD::get_singleton()->free(oc->vertex_array); RD::get_singleton()->free(oc->vertex_buffer); RD::get_singleton()->free(oc->index_array); RD::get_singleton()->free(oc->index_buffer); oc->vertex_array = RID(); oc->vertex_buffer = RID(); oc->index_array = RID(); oc->index_buffer = RID(); oc->line_point_count = lines.size(); } if (lines.size()) { oc->line_point_count = lines.size(); Vector geometry; Vector indices; int lc = lines.size(); geometry.resize(lc * 6 * sizeof(float)); indices.resize(lc * 3 * sizeof(uint16_t)); { uint8_t *vw = geometry.ptrw(); float *vwptr = reinterpret_cast(vw); uint8_t *iw = indices.ptrw(); uint16_t *iwptr = (uint16_t *)iw; const Vector2 *lr = lines.ptr(); const int POLY_HEIGHT = 16384; for (int i = 0; i < lc / 2; i++) { vwptr[i * 12 + 0] = lr[i * 2 + 0].x; vwptr[i * 12 + 1] = lr[i * 2 + 0].y; vwptr[i * 12 + 2] = POLY_HEIGHT; vwptr[i * 12 + 3] = lr[i * 2 + 1].x; vwptr[i * 12 + 4] = lr[i * 2 + 1].y; vwptr[i * 12 + 5] = POLY_HEIGHT; vwptr[i * 12 + 6] = lr[i * 2 + 1].x; vwptr[i * 12 + 7] = lr[i * 2 + 1].y; vwptr[i * 12 + 8] = -POLY_HEIGHT; vwptr[i * 12 + 9] = lr[i * 2 + 0].x; vwptr[i * 12 + 10] = lr[i * 2 + 0].y; vwptr[i * 12 + 11] = -POLY_HEIGHT; iwptr[i * 6 + 0] = i * 4 + 0; iwptr[i * 6 + 1] = i * 4 + 1; iwptr[i * 6 + 2] = i * 4 + 2; iwptr[i * 6 + 3] = i * 4 + 2; iwptr[i * 6 + 4] = i * 4 + 3; iwptr[i * 6 + 5] = i * 4 + 0; } } //if same buffer len is being set, just use buffer_update to avoid a pipeline flush if (oc->vertex_array.is_null()) { //create from scratch //vertices oc->vertex_buffer = RD::get_singleton()->vertex_buffer_create(lc * 6 * sizeof(float), geometry); Vector buffer; buffer.push_back(oc->vertex_buffer); oc->vertex_array = RD::get_singleton()->vertex_array_create(4 * lc / 2, shadow_render.vertex_format, buffer); //indices oc->index_buffer = RD::get_singleton()->index_buffer_create(3 * lc, RD::INDEX_BUFFER_FORMAT_UINT16, indices); oc->index_array = RD::get_singleton()->index_array_create(oc->index_buffer, 0, 3 * lc); } else { //update existing const uint8_t *vr = geometry.ptr(); RD::get_singleton()->buffer_update(oc->vertex_buffer, 0, geometry.size(), vr); const uint8_t *ir = indices.ptr(); RD::get_singleton()->buffer_update(oc->index_buffer, 0, indices.size(), ir); } } // sdf Vector sdf_indices; if (p_points.size()) { if (p_closed) { sdf_indices = Geometry2D::triangulate_polygon(p_points); oc->sdf_is_lines = false; } else { int max = p_points.size(); sdf_indices.resize(max * 2); int *iw = sdf_indices.ptrw(); for (int i = 0; i < max; i++) { iw[i * 2 + 0] = i; iw[i * 2 + 1] = (i + 1) % max; } oc->sdf_is_lines = true; } } if (((oc->sdf_index_count != sdf_indices.size() && oc->sdf_point_count != p_points.size()) || p_points.size() == 0) && oc->sdf_vertex_array.is_valid()) { RD::get_singleton()->free(oc->sdf_vertex_array); RD::get_singleton()->free(oc->sdf_vertex_buffer); RD::get_singleton()->free(oc->sdf_index_array); RD::get_singleton()->free(oc->sdf_index_buffer); oc->sdf_vertex_array = RID(); oc->sdf_vertex_buffer = RID(); oc->sdf_index_array = RID(); oc->sdf_index_buffer = RID(); oc->sdf_index_count = sdf_indices.size(); oc->sdf_point_count = p_points.size(); oc->sdf_is_lines = false; } if (sdf_indices.size()) { if (oc->sdf_vertex_array.is_null()) { //create from scratch //vertices #ifdef REAL_T_IS_DOUBLE PackedFloat32Array float_points; float_points.resize(p_points.size() * 2); float *float_points_ptr = (float *)float_points.ptrw(); for (int i = 0; i < p_points.size(); i++) { float_points_ptr[i * 2] = p_points[i].x; float_points_ptr[i * 2 + 1] = p_points[i].y; } oc->sdf_vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_points.size() * 2 * sizeof(float), float_points.to_byte_array()); #else oc->sdf_vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_points.size() * 2 * sizeof(float), p_points.to_byte_array()); #endif oc->sdf_index_buffer = RD::get_singleton()->index_buffer_create(sdf_indices.size(), RD::INDEX_BUFFER_FORMAT_UINT32, sdf_indices.to_byte_array()); oc->sdf_index_array = RD::get_singleton()->index_array_create(oc->sdf_index_buffer, 0, sdf_indices.size()); Vector buffer; buffer.push_back(oc->sdf_vertex_buffer); oc->sdf_vertex_array = RD::get_singleton()->vertex_array_create(p_points.size(), shadow_render.sdf_vertex_format, buffer); //indices } else { //update existing #ifdef REAL_T_IS_DOUBLE PackedFloat32Array float_points; float_points.resize(p_points.size() * 2); float *float_points_ptr = (float *)float_points.ptrw(); for (int i = 0; i < p_points.size(); i++) { float_points_ptr[i * 2] = p_points[i].x; float_points_ptr[i * 2 + 1] = p_points[i].y; } RD::get_singleton()->buffer_update(oc->sdf_vertex_buffer, 0, sizeof(float) * 2 * p_points.size(), float_points.ptr()); #else RD::get_singleton()->buffer_update(oc->sdf_vertex_buffer, 0, sizeof(float) * 2 * p_points.size(), p_points.ptr()); #endif RD::get_singleton()->buffer_update(oc->sdf_index_buffer, 0, sdf_indices.size() * sizeof(int32_t), sdf_indices.ptr()); } } } void RendererCanvasRenderRD::occluder_polygon_set_cull_mode(RID p_occluder, RS::CanvasOccluderPolygonCullMode p_mode) { OccluderPolygon *oc = occluder_polygon_owner.get_or_null(p_occluder); ERR_FAIL_NULL(oc); oc->cull_mode = p_mode; } void RendererCanvasRenderRD::CanvasShaderData::set_code(const String &p_code) { //compile code = p_code; valid = false; ubo_size = 0; uniforms.clear(); uses_screen_texture = false; uses_screen_texture_mipmaps = false; uses_sdf = false; uses_time = false; if (code.is_empty()) { return; //just invalid, but no error } ShaderCompiler::GeneratedCode gen_code; int blend_mode = BLEND_MODE_MIX; ShaderCompiler::IdentifierActions actions; actions.entry_point_stages["vertex"] = ShaderCompiler::STAGE_VERTEX; actions.entry_point_stages["fragment"] = ShaderCompiler::STAGE_FRAGMENT; actions.entry_point_stages["light"] = ShaderCompiler::STAGE_FRAGMENT; actions.render_mode_values["blend_add"] = Pair(&blend_mode, BLEND_MODE_ADD); actions.render_mode_values["blend_mix"] = Pair(&blend_mode, BLEND_MODE_MIX); actions.render_mode_values["blend_sub"] = Pair(&blend_mode, BLEND_MODE_SUB); actions.render_mode_values["blend_mul"] = Pair(&blend_mode, BLEND_MODE_MUL); actions.render_mode_values["blend_premul_alpha"] = Pair(&blend_mode, BLEND_MODE_PMALPHA); actions.render_mode_values["blend_disabled"] = Pair(&blend_mode, BLEND_MODE_DISABLED); actions.usage_flag_pointers["texture_sdf"] = &uses_sdf; actions.usage_flag_pointers["TIME"] = &uses_time; actions.uniforms = &uniforms; RendererCanvasRenderRD *canvas_singleton = static_cast(RendererCanvasRender::singleton); Error err = canvas_singleton->shader.compiler.compile(RS::SHADER_CANVAS_ITEM, code, &actions, path, gen_code); ERR_FAIL_COND_MSG(err != OK, "Shader compilation failed."); uses_screen_texture_mipmaps = gen_code.uses_screen_texture_mipmaps; uses_screen_texture = gen_code.uses_screen_texture; if (version.is_null()) { version = canvas_singleton->shader.canvas_shader.version_create(); } #if 0 print_line("**compiling shader:"); print_line("**defines:\n"); for (int i = 0; i < gen_code.defines.size(); i++) { print_line(gen_code.defines[i]); } HashMap::Iterator el = gen_code.code.begin(); while (el) { print_line("\n**code " + el->key + ":\n" + el->value); ++el; } print_line("\n**uniforms:\n" + gen_code.uniforms); print_line("\n**vertex_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX]); print_line("\n**fragment_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT]); #endif canvas_singleton->shader.canvas_shader.version_set_code(version, gen_code.code, gen_code.uniforms, gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX], gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT], gen_code.defines); ERR_FAIL_COND(!canvas_singleton->shader.canvas_shader.version_is_valid(version)); ubo_size = gen_code.uniform_total_size; ubo_offsets = gen_code.uniform_offsets; texture_uniforms = gen_code.texture_uniforms; //update them pipelines RD::PipelineColorBlendState::Attachment attachment; switch (blend_mode) { case BLEND_MODE_DISABLED: { // nothing to do here, disabled by default } break; case BLEND_MODE_MIX: { attachment.enable_blend = true; attachment.color_blend_op = RD::BLEND_OP_ADD; attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; attachment.alpha_blend_op = RD::BLEND_OP_ADD; attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_ONE; attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; } break; case BLEND_MODE_ADD: { attachment.enable_blend = true; attachment.alpha_blend_op = RD::BLEND_OP_ADD; attachment.color_blend_op = RD::BLEND_OP_ADD; attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE; attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE; } break; case BLEND_MODE_SUB: { attachment.enable_blend = true; attachment.alpha_blend_op = RD::BLEND_OP_REVERSE_SUBTRACT; attachment.color_blend_op = RD::BLEND_OP_REVERSE_SUBTRACT; attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE; attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE; } break; case BLEND_MODE_MUL: { attachment.enable_blend = true; attachment.alpha_blend_op = RD::BLEND_OP_ADD; attachment.color_blend_op = RD::BLEND_OP_ADD; attachment.src_color_blend_factor = RD::BLEND_FACTOR_DST_COLOR; attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ZERO; attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_DST_ALPHA; attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ZERO; } break; case BLEND_MODE_PMALPHA: { attachment.enable_blend = true; attachment.alpha_blend_op = RD::BLEND_OP_ADD; attachment.color_blend_op = RD::BLEND_OP_ADD; attachment.src_color_blend_factor = RD::BLEND_FACTOR_ONE; attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_ONE; attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; } break; } RD::PipelineColorBlendState blend_state; blend_state.attachments.push_back(attachment); RD::PipelineColorBlendState::Attachment attachment_lcd; attachment_lcd.enable_blend = true; attachment_lcd.alpha_blend_op = RD::BLEND_OP_ADD; attachment_lcd.color_blend_op = RD::BLEND_OP_ADD; attachment_lcd.src_color_blend_factor = RD::BLEND_FACTOR_CONSTANT_COLOR; attachment_lcd.dst_color_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_COLOR; attachment_lcd.src_alpha_blend_factor = RD::BLEND_FACTOR_ONE; attachment_lcd.