#[vertex] #version 450 #VERSION_DEFINES #include "scene_forward_clustered_inc.glsl" /* INPUT ATTRIBS */ layout(location = 0) in vec3 vertex_attrib; //only for pure render depth when normal is not used #ifdef NORMAL_USED layout(location = 1) in vec3 normal_attrib; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) layout(location = 2) in vec4 tangent_attrib; #endif #if defined(COLOR_USED) layout(location = 3) in vec4 color_attrib; #endif #ifdef UV_USED layout(location = 4) in vec2 uv_attrib; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(MODE_RENDER_MATERIAL) layout(location = 5) in vec2 uv2_attrib; #endif #if defined(CUSTOM0_USED) layout(location = 6) in vec4 custom0_attrib; #endif #if defined(CUSTOM1_USED) layout(location = 7) in vec4 custom1_attrib; #endif #if defined(CUSTOM2_USED) layout(location = 8) in vec4 custom2_attrib; #endif #if defined(CUSTOM3_USED) layout(location = 9) in vec4 custom3_attrib; #endif #if defined(BONES_USED) || defined(USE_PARTICLE_TRAILS) layout(location = 10) in uvec4 bone_attrib; #endif #if defined(WEIGHTS_USED) || defined(USE_PARTICLE_TRAILS) layout(location = 11) in vec4 weight_attrib; #endif /* Varyings */ layout(location = 0) out vec3 vertex_interp; #ifdef NORMAL_USED layout(location = 1) out vec3 normal_interp; #endif #if defined(COLOR_USED) layout(location = 2) out vec4 color_interp; #endif #ifdef UV_USED layout(location = 3) out vec2 uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) layout(location = 4) out vec2 uv2_interp; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) layout(location = 5) out vec3 tangent_interp; layout(location = 6) out vec3 binormal_interp; #endif #ifdef MATERIAL_UNIFORMS_USED layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{ #MATERIAL_UNIFORMS } material; #endif #ifdef MODE_DUAL_PARABOLOID layout(location = 8) out float dp_clip; #endif layout(location = 9) out flat uint instance_index; invariant gl_Position; #GLOBALS void main() { vec4 instance_custom = vec4(0.0); #if defined(COLOR_USED) color_interp = color_attrib; #endif instance_index = draw_call.instance_index; bool is_multimesh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH); if (!is_multimesh) { instance_index += gl_InstanceIndex; } mat4 world_matrix = instances.data[instance_index].transform; mat3 world_normal_matrix; if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_NON_UNIFORM_SCALE)) { world_normal_matrix = transpose(inverse(mat3(world_matrix))); } else { world_normal_matrix = mat3(world_matrix); } if (is_multimesh) { //multimesh, instances are for it mat4 matrix; #ifdef USE_PARTICLE_TRAILS uint trail_size = (instances.data[instance_index].flags >> INSTANCE_FLAGS_PARTICLE_TRAIL_SHIFT) & INSTANCE_FLAGS_PARTICLE_TRAIL_MASK; uint stride = 3 + 1 + 1; //particles always uses this format uint offset = trail_size * stride * gl_InstanceIndex; #ifdef COLOR_USED vec4 pcolor; #endif { uint boffset = offset + bone_attrib.x * stride; matrix = mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.x; #ifdef COLOR_USED pcolor = transforms.data[boffset + 3] * weight_attrib.x; #endif } if (weight_attrib.y > 0.001) { uint boffset = offset + bone_attrib.y * stride; matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.y; #ifdef COLOR_USED pcolor += transforms.data[boffset + 3] * weight_attrib.y; #endif } if (weight_attrib.z > 0.001) { uint boffset = offset + bone_attrib.z * stride; matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.z; #ifdef COLOR_USED pcolor += transforms.data[boffset + 3] * weight_attrib.z; #endif } if (weight_attrib.w > 0.001) { uint boffset = offset + bone_attrib.w * stride; matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.w; #ifdef COLOR_USED pcolor += transforms.data[boffset + 3] * weight_attrib.w; #endif } instance_custom = transforms.data[offset + 4]; #ifdef COLOR_USED color_interp *= pcolor; #endif #else uint stride = 0; { //TODO implement a small lookup table for the stride if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) { stride += 2; } else { stride += 3; } if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) { stride += 1; } if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) { stride += 1; } } uint offset = stride * gl_InstanceIndex; if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) { matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)); offset += 2; } else { matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0)); offset += 3; } if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) { #ifdef COLOR_USED color_interp *= transforms.data[offset]; #endif offset += 