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; RD::PipelineColorBlendState blend_state_lcd; blend_state_lcd.attachments.push_back(attachment_lcd); //update pipelines for (int i = 0; i < PIPELINE_LIGHT_MODE_MAX; i++) { for (int j = 0; j < PIPELINE_VARIANT_MAX; j++) { RD::RenderPrimitive primitive[PIPELINE_VARIANT_MAX] = { RD::RENDER_PRIMITIVE_TRIANGLES, RD::RENDER_PRIMITIVE_TRIANGLES, RD::RENDER_PRIMITIVE_TRIANGLES, RD::RENDER_PRIMITIVE_LINES, RD::RENDER_PRIMITIVE_POINTS, RD::RENDER_PRIMITIVE_TRIANGLES, RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS, RD::RENDER_PRIMITIVE_LINES, RD::RENDER_PRIMITIVE_LINESTRIPS, RD::RENDER_PRIMITIVE_POINTS, RD::RENDER_PRIMITIVE_TRIANGLES, }; ShaderVariant shader_variants[PIPELINE_LIGHT_MODE_MAX][PIPELINE_VARIANT_MAX] = { { //non lit SHADER_VARIANT_QUAD, SHADER_VARIANT_NINEPATCH, SHADER_VARIANT_PRIMITIVE, SHADER_VARIANT_PRIMITIVE, SHADER_VARIANT_PRIMITIVE_POINTS, SHADER_VARIANT_ATTRIBUTES, SHADER_VARIANT_ATTRIBUTES, SHADER_VARIANT_ATTRIBUTES, SHADER_VARIANT_ATTRIBUTES, SHADER_VARIANT_ATTRIBUTES_POINTS, SHADER_VARIANT_QUAD, }, { //lit SHADER_VARIANT_QUAD_LIGHT, SHADER_VARIANT_NINEPATCH_LIGHT, SHADER_VARIANT_PRIMITIVE_LIGHT, SHADER_VARIANT_PRIMITIVE_LIGHT, SHADER_VARIANT_PRIMITIVE_POINTS_LIGHT, SHADER_VARIANT_ATTRIBUTES_LIGHT, SHADER_VARIANT_ATTRIBUTES_LIGHT, SHADER_VARIANT_ATTRIBUTES_LIGHT, SHADER_VARIANT_ATTRIBUTES_LIGHT, SHADER_VARIANT_ATTRIBUTES_POINTS_LIGHT, SHADER_VARIANT_QUAD_LIGHT, }, }; RID shader_variant = canvas_singleton->shader.canvas_shader.version_get_shader(version, shader_variants[i][j]); if (j == PIPELINE_VARIANT_QUAD_LCD_BLEND) { pipeline_variants.variants[i][j].setup(shader_variant, primitive[j], RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), blend_state_lcd, RD::DYNAMIC_STATE_BLEND_CONSTANTS); } else { pipeline_variants.variants[i][j].setup(shader_variant, primitive[j], RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), blend_state, 0); } } } valid = true; } bool RendererCanvasRenderRD::CanvasShaderData::is_animated() const { return false; } bool RendererCanvasRenderRD::CanvasShaderData::casts_shadows() const { return false; } RS::ShaderNativeSourceCode RendererCanvasRenderRD::CanvasShaderData::get_native_source_code() const { RendererCanvasRenderRD *canvas_singleton = static_cast(RendererCanvasRender::singleton); return canvas_singleton->shader.canvas_shader.version_get_native_source_code(version); } RendererCanvasRenderRD::CanvasShaderData::~CanvasShaderData() { RendererCanvasRenderRD *canvas_singleton = static_cast(RendererCanvasRender::singleton); ERR_FAIL_NULL(canvas_singleton); //pipeline variants will clear themselves if shader is gone if (version.is_valid()) { canvas_singleton->shader.canvas_shader.version_free(version); } } RendererRD::MaterialStorage::ShaderData *RendererCanvasRenderRD::_create_shader_func() { CanvasShaderData *shader_data = memnew(CanvasShaderData); return shader_data; } bool RendererCanvasRenderRD::CanvasMaterialData::update_parameters(const HashMap &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) { RendererCanvasRenderRD *canvas_singleton = static_cast(RendererCanvasRender::singleton); bool uniform_set_changed = update_parameters_uniform_set(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size, uniform_set, canvas_singleton->shader.canvas_shader.version_get_shader(shader_data->version, 0), MATERIAL_UNIFORM_SET, true, false); bool uniform_set_srgb_changed = update_parameters_uniform_set(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size, uniform_set_srgb, canvas_singleton->shader.canvas_shader.version_get_shader(shader_data->version, 0), MATERIAL_UNIFORM_SET, false, false); return uniform_set_changed || uniform_set_srgb_changed; } RendererCanvasRenderRD::CanvasMaterialData::~CanvasMaterialData() { free_parameters_uniform_set(uniform_set); free_parameters_uniform_set(uniform_set_srgb); } RendererRD::MaterialStorage::MaterialData *RendererCanvasRenderRD::_create_material_func(CanvasShaderData *p_shader) { CanvasMaterialData *material_data = memnew(CanvasMaterialData); material_data->shader_data = p_shader; //update will happen later anyway so do nothing. return material_data; } void RendererCanvasRenderRD::set_time(double p_time) { state.time = p_time; } void RendererCanvasRenderRD::update() { } RendererCanvasRenderRD::RendererCanvasRenderRD() { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton(); { //create default samplers default_samplers.default_filter = RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR; default_samplers.default_repeat = RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED; } { //shader variants String global_defines; uint64_t uniform_max_size = RD::get_singleton()->limit_get(RD::LIMIT_MAX_UNIFORM_BUFFER_SIZE); if (uniform_max_size < 65536) { //Yes, you guessed right, ARM again state.max_lights_per_render = 64; global_defines += "#define MAX_LIGHTS 64\n"; } else { state.max_lights_per_render = DEFAULT_MAX_LIGHTS_PER_RENDER; global_defines += "#define MAX_LIGHTS " + itos(DEFAULT_MAX_LIGHTS_PER_RENDER) + "\n"; } global_defines += "\n#define SAMPLERS_BINDING_FIRST_INDEX " + itos(SAMPLERS_BINDING_FIRST_INDEX) + "\n"; state.light_uniforms = memnew_arr(LightUniform, state.max_lights_per_render); Vector variants; //non light variants variants.push_back(""); //none by default is first variant variants.push_back("#define USE_NINEPATCH\n"); //ninepatch is the second variant variants.push_back("#define USE_PRIMITIVE\n"); //primitive is the third variants.push_back("#define USE_PRIMITIVE\n#define USE_POINT_SIZE\n"); //points need point size variants.push_back("#define USE_ATTRIBUTES\n"); // attributes for vertex arrays variants.push_back("#define USE_ATTRIBUTES\n#define USE_POINT_SIZE\n"); //attributes with point size //light variants variants.push_back("#define USE_LIGHTING\n"); //none by default is first variant variants.push_back("#define USE_LIGHTING\n#define USE_NINEPATCH\n"); //ninepatch is the second variant variants.push_back("#define USE_LIGHTING\n#define USE_PRIMITIVE\n"); //primitive is the third variants.push_back("#define USE_LIGHTING\n#define USE_PRIMITIVE\n#define USE_POINT_SIZE\n"); //points need point size variants.push_back("#define USE_LIGHTING\n#define USE_ATTRIBUTES\n"); // attributes for vertex arrays variants.push_back("#define USE_LIGHTING\n#define USE_ATTRIBUTES\n#define USE_POINT_SIZE\n"); //attributes with point size shader.canvas_shader.initialize(variants, global_defines); shader.default_version = shader.canvas_shader.version_create(); shader.default_version_rd_shader = shader.canvas_shader.version_get_shader(shader.default_version, SHADER_VARIANT_QUAD); RD::PipelineColorBlendState blend_state; RD::PipelineColorBlendState::Attachment blend_attachment; blend_attachment.enable_blend = true; blend_attachment.color_blend_op = RD::BLEND_OP_ADD; blend_attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; blend_attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; blend_attachment.alpha_blend_op = RD::BLEND_OP_ADD; blend_attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_ONE; blend_attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; blend_state.attachments.push_back(blend_attachment); RD::PipelineColorBlendState::Attachment attachment_lcd; attachment_lcd.enable_blend = true; attachment_lcd.alpha_blend_op = RD::BLEND_OP_ADD; attachment_lcd.color_blend_op = RD::BLEND_OP_ADD; attachment_lcd.src_color_blend_factor = RD::BLEND_FACTOR_CONSTANT_COLOR; attachment_lcd.dst_color_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_COLOR; attachment_lcd.src_alpha_blend_factor = RD::BLEND_FACTOR_ONE; attachment_lcd.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; RD::PipelineColorBlendState blend_state_lcd; blend_state_lcd.attachments.push_back(attachment_lcd); for (int i = 0; i < PIPELINE_LIGHT_MODE_MAX; i++) { for (int j = 0; j < PIPELINE_VARIANT_MAX; j++) { RD::RenderPrimitive primitive[PIPELINE_VARIANT_MAX] = { RD::RENDER_PRIMITIVE_TRIANGLES, RD::RENDER_PRIMITIVE_TRIANGLES, RD::RENDER_PRIMITIVE_TRIANGLES, RD::RENDER_PRIMITIVE_LINES, RD::RENDER_PRIMITIVE_POINTS, RD::RENDER_PRIMITIVE_TRIANGLES, RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS, RD::RENDER_PRIMITIVE_LINES, RD::RENDER_PRIMITIVE_LINESTRIPS, RD::RENDER_PRIMITIVE_POINTS, RD::RENDER_PRIMITIVE_TRIANGLES, }; ShaderVariant shader_variants[PIPELINE_LIGHT_MODE_MAX][PIPELINE_VARIANT_MAX] = { { //non lit SHADER_VARIANT_QUAD, SHADER_VARIANT_NINEPATCH, SHADER_VARIANT_PRIMITIVE, SHADER_VARIANT_PRIMITIVE, SHADER_VARIANT_PRIMITIVE_POINTS, SHADER_VARIANT_ATTRIBUTES, SHADER_VARIANT_ATTRIBUTES, SHADER_VARIANT_ATTRIBUTES, SHADER_VARIANT_ATTRIBUTES, SHADER_VARIANT_ATTRIBUTES_POINTS, SHADER_VARIANT_QUAD, }, { //lit SHADER_VARIANT_QUAD_LIGHT, SHADER_VARIANT_NINEPATCH_LIGHT, SHADER_VARIANT_PRIMITIVE_LIGHT, SHADER_VARIANT_PRIMITIVE_LIGHT, SHADER_VARIANT_PRIMITIVE_POINTS_LIGHT, SHADER_VARIANT_ATTRIBUTES_LIGHT, SHADER_VARIANT_ATTRIBUTES_LIGHT, SHADER_VARIANT_ATTRIBUTES_LIGHT, SHADER_VARIANT_ATTRIBUTES_LIGHT, SHADER_VARIANT_ATTRIBUTES_POINTS_LIGHT, SHADER_VARIANT_QUAD_LIGHT, }, }; RID shader_variant = shader.canvas_shader.version_get_shader(shader.default_version, shader_variants[i][j]); if (j == PIPELINE_VARIANT_QUAD_LCD_BLEND) { shader.pipeline_variants.variants[i][j].setup(shader_variant, primitive[j], RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), blend_state_lcd, RD::DYNAMIC_STATE_BLEND_CONSTANTS); } else { shader.pipeline_variants.variants[i][j].setup(shader_variant, primitive[j], RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), blend_state, 0); } } } } { //shader compiler ShaderCompiler::DefaultIdentifierActions actions; actions.renames["VERTEX"] = "vertex"; actions.renames["LIGHT_VERTEX"] = "light_vertex"; actions.renames["SHADOW_VERTEX"] = "shadow_vertex"; actions.renames["UV"] = "uv"; actions.renames["POINT_SIZE"] = "point_size"; actions.renames["MODEL_MATRIX"] = "model_matrix"; actions.renames["CANVAS_MATRIX"] = "canvas_data.canvas_transform"; actions.renames["SCREEN_MATRIX"] = "canvas_data.screen_transform"; actions.renames["TIME"] = "canvas_data.time"; actions.renames["PI"] = _MKSTR(Math_PI); actions.renames["TAU"] = _MKSTR(Math_TAU); actions.renames["E"] = _MKSTR(Math_E); actions.renames["AT_LIGHT_PASS"] = "false"; actions.renames["INSTANCE_CUSTOM"] = "instance_custom"; actions.renames["COLOR"] = "color"; actions.renames["NORMAL"] = "normal"; actions.renames["NORMAL_MAP"] = "normal_map"; actions.renames["NORMAL_MAP_DEPTH"] = "normal_map_depth"; actions.renames["TEXTURE"] = "color_texture"; actions.renames["TEXTURE_PIXEL_SIZE"] = "draw_data.color_texture_pixel_size"; actions.renames["NORMAL_TEXTURE"] = "normal_texture"; actions.renames["SPECULAR_SHININESS_TEXTURE"] = "specular_texture"; actions.renames["SPECULAR_SHININESS"] = "specular_shininess"; actions.renames["SCREEN_UV"] = "screen_uv"; actions.renames["SCREEN_PIXEL_SIZE"] = "canvas_data.screen_pixel_size"; actions.renames["FRAGCOORD"] = "gl_FragCoord"; actions.renames["POINT_COORD"] = "gl_PointCoord"; actions.renames["INSTANCE_ID"] = "gl_InstanceIndex"; actions.renames["VERTEX_ID"] = "gl_VertexIndex"; actions.renames["CUSTOM0"] = "custom0"; actions.renames["CUSTOM1"] = "custom1"; actions.renames["LIGHT_POSITION"] = "light_position"; actions.renames["LIGHT_DIRECTION"] = "light_direction"; actions.renames["LIGHT_IS_DIRECTIONAL"] = "is_directional"; actions.renames["LIGHT_COLOR"] = "light_color"; actions.renames["LIGHT_ENERGY"] = "light_energy"; actions.renames["LIGHT"] = "light"; actions.renames["SHADOW_MODULATE"] = "shadow_modulate"; actions.renames["texture_sdf"] = "texture_sdf"; actions.renames["texture_sdf_normal"] = "texture_sdf_normal"; actions.renames["sdf_to_screen_uv"] = "sdf_to_screen_uv"; actions.renames["screen_uv_to_sdf"] = "screen_uv_to_sdf"; actions.usage_defines["COLOR"] = "#define COLOR_USED\n"; actions.usage_defines["SCREEN_UV"] = "#define SCREEN_UV_USED\n"; actions.usage_defines["SCREEN_PIXEL_SIZE"] = "@SCREEN_UV"; actions.usage_defines["NORMAL"] = "#define NORMAL_USED\n"; actions.usage_defines["NORMAL_MAP"] = "#define NORMAL_MAP_USED\n"; actions.usage_defines["SPECULAR_SHININESS"] = "#define SPECULAR_SHININESS_USED\n"; actions.usage_defines["POINT_SIZE"] = "#define USE_POINT_SIZE\n"; actions.usage_defines["CUSTOM0"] = "#define CUSTOM0_USED\n"; actions.usage_defines["CUSTOM1"] = "#define CUSTOM1_USED\n"; actions.render_mode_defines["skip_vertex_transform"] = "#define SKIP_TRANSFORM_USED\n"; actions.render_mode_defines["unshaded"] = "#define MODE_UNSHADED\n"; actions.render_mode_defines["light_only"] = "#define MODE_LIGHT_ONLY\n"; actions.render_mode_defines["world_vertex_coords"] = "#define USE_WORLD_VERTEX_COORDS\n"; actions.custom_samplers["TEXTURE"] = "texture_sampler"; actions.custom_samplers["NORMAL_TEXTURE"] = "texture_sampler"; actions.custom_samplers["SPECULAR_SHININESS_TEXTURE"] = "texture_sampler"; actions.base_texture_binding_index = 1; actions.texture_layout_set = MATERIAL_UNIFORM_SET; actions.base_uniform_string = "material."; actions.default_filter = ShaderLanguage::FILTER_LINEAR; actions.default_repeat = ShaderLanguage::REPEAT_DISABLE; actions.base_varying_index = 5; actions.global_buffer_array_variable = "global_shader_uniforms.data"; shader.compiler.initialize(actions); } { //shadow rendering Vector versions; versions.push_back("\n#define MODE_SHADOW\n"); //shadow versions.push_back("\n#define MODE_SDF\n"); //sdf shadow_render.shader.initialize(versions); { Vector attachments; RD::AttachmentFormat af_color; af_color.format = RD::DATA_FORMAT_R32_SFLOAT; af_color.usage_flags = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; attachments.push_back(af_color); RD::AttachmentFormat af_depth; af_depth.format = RD::DATA_FORMAT_D32_SFLOAT; af_depth.usage_flags = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; attachments.push_back(af_depth); shadow_render.framebuffer_format = RD::get_singleton()->framebuffer_format_create(attachments); } { Vector attachments; RD::AttachmentFormat af_color; af_color.format = RD::DATA_FORMAT_R8_UNORM; af_color.usage_flags = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; attachments.push_back(af_color); shadow_render.sdf_framebuffer_format = RD::get_singleton()->framebuffer_format_create(attachments); } //pipelines Vector vf; RD::VertexAttribute vd; vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT; vd.stride = sizeof(float) * 3; vd.location = 0; vd.offset = 0; vf.push_back(vd); shadow_render.vertex_format = RD::get_singleton()->vertex_format_create(vf); vd.format = RD::DATA_FORMAT_R32G32_SFLOAT; vd.stride = sizeof(float) * 2; vf.write[0] = vd; shadow_render.sdf_vertex_format = RD::get_singleton()->vertex_format_create(vf); shadow_render.shader_version = shadow_render.shader.version_create(); for (int i = 0; i < 3; i++) { RD::PipelineRasterizationState rs; rs.cull_mode = i == 0 ? RD::POLYGON_CULL_DISABLED : (i == 1 ? RD::POLYGON_CULL_FRONT : RD::POLYGON_CULL_BACK); RD::PipelineDepthStencilState ds; ds.enable_depth_write = true; ds.enable_depth_test = true; ds.depth_compare_operator = RD::COMPARE_OP_LESS; shadow_render.render_pipelines[i] = RD::get_singleton()->render_pipeline_create(shadow_render.shader.version_get_shader(shadow_render.shader_version, SHADOW_RENDER_MODE_SHADOW), shadow_render.framebuffer_format, shadow_render.vertex_format, RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0); } for (int i = 0; i < 2; i++) { shadow_render.sdf_render_pipelines[i] = RD::get_singleton()->render_pipeline_create(shadow_render.shader.version_get_shader(shadow_render.shader_version, SHADOW_RENDER_MODE_SDF), shadow_render.sdf_framebuffer_format, shadow_render.sdf_vertex_format, i == 0 ? RD::RENDER_PRIMITIVE_TRIANGLES : RD::RENDER_PRIMITIVE_LINES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_disabled(), 0); } } { //bindings state.canvas_state_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(State::Buffer)); state.lights_uniform_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(LightUniform) * state.max_lights_per_render); RD::SamplerState shadow_sampler_state; shadow_sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR; shadow_sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR; shadow_sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_REPEAT; //shadow wrap around shadow_sampler_state.compare_op = RD::COMPARE_OP_GREATER; shadow_sampler_state.enable_compare = true; state.shadow_sampler = RD::get_singleton()->sampler_create(shadow_sampler_state); } { //polygon buffers polygon_buffers.last_id = 1; } { // default index buffer Vector pv; pv.resize(6 * 2); { uint8_t *w = pv.ptrw(); uint16_t *p16 = (uint16_t *)w; p16[0] = 0; p16[1] = 1; p16[2] = 2; p16[3] = 0; p16[4] = 2; p16[5] = 3; } shader.quad_index_buffer = RD::get_singleton()->index_buffer_create(6, RenderingDevice::INDEX_BUFFER_FORMAT_UINT16, pv); shader.quad_index_array = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 6); } { //primitive primitive_arrays.index_array[0] = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 1); primitive_arrays.index_array[1] = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 2); primitive_arrays.index_array[2] = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 3); primitive_arrays.index_array[3] = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 6); } { //default shadow texture to keep uniform set happy RD::TextureFormat tf; tf.texture_type = RD::TEXTURE_TYPE_2D; tf.width = 4; tf.height = 4; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT; tf.format = RD::DATA_FORMAT_R32_SFLOAT; state.shadow_texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); } { Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 0; u.append_id(RendererRD::MeshStorage::get_singleton()->get_default_rd_storage_buffer()); uniforms.push_back(u); } state.default_transforms_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, shader.default_version_rd_shader, TRANSFORMS_UNIFORM_SET); } default_canvas_texture = texture_storage->canvas_texture_allocate(); texture_storage->canvas_texture_initialize(default_canvas_texture); RendererRD::TextureStorage::CanvasTextureInfo info = RendererRD::TextureStorage::get_singleton()->canvas_texture_get_info(default_canvas_texture, default_filter, default_repeat, false, false); default_texture_info.diffuse = info.diffuse; default_texture_info.normal = info.normal; default_texture_info.specular = info.specular; default_texture_info.sampler = info.sampler; state.shadow_texture_size = GLOBAL_GET("rendering/2d/shadow_atlas/size"); //create functions for shader and material material_storage->shader_set_data_request_function(RendererRD::MaterialStorage::SHADER_TYPE_2D, _create_shader_funcs); material_storage->material_set_data_request_function(RendererRD::MaterialStorage::SHADER_TYPE_2D, _create_material_funcs); state.time = 0; { default_canvas_group_shader = material_storage->shader_allocate(); material_storage->shader_initialize(default_canvas_group_shader); material_storage->shader_set_code(default_canvas_group_shader, R"( // Default CanvasGroup shader. shader_type canvas_item; render_mode unshaded; uniform sampler2D screen_texture : hint_screen_texture, repeat_disable, filter_nearest; void fragment() { vec4 c = textureLod(screen_texture, SCREEN_UV, 0.0); if (c.a > 0.0001) { c.rgb /= c.a; } COLOR *= c; } )"); default_canvas_group_material = material_storage->material_allocate(); material_storage->material_initialize(default_canvas_group_material); material_storage->material_set_shader(default_canvas_group_material, default_canvas_group_shader); } { default_clip_children_shader = material_storage->shader_allocate(); material_storage->shader_initialize(default_clip_children_shader); material_storage->shader_set_code(default_clip_children_shader, R"( // Default clip children shader. shader_type canvas_item; render_mode unshaded; uniform sampler2D screen_texture : hint_screen_texture, repeat_disable, filter_nearest; void fragment() { vec4 c = textureLod(screen_texture, SCREEN_UV, 0.0); COLOR.rgb = c.rgb; } )"); default_clip_children_material = material_storage->material_allocate(); material_storage->material_initialize(default_clip_children_material); material_storage->material_set_shader(default_clip_children_material, default_clip_children_shader); } { state.max_instances_per_buffer = uint32_t(GLOBAL_GET("rendering/2d/batching/item_buffer_size")); state.max_instance_buffer_size = state.max_instances_per_buffer * sizeof(InstanceData); state.canvas_instance_data_buffers.resize(3); state.canvas_instance_batches.reserve(200); for (int i = 0; i < 3; i++) { DataBuffer db; db.instance_buffers.push_back(RD::get_singleton()->storage_buffer_create(state.max_instance_buffer_size)); state.canvas_instance_data_buffers[i] = db; } state.instance_data_array = memnew_arr(InstanceData, state.max_instances_per_buffer); } } bool RendererCanvasRenderRD::free(RID p_rid) { if (canvas_light_owner.owns(p_rid)) { CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); ERR_FAIL_NULL_V(cl, false); light_set_use_shadow(p_rid, false); canvas_light_owner.free(p_rid); } else if (occluder_polygon_owner.owns(p_rid)) { occluder_polygon_set_shape(p_rid, Vector(), false); occluder_polygon_owner.free(p_rid); } else { return false; } return true; } void RendererCanvasRenderRD::set_shadow_texture_size(int p_size) { p_size = MAX(1, nearest_power_of_2_templated(p_size)); if (p_size == state.shadow_texture_size) { return; } state.shadow_texture_size = p_size; if (state.shadow_fb.is_valid()) { RD::get_singleton()->free(state.shadow_texture); RD::get_singleton()->free(state.shadow_depth_texture); state.shadow_fb = RID(); { //create a default shadow texture to keep uniform set happy (and that it gets erased when a new one is created) RD::TextureFormat tf; tf.texture_type = RD::TEXTURE_TYPE_2D; tf.width = 4; tf.height = 4; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT; tf.format = RD::DATA_FORMAT_R32_SFLOAT; state.shadow_texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); } } } void RendererCanvasRenderRD::set_debug_redraw(bool p_enabled, double p_time, const Color &p_color) { debug_redraw = p_enabled; debug_redraw_time = p_time; debug_redraw_color = p_color; } void RendererCanvasRenderRD::_render_batch_items(RenderTarget p_to_render_target, int p_item_count, const Transform2D &p_canvas_transform_inverse, Light *p_lights, bool &r_sdf_used, bool p_to_backbuffer, RenderingMethod::RenderInfo *r_render_info) { // Record batches uint32_t instance_index = 0; { RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton(); Item *current_clip = nullptr; // Record Batches. // First item always forms its own batch. bool batch_broken = false; Batch *current_batch = _new_batch(batch_broken); // Override the start position and index as we want to start from where we finished off last time. current_batch->start = state.last_instance_index; for (int i = 0; i < p_item_count; i++) { Item *ci = items[i]; if (ci->final_clip_owner != current_batch->clip) { current_batch = _new_batch(batch_broken); current_batch->clip = ci->final_clip_owner; current_clip = ci->final_clip_owner; } RID material = ci->material_owner == nullptr ? ci->material : ci->material_owner->material; if (ci->use_canvas_group) { if (ci->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) { material = default_clip_children_material; } else { if (material.is_null()) { if (ci->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_ONLY) { material = default_clip_children_material; } else { material = default_canvas_group_material; } } } } if (material != current_batch->material) { current_batch = _new_batch(batch_broken); CanvasMaterialData *material_data = nullptr; if (material.is_valid()) { material_data = static_cast(material_storage->material_get_data(material, RendererRD::MaterialStorage::SHADER_TYPE_2D)); } current_batch->material = material; current_batch->material_data = material_data; } if (ci->repeat_source_item == nullptr || ci->repeat_size == Vector2()) { Transform2D base_transform = p_canvas_transform_inverse * ci->final_transform; _record_item_commands(ci, p_to_render_target, base_transform, current_clip, p_lights, instance_index, batch_broken, r_sdf_used, current_batch); } else { Point2 start_pos = ci->repeat_size * -(ci->repeat_times / 2); Point2 offset; int repeat_times_x = ci->repeat_size.x ? ci->repeat_times : 0; int repeat_times_y = ci->repeat_size.y ? ci->repeat_times : 0; for (int ry = 0; ry <= repeat_times_y; ry++) { offset.y = start_pos.y + ry * ci->repeat_size.y; for (int rx = 0; rx <= repeat_times_x; rx++) { offset.x = start_pos.x + rx * ci->repeat_size.x; Transform2D base_transform = ci->final_transform; base_transform.columns[2] += ci->repeat_source_item->final_transform.basis_xform(offset); base_transform = p_canvas_transform_inverse * base_transform; _record_item_commands(ci, p_to_render_target, base_transform, current_clip, p_lights, instance_index, batch_broken, r_sdf_used, current_batch); } } } } // Copy over remaining data needed for rendering. if (instance_index > 0) { RD::get_singleton()->buffer_update( state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.current_instance_buffer_index], state.last_instance_index * sizeof(InstanceData), instance_index * sizeof(InstanceData), state.instance_data_array); } } if (state.canvas_instance_batches.is_empty()) { // Nothing to render, just return. return; } // Render batches RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); RID framebuffer; RID fb_uniform_set; bool clear = false; Vector clear_colors; if (p_to_backbuffer) { framebuffer = texture_storage->render_target_get_rd_backbuffer_framebuffer(p_to_render_target.render_target); fb_uniform_set = texture_storage->render_target_get_backbuffer_uniform_set(p_to_render_target.render_target); } else { framebuffer = texture_storage->render_target_get_rd_framebuffer(p_to_render_target.render_target); texture_storage->render_target_set_msaa_needs_resolve(p_to_render_target.render_target, false); // If MSAA is enabled, our framebuffer will be resolved! if (texture_storage->render_target_is_clear_requested(p_to_render_target.render_target)) { clear = true; clear_colors.push_back(texture_storage->render_target_get_clear_request_color(p_to_render_target.render_target)); texture_storage->render_target_disable_clear_request(p_to_render_target.render_target); } // TODO: Obtain from framebuffer format eventually when this is implemented. fb_uniform_set = texture_storage->render_target_get_framebuffer_uniform_set(p_to_render_target.render_target); } if (fb_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(fb_uniform_set)) { fb_uniform_set = _create_base_uniform_set(p_to_render_target.render_target, p_to_backbuffer); } RD::FramebufferFormatID fb_format = RD::get_singleton()->framebuffer_get_format(framebuffer); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(framebuffer, clear ? RD::INITIAL_ACTION_CLEAR : RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_DISCARD, clear_colors); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, fb_uniform_set, BASE_UNIFORM_SET); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, state.default_transforms_uniform_set, TRANSFORMS_UNIFORM_SET); Item *current_clip = nullptr; state.current_batch_uniform_set = RID(); for (uint32_t i = 0; i <= state.current_batch_index; i++) { Batch *current_batch = &state.canvas_instance_batches[i]; // Skipping when there is no instances. if (current_batch->instance_count == 0) { continue; } //setup clip if (current_clip != current_batch->clip) { current_clip = current_batch->clip; if (current_clip) { RD::get_singleton()->draw_list_enable_scissor(draw_list, current_clip->final_clip_rect); } else { RD::get_singleton()->draw_list_disable_scissor(draw_list); } } PipelineVariants *pipeline_variants = &shader.pipeline_variants; CanvasMaterialData *material_data = current_batch->material_data; if (material_data) { if (material_data->shader_data->version.is_valid() && material_data->shader_data->valid) { pipeline_variants = &material_data->shader_data->pipeline_variants; // Update uniform set. RID uniform_set = texture_storage->render_target_is_using_hdr(p_to_render_target.render_target) ? material_data->uniform_set : material_data->uniform_set_srgb; if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { // Material may not have a uniform set. RD::get_singleton()->draw_list_bind_uniform_set(draw_list, uniform_set, MATERIAL_UNIFORM_SET); material_data->set_as_used(); } } } _render_batch(draw_list, pipeline_variants, fb_format, p_lights, current_batch, r_render_info); } RD::get_singleton()->draw_list_end(); state.current_batch_index = 0; state.canvas_instance_batches.clear(); state.last_instance_index += instance_index; } void RendererCanvasRenderRD::_record_item_commands(const Item *p_item, RenderTarget p_render_target, const Transform2D &p_base_transform, Item *&r_current_clip, Light *p_lights, uint32_t &r_index, bool &r_batch_broken, bool &r_sdf_used, Batch *&r_current_batch) { RenderingServer::CanvasItemTextureFilter texture_filter = p_item->texture_filter == RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT ? default_filter : p_item->texture_filter; RenderingServer::CanvasItemTextureRepeat texture_repeat = p_item->texture_repeat == RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT ? default_repeat : p_item->texture_repeat; Transform2D base_transform = p_base_transform; float world[6]; Transform2D draw_transform; // Used by transform command _update_transform_2d_to_mat2x3(base_transform, world); Color base_color = p_item->final_modulate; bool use_linear_colors = bool(p_render_target.base_flags & FLAGS_CONVERT_ATTRIBUTES_TO_LINEAR); uint32_t base_flags = p_render_target.base_flags; bool reclip = false; bool skipping = false; // TODO: consider making lights a per-batch property and then baking light operations in the shader for better performance. uint32_t lights[4] = { 0, 0, 0, 0 }; uint16_t light_count = 0; PipelineLightMode light_mode; { Light *light = p_lights; while (light) { if (light->render_index_cache >= 0 && p_item->light_mask & light->item_mask && p_item->z_final >= light->z_min && p_item->z_final <= light->z_max && p_item->global_rect_cache.intersects_transformed(light->xform_cache, light->rect_cache)) { uint32_t light_index = light->render_index_cache; lights[light_count >> 2] |= light_index << ((light_count & 3) * 8); light_count++; if (light_count == state.max_lights_per_item - 1) { break; } } light = light->next_ptr; } base_flags |= light_count << FLAGS_LIGHT_COUNT_SHIFT; } light_mode = (light_count > 0 || using_directional_lights) ? PIPELINE_LIGHT_MODE_ENABLED : PIPELINE_LIGHT_MODE_DISABLED; if (light_mode != r_current_batch->light_mode) { r_current_batch = _new_batch(r_batch_broken); r_current_batch->light_mode = light_mode; } // new_instance_data should be called after the current_batch is set. auto new_instance_data = [&]() -> InstanceData * { InstanceData *instance_data = &state.instance_data_array[r_index]; // Zero out most fields. for (int i = 0; i < 4; i++) { instance_data->modulation[i] = 0.0; instance_data->ninepatch_margins[i] = 0.0; instance_data->src_rect[i] = 0.0; instance_data->dst_rect[i] = 0.0; } instance_data->pad[0] = 0.0; instance_data->pad[1] = 0.0; instance_data->lights[0] = lights[0]; instance_data->lights[1] = lights[1]; instance_data->lights[2] = lights[2]; instance_data->lights[3] = lights[3]; for (int i = 0; i < 6; i++) { instance_data->world[i] = world[i]; } instance_data->flags = base_flags | r_current_batch->tex_info.flags; // Reset on each command for safety, keep canvas texture binding config. instance_data->color_texture_pixel_size[0] = r_current_batch->tex_info.texpixel_size.width; instance_data->color_texture_pixel_size[1] = r_current_batch->tex_info.texpixel_size.height; instance_data->specular_shininess = r_current_batch->tex_info.specular_shininess; return instance_data; }; const Item::Command *c = p_item->commands; while (c) { if (skipping && c->type != Item::Command::TYPE_ANIMATION_SLICE) { c = c->next; continue; } switch (c->type) { case Item::Command::TYPE_RECT: { const Item::CommandRect *rect = static_cast(c); // 1: If commands are different, start a new batch. if (r_current_batch->command_type != Item::Command::TYPE_RECT) { r_current_batch = _new_batch(r_batch_broken); r_current_batch->command_type = Item::Command::TYPE_RECT; r_current_batch->command = c; // default variant r_current_batch->pipeline_variant = PIPELINE_VARIANT_QUAD; } if (bool(rect->flags & CANVAS_RECT_TILE)) { texture_repeat = RenderingServer::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED; } bool has_msdf = bool(rect->flags & CANVAS_RECT_MSDF); TextureState tex_state(rect->texture, texture_filter, texture_repeat, has_msdf, use_linear_colors); if (tex_state != r_current_batch->tex_info.state) { r_current_batch = _new_batch(r_batch_broken); r_current_batch->tex_info.state = tex_state; _prepare_batch_texture_info(r_current_batch, rect->texture); } Color modulated = rect->modulate * base_color; if (use_linear_colors) { modulated = modulated.srgb_to_linear(); } bool has_blend = bool(rect->flags & CANVAS_RECT_LCD); // Start a new batch if the blend mode has changed, // or blend mode is enabled and the modulation has changed. if (has_blend != r_current_batch->has_blend || (has_blend && modulated != r_current_batch->modulate)) { r_current_batch = _new_batch(r_batch_broken); r_current_batch->has_blend = has_blend; r_current_batch->modulate = modulated; r_current_batch->pipeline_variant = has_blend ? PIPELINE_VARIANT_QUAD_LCD_BLEND : PIPELINE_VARIANT_QUAD; } InstanceData *instance_data = new_instance_data(); Rect2 src_rect; Rect2 dst_rect; if (rect->texture.is_valid()) { src_rect = (rect->flags & CANVAS_RECT_REGION) ? Rect2(rect->source.position * r_current_batch->tex_info.texpixel_size, rect->source.size * r_current_batch->tex_info.texpixel_size) : Rect2(0, 0, 1, 1); dst_rect = Rect2(rect->rect.position, rect->rect.size); if (dst_rect.size.width < 0) { dst_rect.position.x += dst_rect.size.width; dst_rect.size.width *= -1; } if (dst_rect.size.height < 0) { dst_rect.position.y += dst_rect.size.height; dst_rect.size.height *= -1; } if (rect->flags & CANVAS_RECT_FLIP_H) { src_rect.size.x *= -1; instance_data->flags |= FLAGS_FLIP_H; } if (rect->flags & CANVAS_RECT_FLIP_V) { src_rect.size.y *= -1; instance_data->flags |= FLAGS_FLIP_V; } if (rect->flags & CANVAS_RECT_TRANSPOSE) { instance_data->flags |= FLAGS_TRANSPOSE_RECT; } if (rect->flags & CANVAS_RECT_CLIP_UV) { instance_data->flags |= FLAGS_CLIP_RECT_UV; } } else { dst_rect = Rect2(rect->rect.position, rect->rect.size); if (dst_rect.size.width < 0) { dst_rect.position.x += dst_rect.size.width; dst_rect.size.width *= -1; } if (dst_rect.size.height < 