1; } if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) { instance_custom = transforms.data[offset]; } #endif //transpose matrix = transpose(matrix); world_matrix = world_matrix * matrix; world_normal_matrix = world_normal_matrix * mat3(matrix); } vec3 vertex = vertex_attrib; #ifdef NORMAL_USED vec3 normal = normal_attrib * 2.0 - 1.0; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) vec3 tangent = tangent_attrib.xyz * 2.0 - 1.0; float binormalf = tangent_attrib.a * 2.0 - 1.0; vec3 binormal = normalize(cross(normal, tangent) * binormalf); #endif #ifdef UV_USED uv_interp = uv_attrib; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) uv2_interp = uv2_attrib; #endif #ifdef OVERRIDE_POSITION vec4 position; #endif mat4 projection_matrix = scene_data.projection_matrix; //using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = (world_matrix * vec4(vertex, 1.0)).xyz; normal = world_normal_matrix * normal; #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) tangent = world_normal_matrix * tangent; binormal = world_normal_matrix * binormal; #endif #endif float roughness = 1.0; mat4 modelview = scene_data.inv_camera_matrix * world_matrix; mat3 modelview_normal = mat3(scene_data.inv_camera_matrix) * world_normal_matrix; { #CODE : VERTEX } // using local coordinates (default) #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) vertex = (modelview * vec4(vertex, 1.0)).xyz; #ifdef NORMAL_USED normal = modelview_normal * normal; #endif #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) binormal = modelview_normal * binormal; tangent = modelview_normal * tangent; #endif //using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = (scene_data.inv_camera_matrix * vec4(vertex, 1.0)).xyz; normal = mat3(scene_data.inverse_normal_matrix) * normal; #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) binormal = mat3(scene_data.camera_inverse_binormal_matrix) * binormal; tangent = mat3(scene_data.camera_inverse_tangent_matrix) * tangent; #endif #endif vertex_interp = vertex; #ifdef NORMAL_USED normal_interp = normal; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) tangent_interp = tangent; binormal_interp = binormal; #endif #ifdef MODE_RENDER_DEPTH #ifdef MODE_DUAL_PARABOLOID vertex_interp.z *= scene_data.dual_paraboloid_side; dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges vec3 vtx = vertex_interp; float distance = length(vtx); vtx = normalize(vtx); vtx.xy /= 1.0 - vtx.z; vtx.z = (distance / scene_data.z_far); vtx.z = vtx.z * 2.0 - 1.0; vertex_interp = vtx; #endif #endif //MODE_RENDER_DEPTH #ifdef OVERRIDE_POSITION gl_Position = position; #else gl_Position = projection_matrix * vec4(vertex_interp, 1.0); #endif #ifdef MODE_RENDER_DEPTH if (scene_data.pancake_shadows) { if (gl_Position.z <= 0.00001) { gl_Position.z = 0.00001; } } #endif #ifdef MODE_RENDER_MATERIAL if (scene_data.material_uv2_mode) { vec2 uv_offset = unpackHalf2x16(draw_call.uv_offset); gl_Position.xy = (uv2_attrib.xy + uv_offset) * 2.0 - 1.0; gl_Position.z = 0.00001; gl_Position.w = 1.0; } #endif } #[fragment] #version 450 #VERSION_DEFINES /* Specialization Constants (Toggles) */ layout(constant_id = 0) const bool sc_use_forward_gi = false; layout(constant_id = 1) const bool sc_use_light_projector = false; layout(constant_id = 2) const bool sc_use_light_soft_shadows = false; layout(constant_id = 3) const bool sc_use_directional_soft_shadows = false; /* Specialization Constants (Values) */ layout(constant_id = 6) const uint sc_soft_shadow_samples = 4; layout(constant_id = 7) const uint sc_penumbra_shadow_samples = 4; layout(constant_id = 8) const uint sc_directional_soft_shadow_samples = 4; layout(constant_id = 9) const uint sc_directional_penumbra_shadow_samples = 4; layout(constant_id = 10) const bool sc_decal_use_mipmaps = true; layout(constant_id = 11) const bool sc_projector_use_mipmaps = true; // not used in clustered renderer but we share some code with the mobile renderer that requires this. const float sc_luminance_multiplier = 1.0; #include "scene_forward_clustered_inc.glsl" /* Varyings */ layout(location = 0) in vec3 vertex_interp; #ifdef NORMAL_USED layout(location = 1) in vec3 normal_interp; #endif #if defined(COLOR_USED) layout(location = 2) in vec4 color_interp; #endif #ifdef UV_USED layout(location = 3) in vec2 uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) layout(location = 4) in vec2 uv2_interp; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) layout(location = 5) in vec3 tangent_interp; layout(location = 6) in vec3 binormal_interp; #endif #ifdef MODE_DUAL_PARABOLOID layout(location = 8) in float dp_clip; #endif layout(location = 9) in flat uint instance_index; //defines to keep compatibility with vertex #define world_matrix instances.data[instance_index].transform #define projection_matrix scene_data.projection_matrix #if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE) //both required for transmittance to be enabled #define LIGHT_TRANSMITTANCE_USED #endif #ifdef MATERIAL_UNIFORMS_USED layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{ #MATERIAL_UNIFORMS } material; #endif #GLOBALS #ifdef MODE_RENDER_DEPTH #ifdef MODE_RENDER_MATERIAL layout(location = 0) out vec4 albedo_output_buffer; layout(location = 1) out vec4 normal_output_buffer; layout(location = 2) out vec4 orm_output_buffer; layout(location = 3) out vec4 emission_output_buffer; layout(location = 4) out float depth_output_buffer; #endif // MODE_RENDER_MATERIAL #ifdef MODE_RENDER_NORMAL_ROUGHNESS layout(location = 0) out vec4 normal_roughness_output_buffer; #ifdef MODE_RENDER_VOXEL_GI layout(location = 1) out uvec2 voxel_gi_buffer; #endif #endif //MODE_RENDER_NORMAL #else // RENDER DEPTH #ifdef MODE_MULTIPLE_RENDER_TARGETS layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter) #else layout(location = 0) out vec4 frag_color; #endif // MODE_MULTIPLE_RENDER_TARGETS #endif // RENDER DEPTH #include "scene_forward_aa_inc.glsl" #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) /* Make a default specular mode SPECULAR_SCHLICK_GGX. */ #if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN) && !defined(SPECULAR_PHONG) && !defined(SPECULAR_TOON) #define SPECULAR_SCHLICK_GGX #endif #include "scene_forward_lights_inc.glsl" #include "scene_forward_gi_inc.glsl" #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) #ifndef MODE_RENDER_DEPTH vec4 volumetric_fog_process(vec2 screen_uv, float z) { vec3 fog_pos = vec3(screen_uv, z * scene_data.volumetric_fog_inv_length); if (fog_pos.z < 0.0) { return vec4(0.0); } else if (fog_pos.z < 1.0) { fog_pos.z = pow(fog_pos.z, scene_data.volumetric_fog_detail_spread); } return texture(sampler3D(volumetric_fog_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), fog_pos); } vec4 fog_process(vec3 vertex) { vec3 fog_color = scene_data.fog_light_color; if (scene_data.fog_aerial_perspective > 0.0) { vec3 sky_fog_color = vec3(0.0); vec3 cube_view = scene_data.radiance_inverse_xform * vertex; // mip_level always reads from the second mipmap and higher so the fog is always slightly blurred float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near)); #ifdef USE_RADIANCE_CUBEMAP_ARRAY float lod, blend; blend = modf(mip_level * MAX_ROUGHNESS_LOD, lod); sky_fog_color = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod)).rgb; sky_fog_color = mix(sky_fog_color, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod + 1)).rgb, blend); #else sky_fog_color = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_view, mip_level * MAX_ROUGHNESS_LOD).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective); } if (scene_data.fog_sun_scatter > 0.001) { vec4 sun_scatter = vec4(0.0); float sun_total = 0.0; vec3 view = normalize(vertex); for (uint i = 0; i < scene_data.directional_light_count; i++) { vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy; float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0); fog_color += light_color * light_amount * scene_data.fog_sun_scatter; } } float fog_amount = 1.0 - exp(min(0.0, vertex.z * scene_data.fog_density)); if (abs(scene_data.fog_height_density) > 0.001) { float y = (scene_data.camera_matrix * vec4(vertex, 1.0)).y; float y_dist = scene_data.fog_height - y; float vfog_amount = clamp(exp(y_dist * scene_data.fog_height_density), 0.0, 1.0); fog_amount = max(vfog_amount, fog_amount); } return vec4(fog_color, fog_amount); } void cluster_get_item_range(uint p_offset, out uint item_min, out uint item_max, out uint item_from, out uint item_to) { uint item_min_max = cluster_buffer.data[p_offset]; item_min = item_min_max & 0xFFFF; item_max = item_min_max >> 16; ; item_from = item_min >> 5; item_to = (item_max == 0) ? 