0) { dst_rect.position.y += dst_rect.size.height; dst_rect.size.height *= -1; } src_rect = Rect2(0, 0, 1, 1); } if (has_msdf) { instance_data->flags |= FLAGS_USE_MSDF; instance_data->msdf[0] = rect->px_range; // Pixel range. instance_data->msdf[1] = rect->outline; // Outline size. instance_data->msdf[2] = 0.f; // Reserved. instance_data->msdf[3] = 0.f; // Reserved. } else if (rect->flags & CANVAS_RECT_LCD) { instance_data->flags |= FLAGS_USE_LCD; } instance_data->modulation[0] = modulated.r; instance_data->modulation[1] = modulated.g; instance_data->modulation[2] = modulated.b; instance_data->modulation[3] = modulated.a; instance_data->src_rect[0] = src_rect.position.x; instance_data->src_rect[1] = src_rect.position.y; instance_data->src_rect[2] = src_rect.size.width; instance_data->src_rect[3] = src_rect.size.height; instance_data->dst_rect[0] = dst_rect.position.x; instance_data->dst_rect[1] = dst_rect.position.y; instance_data->dst_rect[2] = dst_rect.size.width; instance_data->dst_rect[3] = dst_rect.size.height; _add_to_batch(r_index, r_batch_broken, r_current_batch); } break; case Item::Command::TYPE_NINEPATCH: { const Item::CommandNinePatch *np = static_cast(c); if (r_current_batch->command_type != Item::Command::TYPE_NINEPATCH) { r_current_batch = _new_batch(r_batch_broken); r_current_batch->command_type = Item::Command::TYPE_NINEPATCH; r_current_batch->command = c; r_current_batch->has_blend = false; r_current_batch->pipeline_variant = PipelineVariant::PIPELINE_VARIANT_NINEPATCH; } TextureState tex_state(np->texture, texture_filter, texture_repeat, false, use_linear_colors); if (tex_state != r_current_batch->tex_info.state) { r_current_batch = _new_batch(r_batch_broken); r_current_batch->tex_info.state = tex_state; _prepare_batch_texture_info(r_current_batch, np->texture); } InstanceData *instance_data = new_instance_data(); Rect2 src_rect; Rect2 dst_rect(np->rect.position.x, np->rect.position.y, np->rect.size.x, np->rect.size.y); if (np->texture.is_null()) { src_rect = Rect2(0, 0, 1, 1); } else { if (np->source != Rect2()) { src_rect = Rect2(np->source.position.x * r_current_batch->tex_info.texpixel_size.width, np->source.position.y * r_current_batch->tex_info.texpixel_size.height, np->source.size.x * r_current_batch->tex_info.texpixel_size.width, np->source.size.y * r_current_batch->tex_info.texpixel_size.height); instance_data->color_texture_pixel_size[0] = 1.0 / np->source.size.width; instance_data->color_texture_pixel_size[1] = 1.0 / np->source.size.height; } else { src_rect = Rect2(0, 0, 1, 1); } } Color modulated = np->color * base_color; if (use_linear_colors) { modulated = modulated.srgb_to_linear(); } instance_data->modulation[0] = modulated.r; instance_data->modulation[1] = modulated.g; instance_data->modulation[2] = modulated.b; instance_data->modulation[3] = modulated.a; instance_data->src_rect[0] = src_rect.position.x; instance_data->src_rect[1] = src_rect.position.y; instance_data->src_rect[2] = src_rect.size.width; instance_data->src_rect[3] = src_rect.size.height; instance_data->dst_rect[0] = dst_rect.position.x; instance_data->dst_rect[1] = dst_rect.position.y; instance_data->dst_rect[2] = dst_rect.size.width; instance_data->dst_rect[3] = dst_rect.size.height; instance_data->flags |= int(np->axis_x) << FLAGS_NINEPATCH_H_MODE_SHIFT; instance_data->flags |= int(np->axis_y) << FLAGS_NINEPATCH_V_MODE_SHIFT; if (np->draw_center) { instance_data->flags |= FLAGS_NINEPACH_DRAW_CENTER; } instance_data->ninepatch_margins[0] = np->margin[SIDE_LEFT]; instance_data->ninepatch_margins[1] = np->margin[SIDE_TOP]; instance_data->ninepatch_margins[2] = np->margin[SIDE_RIGHT]; instance_data->ninepatch_margins[3] = np->margin[SIDE_BOTTOM]; _add_to_batch(r_index, r_batch_broken, r_current_batch); } break; case Item::Command::TYPE_POLYGON: { const Item::CommandPolygon *polygon = static_cast(c); // Polygon's can't be batched, so always create a new batch r_current_batch = _new_batch(r_batch_broken); r_current_batch->command_type = Item::Command::TYPE_POLYGON; r_current_batch->has_blend = false; r_current_batch->command = c; TextureState tex_state(polygon->texture, texture_filter, texture_repeat, false, use_linear_colors); if (tex_state != r_current_batch->tex_info.state) { r_current_batch = _new_batch(r_batch_broken); r_current_batch->tex_info.state = tex_state; _prepare_batch_texture_info(r_current_batch, polygon->texture); } // pipeline variant { static const PipelineVariant variant[RS::PRIMITIVE_MAX] = { PIPELINE_VARIANT_ATTRIBUTE_POINTS, PIPELINE_VARIANT_ATTRIBUTE_LINES, PIPELINE_VARIANT_ATTRIBUTE_LINES_STRIP, PIPELINE_VARIANT_ATTRIBUTE_TRIANGLES, PIPELINE_VARIANT_ATTRIBUTE_TRIANGLE_STRIP }; ERR_CONTINUE(polygon->primitive < 0 || polygon->primitive >= RS::PRIMITIVE_MAX); r_current_batch->pipeline_variant = variant[polygon->primitive]; } InstanceData *instance_data = new_instance_data(); Color color = base_color; if (use_linear_colors) { color = color.srgb_to_linear(); } instance_data->modulation[0] = color.r; instance_data->modulation[1] = color.g; instance_data->modulation[2] = color.b; instance_data->modulation[3] = color.a; _add_to_batch(r_index, r_batch_broken, r_current_batch); } break; case Item::Command::TYPE_PRIMITIVE: { const Item::CommandPrimitive *primitive = static_cast(c); if (primitive->point_count != r_current_batch->primitive_points || r_current_batch->command_type != Item::Command::TYPE_PRIMITIVE) { r_current_batch = _new_batch(r_batch_broken); r_current_batch->command_type = Item::Command::TYPE_PRIMITIVE; r_current_batch->has_blend = false; r_current_batch->command = c; r_current_batch->primitive_points = primitive->point_count; static const PipelineVariant variant[4] = { PIPELINE_VARIANT_PRIMITIVE_POINTS, PIPELINE_VARIANT_PRIMITIVE_LINES, PIPELINE_VARIANT_PRIMITIVE_TRIANGLES, PIPELINE_VARIANT_PRIMITIVE_TRIANGLES }; ERR_CONTINUE(primitive->point_count == 0 || primitive->point_count > 4); r_current_batch->pipeline_variant = variant[primitive->point_count - 1]; TextureState tex_state(primitive->texture, texture_filter, texture_repeat, false, use_linear_colors); if (tex_state != r_current_batch->tex_info.state) { r_current_batch = _new_batch(r_batch_broken); r_current_batch->tex_info.state = tex_state; _prepare_batch_texture_info(r_current_batch, primitive->texture); } } InstanceData *instance_data = new_instance_data(); for (uint32_t j = 0; j < MIN(3u, primitive->point_count); j++) { instance_data->points[j * 2 + 0] = primitive->points[j].x; instance_data->points[j * 2 + 1] = primitive->points[j].y; instance_data->uvs[j * 2 + 0] = primitive->uvs[j].x; instance_data->uvs[j * 2 + 1] = primitive->uvs[j].y; Color col = primitive->colors[j] * base_color; if (use_linear_colors) { col = col.srgb_to_linear(); } instance_data->colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r); instance_data->colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b); } _add_to_batch(r_index, r_batch_broken, r_current_batch); if (primitive->point_count == 4) { instance_data = new_instance_data(); for (uint32_t j = 0; j < 3; j++) { int offset = j == 0 ? 0 : 1; // Second triangle in the quad. Uses vertices 0, 2, 3. instance_data->points[j * 2 + 0] = primitive->points[j + offset].x; instance_data->points[j * 2 + 1] = primitive->points[j + offset].y; instance_data->uvs[j * 2 + 0] = primitive->uvs[j + offset].x; instance_data->uvs[j * 2 + 1] = primitive->uvs[j + offset].y; Color col = primitive->colors[j] * base_color; if (use_linear_colors) { col = col.srgb_to_linear(); } instance_data->colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r); instance_data->colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b); } _add_to_batch(r_index, r_batch_broken, r_current_batch); } } break; case Item::Command::TYPE_MESH: case Item::Command::TYPE_MULTIMESH: case Item::Command::TYPE_PARTICLES: { // Mesh's can't be batched, so always create a new batch r_current_batch = _new_batch(r_batch_broken); r_current_batch->command = c; r_current_batch->command_type = c->type; r_current_batch->has_blend = false; InstanceData *instance_data = nullptr; Color modulate(1, 1, 1, 1); if (c->type == Item::Command::TYPE_MESH) { const Item::CommandMesh *m = static_cast(c); TextureState tex_state(m->texture, texture_filter, texture_repeat, false, use_linear_colors); r_current_batch->tex_info.state = tex_state; _prepare_batch_texture_info(r_current_batch, m->texture); instance_data = new_instance_data(); r_current_batch->mesh_instance_count = 1; _update_transform_2d_to_mat2x3(base_transform * draw_transform * m->transform, instance_data->world); modulate = m->modulate; } else if (c->type == Item::Command::TYPE_MULTIMESH) { RendererRD::MeshStorage *mesh_storage = RendererRD::MeshStorage::get_singleton(); const Item::CommandMultiMesh *mm = static_cast(c); RID multimesh = mm->multimesh; if (mesh_storage->multimesh_get_transform_format(multimesh) != RS::MULTIMESH_TRANSFORM_2D) { break; } r_current_batch->mesh_instance_count = mesh_storage->multimesh_get_instances_to_draw(multimesh); if (r_current_batch->mesh_instance_count == 0) { break; } TextureState tex_state(mm->texture, texture_filter, texture_repeat, false, use_linear_colors); r_current_batch->tex_info.state = tex_state; _prepare_batch_texture_info(r_current_batch, mm->texture); instance_data = new_instance_data(); instance_data->flags |= 1; // multimesh, trails disabled if (mesh_storage->multimesh_uses_colors(mm->multimesh)) { instance_data->flags |= FLAGS_INSTANCING_HAS_COLORS; } if (mesh_storage->multimesh_uses_custom_data(mm->multimesh)) { instance_data->flags |= FLAGS_INSTANCING_HAS_CUSTOM_DATA; } } else if (c->type == Item::Command::TYPE_PARTICLES) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); RendererRD::ParticlesStorage *particles_storage = RendererRD::ParticlesStorage::get_singleton(); const Item::CommandParticles *pt = static_cast(c); TextureState tex_state(pt->texture, texture_filter, texture_repeat, false, use_linear_colors); r_current_batch->tex_info.state = tex_state; _prepare_batch_texture_info(r_current_batch, pt->texture); instance_data = new_instance_data(); uint32_t divisor = 1; r_current_batch->mesh_instance_count = particles_storage->particles_get_amount(pt->particles, divisor); instance_data->flags |= (divisor & FLAGS_INSTANCING_MASK); r_current_batch->mesh_instance_count /= divisor; RID particles = pt->particles; instance_data->flags |= FLAGS_INSTANCING_HAS_COLORS; instance_data->flags |= FLAGS_INSTANCING_HAS_CUSTOM_DATA; if (particles_storage->particles_has_collision(particles) && texture_storage->render_target_is_sdf_enabled(p_render_target.render_target)) { // Pass collision information. Transform2D xform = p_item->final_transform; RID sdf_texture = texture_storage->render_target_get_sdf_texture(p_render_target.render_target); Rect2 to_screen; { Rect2 sdf_rect = texture_storage->render_target_get_sdf_rect(p_render_target.render_target); to_screen.size = Vector2(1.0 / sdf_rect.size.width, 1.0 / sdf_rect.size.height); to_screen.position = -sdf_rect.position * to_screen.size; } particles_storage->particles_set_canvas_sdf_collision(pt->particles, true, xform, to_screen, sdf_texture); } else { particles_storage->particles_set_canvas_sdf_collision(pt->particles, false, Transform2D(), Rect2(), RID()); } r_sdf_used |= particles_storage->particles_has_collision(particles); } Color modulated = modulate * base_color; if (use_linear_colors) { modulated = modulated.srgb_to_linear(); } instance_data->modulation[0] = modulated.r; instance_data->modulation[1] = modulated.g; instance_data->modulation[2] = modulated.b; instance_data->modulation[3] = modulated.a; _add_to_batch(r_index, r_batch_broken, r_current_batch); } break; case Item::Command::TYPE_TRANSFORM: { const Item::CommandTransform *transform = static_cast(c); draw_transform = transform->xform; _update_transform_2d_to_mat2x3(base_transform * transform->xform, world); } break; case Item::Command::TYPE_CLIP_IGNORE: { const Item::CommandClipIgnore *ci = static_cast(c); if (r_current_clip) { if (ci->ignore != reclip) { r_current_batch = _new_batch(r_batch_broken); if (ci->ignore) { r_current_batch->clip = nullptr; reclip = true; } else { r_current_batch->clip = r_current_clip; reclip = false; } } } } break; case Item::Command::TYPE_ANIMATION_SLICE: { const Item::CommandAnimationSlice *as = static_cast(c); double current_time = RSG::rasterizer->get_total_time(); double local_time = Math::fposmod(current_time - as->offset, as->animation_length); skipping = !(local_time >= as->slice_begin && local_time < as->slice_end); RenderingServerDefault::redraw_request(); // animation visible means redraw request } break; } c = c->next; r_batch_broken = false; } if (r_current_clip && reclip) { // will make it re-enable clipping if needed afterwards r_current_clip = nullptr; } } void RendererCanvasRenderRD::_render_batch(RD::DrawListID p_draw_list, PipelineVariants *p_pipeline_variants, RenderingDevice::FramebufferFormatID p_framebuffer_format, Light *p_lights, Batch const *p_batch, RenderingMethod::RenderInfo *r_render_info) { UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton(); ERR_FAIL_NULL(uniform_set_cache); ERR_FAIL_NULL(p_batch->command); { RD::Uniform u_diffuse(RD::UNIFORM_TYPE_TEXTURE, 0, p_batch->tex_info.diffuse); RD::Uniform u_normal(RD::UNIFORM_TYPE_TEXTURE, 1, p_batch->tex_info.normal); RD::Uniform u_specular(RD::UNIFORM_TYPE_TEXTURE, 2, p_batch->tex_info.specular); RD::Uniform u_sampler(RD::UNIFORM_TYPE_SAMPLER, 3, p_batch->tex_info.sampler); RD::Uniform u_instance_data(RD::UNIFORM_TYPE_STORAGE_BUFFER, 4, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[p_batch->instance_buffer_index]); RID uniform_set = uniform_set_cache->get_cache(shader.default_version_rd_shader, BATCH_UNIFORM_SET, u_diffuse, u_normal, u_specular, u_sampler, u_instance_data); if (state.current_batch_uniform_set != uniform_set) { state.current_batch_uniform_set = uniform_set; RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, uniform_set, BATCH_UNIFORM_SET); } } switch (p_batch->command_type) { case Item::Command::TYPE_RECT: case Item::Command::TYPE_NINEPATCH: { RID pipeline = p_pipeline_variants->variants[p_batch->light_mode][p_batch->pipeline_variant].get_render_pipeline(RD::INVALID_ID, p_framebuffer_format); RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline); if (p_batch->has_blend) { DEV_ASSERT(p_batch->pipeline_variant == PIPELINE_VARIANT_QUAD_LCD_BLEND); RD::get_singleton()->draw_list_set_blend_constants(p_draw_list, p_batch->modulate); } PushConstant push_constant; push_constant.base_instance_index = p_batch->start; RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant)); RD::get_singleton()->draw_list_bind_index_array(p_draw_list, shader.quad_index_array); RD::get_singleton()->draw_list_draw(p_draw_list, true, p_batch->instance_count); if (r_render_info) { r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME] += p_batch->instance_count; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += 2 * p_batch->instance_count; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++; } } break; case Item::Command::TYPE_POLYGON: { const Item::CommandPolygon *polygon = static_cast(p_batch->command); PolygonBuffers *pb = polygon_buffers.polygons.getptr(polygon->polygon.polygon_id); ERR_FAIL_NULL(pb); RID pipeline = p_pipeline_variants->variants[p_batch->light_mode][p_batch->pipeline_variant].get_render_pipeline(pb->vertex_format_id, p_framebuffer_format); RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline); PushConstant push_constant; push_constant.base_instance_index = p_batch->start; RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant)); RD::get_singleton()->draw_list_bind_vertex_array(p_draw_list, pb->vertex_array); if (pb->indices.is_valid()) { RD::get_singleton()->draw_list_bind_index_array(p_draw_list, pb->indices); } RD::get_singleton()->draw_list_draw(p_draw_list, pb->indices.is_valid()); if (r_render_info) { r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME]++; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += _indices_to_primitives(polygon->primitive, pb->primitive_count); r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++; } } break; case Item::Command::TYPE_PRIMITIVE: { const Item::CommandPrimitive *primitive = static_cast(p_batch->command); RID pipeline = p_pipeline_variants->variants[p_batch->light_mode][p_batch->pipeline_variant].get_render_pipeline(RD::INVALID_ID, p_framebuffer_format); RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline); PushConstant push_constant; push_constant.base_instance_index = p_batch->start; RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant)); RD::get_singleton()->draw_list_bind_index_array(p_draw_list, primitive_arrays.index_array[MIN(3u, primitive->point_count) - 1]); uint32_t instance_count = p_batch->instance_count; RD::get_singleton()->draw_list_draw(p_draw_list, true, instance_count); if (r_render_info) { const RenderingServer::PrimitiveType rs_primitive[5] = { RS::PRIMITIVE_POINTS, RS::PRIMITIVE_POINTS, RS::PRIMITIVE_LINES, RS::PRIMITIVE_TRIANGLES, RS::PRIMITIVE_TRIANGLES }; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME] += instance_count; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += _indices_to_primitives(rs_primitive[p_batch->primitive_points], p_batch->primitive_points) * instance_count; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++; } } break; case Item::Command::TYPE_MESH: case Item::Command::TYPE_MULTIMESH: case Item::Command::TYPE_PARTICLES: { RendererRD::MeshStorage *mesh_storage = RendererRD::MeshStorage::get_singleton(); RendererRD::ParticlesStorage *particles_storage = RendererRD::ParticlesStorage::get_singleton(); RID mesh; RID mesh_instance; if (p_batch->command_type == Item::Command::TYPE_MESH) { const Item::CommandMesh *m = static_cast(p_batch->command); mesh = m->mesh; mesh_instance = m->mesh_instance; } else if (p_batch->command_type == Item::Command::TYPE_MULTIMESH) { const Item::CommandMultiMesh *mm = static_cast(p_batch->command); RID multimesh = mm->multimesh; mesh = mesh_storage->multimesh_get_mesh(multimesh); RID uniform_set = mesh_storage->multimesh_get_2d_uniform_set(multimesh, shader.default_version_rd_shader, TRANSFORMS_UNIFORM_SET); RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, uniform_set, TRANSFORMS_UNIFORM_SET); } else if (p_batch->command_type == Item::Command::TYPE_PARTICLES) { const Item::CommandParticles *pt = static_cast(p_batch->command); RID particles = pt->particles; mesh = particles_storage->particles_get_draw_pass_mesh(particles, 0); ERR_BREAK(particles_storage->particles_get_mode(particles) != RS::PARTICLES_MODE_2D); particles_storage->particles_request_process(particles); if (particles_storage->particles_is_inactive(particles)) { break; } RenderingServerDefault::redraw_request(); // Active particles means redraw request. int dpc = particles_storage->particles_get_draw_passes(particles); if (dpc == 0) { break; // Nothing to draw. } RID uniform_set = particles_storage->particles_get_instance_buffer_uniform_set(pt->particles, shader.default_version_rd_shader, TRANSFORMS_UNIFORM_SET); RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, uniform_set, TRANSFORMS_UNIFORM_SET); } if (mesh.is_null()) { break; } uint32_t surf_count = mesh_storage->mesh_get_surface_count(mesh); static const PipelineVariant variant[RS::PRIMITIVE_MAX] = { PIPELINE_VARIANT_ATTRIBUTE_POINTS, PIPELINE_VARIANT_ATTRIBUTE_LINES, PIPELINE_VARIANT_ATTRIBUTE_LINES_STRIP, PIPELINE_VARIANT_ATTRIBUTE_TRIANGLES, PIPELINE_VARIANT_ATTRIBUTE_TRIANGLE_STRIP }; for (uint32_t j = 0; j < surf_count; j++) { void *surface = mesh_storage->mesh_get_surface(mesh, j); RS::PrimitiveType primitive = mesh_storage->mesh_surface_get_primitive(surface); ERR_CONTINUE(primitive < 0 || primitive >= RS::PRIMITIVE_MAX); uint64_t input_mask = p_pipeline_variants->variants[p_batch->light_mode][variant[primitive]].get_vertex_input_mask(); RID vertex_array; RD::VertexFormatID vertex_format = RD::INVALID_FORMAT_ID; if (mesh_instance.is_valid()) { mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(mesh_instance, j, input_mask, false, vertex_array, vertex_format); } else { mesh_storage->mesh_surface_get_vertex_arrays_and_format(surface, input_mask, false, vertex_array, vertex_format); } RID pipeline = p_pipeline_variants->variants[p_batch->light_mode][variant[primitive]].get_render_pipeline(vertex_format, p_framebuffer_format); RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline); PushConstant push_constant; push_constant.base_instance_index = p_batch->start; RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant)); RID index_array = mesh_storage->mesh_surface_get_index_array(surface, 0); if (index_array.is_valid()) { RD::get_singleton()->draw_list_bind_index_array(p_draw_list, index_array); } RD::get_singleton()->draw_list_bind_vertex_array(p_draw_list, vertex_array); RD::get_singleton()->draw_list_draw(p_draw_list, index_array.is_valid(), p_batch->mesh_instance_count); if (r_render_info) { r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME]++; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += _indices_to_primitives(primitive, mesh_storage->mesh_surface_get_vertices_drawn_count(surface)) * p_batch->mesh_instance_count; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++; } } } break; case Item::Command::TYPE_TRANSFORM: case Item::Command::TYPE_CLIP_IGNORE: case Item::Command::TYPE_ANIMATION_SLICE: { // Can ignore these as they only impact batch creation. } break; } } RendererCanvasRenderRD::Batch *RendererCanvasRenderRD::_new_batch(bool &r_batch_broken) { if (state.canvas_instance_batches.size() == 0) { state.canvas_instance_batches.push_back(Batch()); return state.canvas_instance_batches.ptr(); } if (r_batch_broken || state.canvas_instance_batches[state.current_batch_index].instance_count == 0) { return &state.canvas_instance_batches[state.current_batch_index]; } r_batch_broken = true; // Copy the properties of the current batch, we will manually update the things that changed. Batch new_batch = state.canvas_instance_batches[state.current_batch_index]; new_batch.instance_count = 0; new_batch.start = state.canvas_instance_batches[state.current_batch_index].start + state.canvas_instance_batches[state.current_batch_index].instance_count; new_batch.instance_buffer_index = state.current_instance_buffer_index; state.current_batch_index++; state.canvas_instance_batches.push_back(new_batch); return &state.canvas_instance_batches[state.current_batch_index]; } void RendererCanvasRenderRD::_add_to_batch(uint32_t &r_index, bool &r_batch_broken, Batch *&r_current_batch) { r_current_batch->instance_count++; r_index++; if (r_index + state.last_instance_index >= state.max_instances_per_buffer) { // Copy over all data needed for rendering right away // then go back to recording item commands. RD::get_singleton()->buffer_update( state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.current_instance_buffer_index], state.last_instance_index * sizeof(InstanceData), r_index * sizeof(InstanceData), state.instance_data_array); _allocate_instance_buffer(); r_index = 0; state.last_instance_index = 0; r_batch_broken = false; // Force a new batch to be created r_current_batch = _new_batch(r_batch_broken); r_current_batch->start = 0; } } void RendererCanvasRenderRD::_allocate_instance_buffer() { state.current_instance_buffer_index++; if (state.current_instance_buffer_index < state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.size()) { // We already allocated another buffer in a previous frame, so we can just use it. return; } // Allocate a new buffer. RID buf = RD::get_singleton()->storage_buffer_create(state.max_instance_buffer_size); state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.push_back(buf); } void RendererCanvasRenderRD::_prepare_batch_texture_info(Batch *p_current_batch, RID p_texture) const { if (p_texture.is_null()) { p_texture = default_canvas_texture; } RendererRD::TextureStorage::CanvasTextureInfo info = RendererRD::TextureStorage::get_singleton()->canvas_texture_get_info( p_texture, p_current_batch->tex_info.state.texture_filter(), p_current_batch->tex_info.state.texture_repeat(), p_current_batch->tex_info.state.linear_colors(), p_current_batch->tex_info.state.texture_is_data()); // something odd happened if (info.is_null()) { _prepare_batch_texture_info(p_current_batch, default_canvas_texture); return; } p_current_batch->tex_info.diffuse = info.diffuse; p_current_batch->tex_info.normal = info.normal; p_current_batch->tex_info.specular = info.specular; p_current_batch->tex_info.sampler = info.sampler; // cache values to be copied to instance data if (info.specular_color.a < 0.999) { p_current_batch->tex_info.flags |= FLAGS_DEFAULT_SPECULAR_MAP_USED; } if (info.use_normal) { p_current_batch->tex_info.flags |= FLAGS_DEFAULT_NORMAL_MAP_USED; } uint8_t a = uint8_t(CLAMP(info.specular_color.a * 255.0, 0.0, 255.0)); uint8_t b = uint8_t(CLAMP(info.specular_color.b * 255.0, 0.0, 255.0)); uint8_t g = uint8_t(CLAMP(info.specular_color.g * 255.0, 0.0, 255.0)); uint8_t r = uint8_t(CLAMP(info.specular_color.r * 255.0, 0.0, 255.0)); p_current_batch->tex_info.specular_shininess = uint32_t(a) << 24 | uint32_t(b) << 16 | uint32_t(g) << 8 | uint32_t(r); p_current_batch->tex_info.texpixel_size = Vector2(1.0 / float(info.size.width), 1.0 / float(info.size.height)); } RendererCanvasRenderRD::~RendererCanvasRenderRD() { RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton(); //canvas state material_storage->material_free(default_canvas_group_material); material_storage->shader_free(default_canvas_group_shader); material_storage->material_free(default_clip_children_material); material_storage->shader_free(default_clip_children_shader); { if (state.canvas_state_buffer.is_valid()) { RD::get_singleton()->free(state.canvas_state_buffer); } memdelete_arr(state.light_uniforms); RD::get_singleton()->free(state.lights_uniform_buffer); } //shadow rendering { shadow_render.shader.version_free(shadow_render.shader_version); //this will also automatically clear all pipelines RD::get_singleton()->free(state.shadow_sampler); } //bindings //shaders shader.canvas_shader.version_free(shader.default_version); //buffers { RD::get_singleton()->free(shader.quad_index_array); RD::get_singleton()->free(shader.quad_index_buffer); //primitives are erase by dependency } if (state.shadow_fb.is_valid()) { RD::get_singleton()->free(state.shadow_depth_texture); } RD::get_singleton()->free(state.shadow_texture); memdelete_arr(state.instance_data_array); for (uint32_t i = 0; i < state.canvas_instance_data_buffers.size(); i++) { for (uint32_t j = 0; j < state.canvas_instance_data_buffers[i].instance_buffers.size(); j++) { RD::get_singleton()->free(state.canvas_instance_data_buffers[i].instance_buffers[j]); } } RendererRD::TextureStorage::get_singleton()->canvas_texture_free(default_canvas_texture); //pipelines don't need freeing, they are all gone after shaders are gone }