0 : ((item_max - 1) >> 5) + 1; //side effect of how it is stored, as item_max 0 means no elements } uint cluster_get_range_clip_mask(uint i, uint z_min, uint z_max) { int local_min = clamp(int(z_min) - int(i) * 32, 0, 31); int mask_width = min(int(z_max) - int(z_min), 32 - local_min); return bitfieldInsert(uint(0), uint(0xFFFFFFFF), local_min, mask_width); } #endif //!MODE_RENDER DEPTH void main() { #ifdef MODE_DUAL_PARABOLOID if (dp_clip > 0.0) discard; #endif //lay out everything, whathever is unused is optimized away anyway vec3 vertex = vertex_interp; vec3 view = -normalize(vertex_interp); vec3 albedo = vec3(1.0); vec3 backlight = vec3(0.0); vec4 transmittance_color = vec4(0.0, 0.0, 0.0, 1.0); float transmittance_depth = 0.0; float transmittance_boost = 0.0; float metallic = 0.0; float specular = 0.5; vec3 emission = vec3(0.0); float roughness = 1.0; float rim = 0.0; float rim_tint = 0.0; float clearcoat = 0.0; float clearcoat_gloss = 0.0; float anisotropy = 0.0; vec2 anisotropy_flow = vec2(1.0, 0.0); vec4 fog = vec4(0.0); #if defined(CUSTOM_RADIANCE_USED) vec4 custom_radiance = vec4(0.0); #endif #if defined(CUSTOM_IRRADIANCE_USED) vec4 custom_irradiance = vec4(0.0); #endif float ao = 1.0; float ao_light_affect = 0.0; float alpha = 1.0; #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) vec3 binormal = normalize(binormal_interp); vec3 tangent = normalize(tangent_interp); #else vec3 binormal = vec3(0.0); vec3 tangent = vec3(0.0); #endif #ifdef NORMAL_USED vec3 normal = normalize(normal_interp); #if defined(DO_SIDE_CHECK) if (!gl_FrontFacing) { normal = -normal; } #endif #endif //NORMAL_USED #ifdef UV_USED vec2 uv = uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) vec2 uv2 = uv2_interp; #endif #if defined(COLOR_USED) vec4 color = color_interp; #endif #if defined(NORMAL_MAP_USED) vec3 normal_map = vec3(0.5); #endif float normal_map_depth = 1.0; vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center float sss_strength = 0.0; #ifdef ALPHA_SCISSOR_USED float alpha_scissor_threshold = 1.0; #endif // ALPHA_SCISSOR_USED #ifdef ALPHA_HASH_USED float alpha_hash_scale = 1.0; #endif // ALPHA_HASH_USED #ifdef ALPHA_ANTIALIASING_EDGE_USED float alpha_antialiasing_edge = 0.0; vec2 alpha_texture_coordinate = vec2(0.0, 0.0); #endif // ALPHA_ANTIALIASING_EDGE_USED { #CODE : FRAGMENT } #ifdef LIGHT_TRANSMITTANCE_USED transmittance_color.a *= sss_strength; #endif #ifndef USE_SHADOW_TO_OPACITY #ifdef ALPHA_SCISSOR_USED if (alpha < alpha_scissor_threshold) { discard; } #endif // ALPHA_SCISSOR_USED // alpha hash can be used in unison with alpha antialiasing #ifdef ALPHA_HASH_USED if (alpha < compute_alpha_hash_threshold(vertex, alpha_hash_scale)) { discard; } #endif // ALPHA_HASH_USED // If we are not edge antialiasing, we need to remove the output alpha channel from scissor and hash #if (defined(ALPHA_SCISSOR_USED) || defined(ALPHA_HASH_USED)) && !defined(ALPHA_ANTIALIASING_EDGE_USED) alpha = 1.0; #endif #ifdef ALPHA_ANTIALIASING_EDGE_USED // If alpha scissor is used, we must further the edge threshold, otherwise we won't get any edge feather #ifdef ALPHA_SCISSOR_USED alpha_antialiasing_edge = clamp(alpha_scissor_threshold + alpha_antialiasing_edge, 0.0, 1.0); #endif alpha = compute_alpha_antialiasing_edge(alpha, alpha_texture_coordinate, alpha_antialiasing_edge); #endif // ALPHA_ANTIALIASING_EDGE_USED #ifdef USE_OPAQUE_PREPASS if (alpha < opaque_prepass_threshold) { discard; } #endif // USE_OPAQUE_PREPASS #endif // !USE_SHADOW_TO_OPACITY #ifdef NORMAL_MAP_USED normal_map.xy = normal_map.xy * 2.0 - 1.0; normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth)); #endif #ifdef LIGHT_ANISOTROPY_USED if (anisotropy > 0.01) { //rotation matrix mat3 rot = mat3(tangent, binormal, normal); //make local to space tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0)); binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0)); } #endif #ifdef ENABLE_CLIP_ALPHA if (albedo.a < 0.99) { //used for doublepass and shadowmapping discard; } #endif /////////////////////// FOG ////////////////////// #ifndef MODE_RENDER_DEPTH #ifndef CUSTOM_FOG_USED // fog must be processed as early as possible and then packed. // to maximize VGPR usage // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky. if (scene_data.fog_enabled) { fog = fog_process(vertex); } if (scene_data.volumetric_fog_enabled) { vec4 volumetric_fog = volumetric_fog_process(screen_uv, -vertex.z); if (scene_data.fog_enabled) { //must use the full blending equation here to blend fogs vec4 res; float sa = 1.0 - volumetric_fog.a; res.a = fog.a * sa + volumetric_fog.a; if (res.a == 0.0) { res.rgb = vec3(0.0); } else { res.rgb = (fog.rgb * fog.a * sa + volumetric_fog.rgb * volumetric_fog.a) / res.a; } fog = res; } else { fog = volumetric_fog; } } #endif //!CUSTOM_FOG_USED uint fog_rg = packHalf2x16(fog.rg); uint fog_ba = packHalf2x16(fog.ba); #endif //!MODE_RENDER_DEPTH /////////////////////// DECALS //////////////////////////////// #ifndef MODE_RENDER_DEPTH uvec2 cluster_pos = uvec2(gl_FragCoord.xy) >> scene_data.cluster_shift; uint cluster_offset = (scene_data.cluster_width * cluster_pos.y + cluster_pos.x) * (scene_data.max_cluster_element_count_div_32 + 32); uint cluster_z = uint(clamp((-vertex.z / scene_data.z_far) * 32.0, 0.0, 31.0)); //used for interpolating anything cluster related vec3 vertex_ddx = dFdx(vertex); vec3 vertex_ddy = dFdy(vertex); { // process decals uint cluster_decal_offset = cluster_offset + scene_data.cluster_type_size * 2; uint item_min; uint item_max; uint item_from; uint item_to; cluster_get_item_range(cluster_decal_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to); #ifdef USE_SUBGROUPS item_from = subgroupBroadcastFirst(subgroupMin(item_from)); item_to = subgroupBroadcastFirst(subgroupMax(item_to)); #endif for (uint i = item_from; i < item_to; i++) { uint mask = cluster_buffer.data[cluster_decal_offset + i]; mask &= cluster_get_range_clip_mask(i, item_min, item_max); #ifdef USE_SUBGROUPS uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask)); #else uint merged_mask = mask; #endif while (merged_mask != 0) { uint bit = findMSB(merged_mask); merged_mask &= ~(1 << bit); #ifdef USE_SUBGROUPS if (((1 << bit) & mask) == 0) { //do not process if not originally here continue; } #endif uint decal_index = 32 * i + bit; if (!bool(decals.data[decal_index].mask & instances.data[instance_index].layer_mask)) { continue; //not masked } vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz; if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) { continue; //out of decal } float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade); if (decals.data[decal_index].normal_fade > 0.0) { fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5); } //we need ddx/ddy for mipmaps, so simulate them vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz; vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz; if (decals.data[decal_index].albedo_rect != vec4(0.0)) { //has albedo vec4 decal_albedo; if (sc_decal_use_mipmaps) { decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw); } else { decal_albedo = textureLod(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, 0.0); } decal_albedo *= decals.data[decal_index].modulate; decal_albedo.a *= fade; albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix); if (decals.data[decal_index].normal_rect != vec4(0.0)) { vec3 decal_normal; if (sc_decal_use_mipmaps) { decal_normal = textureGrad(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz; } else { decal_normal = textureLod(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, 0.0).xyz; } decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy))); //convert to view space, use xzy because y is up decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz; normal = normalize(mix(normal, decal_normal, decal_albedo.a)); } if (decals.data[decal_index].orm_rect != vec4(0.0)) { vec3 decal_orm; if (sc_decal_use_mipmaps) { decal_orm = textureGrad(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz; } else { decal_orm = textureLod(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, 0.0).xyz; } ao = mix(ao, decal_orm.r, decal_albedo.a); roughness = mix(roughness, decal_orm.g, decal_albedo.a); metallic = mix(metallic, decal_orm.b, decal_albedo.a); } } if (decals.data[decal_index].emission_rect != vec4(0.0)) { //emission is additive, so its independent from albedo if (sc_decal_use_mipmaps) { emission += textureGrad(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade; } else { emission += textureLod(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, 0.0).xyz * decals.data[decal_index].emission_energy * fade; } } } } } //pack albedo until needed again, saves 2 VGPRs in the meantime #endif //not render depth /////////////////////// LIGHTING ////////////////////////////// #ifdef NORMAL_USED if (scene_data.roughness_limiter_enabled) { //http://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf float roughness2 = roughness * roughness; vec3 dndu = dFdx(normal), dndv = dFdy(normal); float variance = scene_data.roughness_limiter_amount * (dot(dndu, dndu) + dot(dndv, dndv)); float kernelRoughness2 = min(2.0 * variance, scene_data.roughness_limiter_limit); //limit effect float filteredRoughness2 = min(1.0, roughness2 + kernelRoughness2); roughness = sqrt(filteredRoughness2); } #endif //apply energy conservation vec3 specular_light = vec3(0.0, 0.0, 0.0); vec3 diffuse_light = vec3(0.0, 0.0, 0.0); vec3 ambient_light = vec3(0.0, 0.0, 0.0); #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) if (scene_data.use_reflection_cubemap) { vec3 ref_vec = reflect(-view, normal); ref_vec = scene_data.radiance_inverse_xform * ref_vec; #ifdef USE_RADIANCE_CUBEMAP_ARRAY float lod, blend; blend = modf(roughness * MAX_ROUGHNESS_LOD, lod); specular_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb; specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend); #else specular_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY float horizon = min(1.0 + dot(ref_vec, normal), 1.0); specular_light *= horizon * horizon; specular_light *= scene_data.ambient_light_color_energy.a; } #if defined(CUSTOM_RADIANCE_USED) specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a); #endif #ifndef USE_LIGHTMAP //lightmap overrides everything if (scene_data.use_ambient_light) { ambient_light = scene_data.ambient_light_color_energy.rgb; if (scene_data.use_ambient_cubemap) { vec3 ambient_dir = scene_data.radiance_inverse_xform * normal; #ifdef USE_RADIANCE_CUBEMAP_ARRAY vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb; #else vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix); } } #endif // USE_LIGHTMAP #if defined(CUSTOM_IRRADIANCE_USED) ambient_light = mix(ambient_light, custom_irradiance.rgb, custom_irradiance.a); #endif #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) //radiance /// GI /// #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) #ifdef USE_LIGHTMAP //lightmap if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture uint index = instances.data[instance_index].gi_offset; vec3 wnormal = mat3(scene_data.camera_matrix) * normal; const float c1 = 0.429043; const float c2 = 0.511664; const float c3 = 0.743125; const float c4 = 0.886227; const float c5 = 0.247708; ambient_light += (c1 * lightmap_captures.data[index].sh[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) + c3 * lightmap_captures.data[index].sh[6].rgb * wnormal.z * wnormal.z + c4 * lightmap_captures.data[index].sh[0].rgb - c5 * lightmap_captures.data[index].sh[6].rgb + 2.0 * c1 * lightmap_captures.data[index].sh[4].rgb * wnormal.x * wnormal.y + 2.0 * c1 * lightmap_captures.data[index].sh[7].rgb * wnormal.x * wnormal.z + 2.0 * c1 * lightmap_captures.data[index].sh[5].rgb * wnormal.y * wnormal.z + 2.0 * c2 * lightmap_captures.data[index].sh[3].rgb * wnormal.x + 2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y + 2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z); } else if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap bool uses_sh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP); uint ofs = instances.data[instance_index].gi_offset & 0xFFFF; vec3 uvw; uvw.xy = uv2 * instances.data[instance_index].lightmap_uv_scale.zw + instances.data[instance_index].lightmap_uv_scale.xy; uvw.z = float((instances.data[instance_index].gi_offset >> 16) & 0xFFFF); if (uses_sh) { uvw.z *= 4.0; //SH textures use 4 times more data vec3 lm_light_l0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb; vec3 lm_light_l1n1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb; vec3 lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb; vec3 lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb; uint idx = instances.data[instance_index].gi_offset >> 20; vec3 n = normalize(lightmaps.data[idx].normal_xform * normal); ambient_light += lm_light_l0 * 0.282095f; ambient_light += lm_light_l1n1 * 0.32573 * n.y; ambient_light += lm_light_l1_0 * 0.32573 * n.z; ambient_light += lm_light_l1p1 * 0.32573 * n.x; if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick vec3 r = reflect(normalize(-vertex), normal); specular_light += lm_light_l1n1 * 0.32573 * r.y; specular_light += lm_light_l1_0 * 0.32573 * r.z; specular_light += lm_light_l1p1 * 0.32573 * r.x; } } else { ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw, 0.0).rgb; } } #else if (sc_use_forward_gi && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SDFGI)) { //has lightmap capture //make vertex orientation the world one, but still align to camera vec3 cam_pos = mat3(scene_data.camera_matrix) * vertex; vec3 cam_normal = mat3(scene_data.camera_matrix) * normal; vec3 cam_reflection = mat3(scene_data.camera_matrix) * reflect(-view, normal); //apply y-mult cam_pos.y *= sdfgi.y_mult; cam_normal.y *= sdfgi.y_mult; cam_normal = normalize(cam_normal); cam_reflection.y *= sdfgi.y_mult; cam_normal = normalize(cam_normal); cam_reflection = normalize(cam_reflection); vec4 light_accum = vec4(0.0); float weight_accum = 0.0; vec4 light_blend_accum = vec4(0.0); float weight_blend_accum = 0.0; float blend = -1.0; // helper constants, compute once uint cascade = 0xFFFFFFFF; vec3 cascade_pos; vec3 cascade_normal; for (uint i = 0; i < sdfgi.max_cascades; i++) { cascade_pos = (cam_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe; if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) { continue; //skip cascade } cascade = i; break; } if (cascade < SDFGI_MAX_CASCADES) { bool use_specular = true; float blend; vec3 diffuse, specular; sdfgi_process(cascade, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse, specular, blend); if (blend > 0.0) { //blend if (cascade == sdfgi.max_cascades - 1) { diffuse = mix(diffuse, ambient_light, blend); if (use_specular) { specular = mix(specular, specular_light, blend); } } else { vec3 diffuse2, specular2; float blend2; cascade_pos = (cam_pos - sdfgi.cascades[cascade + 1].position) * sdfgi.cascades[cascade + 1].to_probe; sdfgi_process(cascade + 1, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse2, specular2, blend2); diffuse = mix(diffuse, diffuse2, blend); if (use_specular) { specular = mix(specular, specular2, blend); } } } ambient_light = diffuse; if (use_specular) { specular_light = specular; } } } if (sc_use_forward_gi && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_VOXEL_GI)) { // process voxel_gi_instances uint index1 = instances.data[instance_index].gi_offset & 0xFFFF; vec3 ref_vec = normalize(reflect(normalize(vertex), normal)); //find arbitrary tangent and bitangent, then build a matrix vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); vec3 tangent = normalize(cross(v0, normal)); vec3 bitangent = normalize(cross(tangent, normal)); mat3 normal_mat = mat3(tangent, bitangent, normal); vec4 amb_accum = vec4(0.0); vec4 spec_accum = vec4(0.0); voxel_gi_compute(index1, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum); uint index2 = instances.data[instance_index].gi_offset >> 16; if (index2 != 0xFFFF) { voxel_gi_compute(index2, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum); } if (amb_accum.a > 0.0) { amb_accum.rgb /= amb_accum.a; } if (spec_accum.a > 0.0) { spec_accum.rgb /= spec_accum.a; } specular_light = spec_accum.rgb; ambient_light = amb_accum.rgb; } if (!sc_use_forward_gi && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GI_BUFFERS)) { //use GI buffers vec2 coord; if (scene_data.gi_upscale_for_msaa) { vec2 base_coord = screen_uv; vec2 closest_coord = base_coord; float closest_ang = dot(normal, textureLod(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), base_coord, 0.0).xyz * 2.0 - 1.0); for (int i = 0; i < 4; i++) { const vec2 neighbours[4] = vec2[](vec2(-1, 0), vec2(1, 0), vec2(0, -1), vec2(0, 1)); vec2 neighbour_coord = base_coord + neighbours[i] * scene_data.screen_pixel_size; float neighbour_ang = dot(normal, textureLod(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), neighbour_coord, 0.0).xyz * 2.0 - 1.0); if (neighbour_ang > closest_ang) { closest_ang = neighbour_ang; closest_coord = neighbour_coord; } } coord = closest_coord; } else { coord = screen_uv; } vec4 buffer_ambient = textureLod(sampler2D(ambient_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0.0); vec4 buffer_reflection = textureLod(sampler2D(reflection_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0.0); ambient_light = mix(ambient_light, buffer_ambient.rgb, buffer_ambient.a); specular_light = mix(specular_light, buffer_reflection.rgb, buffer_reflection.a); } #endif // !USE_LIGHTMAP if (scene_data.ssao_enabled) { float ssao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r; ao = min(ao, ssao); ao_light_affect = mix(ao_light_affect, max(ao_light_affect, scene_data.ssao_light_affect), scene_data.ssao_ao_affect); } { // process reflections vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0); vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0); uint cluster_reflection_offset = cluster_offset + scene_data.cluster_type_size * 3; uint item_min; uint item_max; uint item_from; uint item_to; cluster_get_item_range(cluster_reflection_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to); #ifdef USE_SUBGROUPS item_from = subgroupBroadcastFirst(subgroupMin(item_from)); item_to = subgroupBroadcastFirst(subgroupMax(item_to)); #endif for (uint i = item_from; i < item_to; i++) { uint mask = cluster_buffer.data[cluster_reflection_offset + i]; mask &= cluster_get_range_clip_mask(i, item_min, item_max); #ifdef USE_SUBGROUPS uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask)); #else uint merged_mask = mask; #endif while (merged_mask != 0) { uint bit = findMSB(merged_mask); merged_mask &= ~(1 << bit); #ifdef USE_SUBGROUPS if (((1 << bit) & mask) == 0) { //do not process if not originally here continue; } #endif uint reflection_index = 32 * i + bit; if (!bool(reflections.data[reflection_index].mask & instances.data[instance_index].layer_mask)) { continue; //not masked } reflection_process(reflection_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum); } } if (reflection_accum.a > 0.0) { specular_light = reflection_accum.rgb / reflection_accum.a; } #if !defined(USE_LIGHTMAP) if (ambient_accum.a > 0.0) { ambient_light = ambient_accum.rgb / ambient_accum.a; } #endif } //finalize ambient light here ambient_light *= albedo.rgb; ambient_light *= ao; // convert ao to direct light ao ao = mix(1.0, ao, ao_light_affect); //this saves some VGPRs vec3 f0 = F0(metallic, specular, albedo); { #if defined(DIFFUSE_TOON) //simplify for toon, as specular_light *= specular * metallic * albedo * 2.0; #else // scales the specular reflections, needs to be computed before lighting happens, // but after environment, GI, and reflection probes are added // Environment brdf approximation (Lazarov 2013) // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); vec4 r = roughness * c0 + c1; float ndotv = clamp(dot(normal, view), 0.0, 1.0); float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; vec2 env = vec2(-1.04, 1.04) * a004 + r.zw; specular_light *= env.x * f0 + env.y; #endif } #endif //GI !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) #if !defined(MODE_RENDER_DEPTH) //this saves some VGPRs uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular)); #endif // LIGHTING #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) { //directional light // Do shadow and lighting in two passes to reduce register pressure uint shadow0 = 0; uint shadow1 = 0; for (uint i = 0; i < 8; i++) { if (i >= scene_data.directional_light_count) { break; } if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) { continue; //not masked } if (directional_lights.data[i].bake_mode == LIGHT_BAKE_STATIC && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { continue; // Statically baked light and object uses lightmap, skip } float shadow = 1.0; //version with soft shadows, more expensive if (directional_lights.data[i].shadow_enabled) { if (sc_use_directional_soft_shadows && directional_lights.data[i].softshadow_angle > 0) { float depth_z = -vertex.z; vec3 shadow_color = vec3(0.0); vec3 light_dir = directional_lights.data[i].direction; #define BIAS_FUNC(m_var, m_idx) \ m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \ vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))) * directional_lights.data[i].shadow_normal_bias[m_idx]; \ normal_bias -= light_dir * dot(light_dir, normal_bias); \ m_var.xyz += normal_bias; uint blend_index = 0; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 0) vec4 pssm_coord = (directional_lights.data[i].shadow_matrix1 * v); pssm_coord /= pssm_coord.w; float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.x; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius; shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); blend_index++; } if (blend_index < 2 && depth_z < directional_lights.data[i].shadow_split_offsets.y) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 1) vec4 pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); pssm_coord /= pssm_coord.w; float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.y; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius; float s = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); if (blend_index == 0) { shadow = s; } else { //blend float blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z); shadow = mix(shadow, s, blend); } blend_index++; } if (blend_index < 2 && depth_z < directional_lights.data[i].shadow_split_offsets.z) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 2) vec4 pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); pssm_coord /= pssm_coord.w; float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.z; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius; float s = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); if (blend_index == 0) { shadow = s; } else { //blend float blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z); shadow = mix(shadow, s, blend); } blend_index++; } if (blend_index < 2) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 3) vec4 pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); pssm_coord /= pssm_coord.w; float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.w; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius; float s = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); if (blend_index == 0) { shadow = s; } else { //blend float blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z); shadow = mix(shadow, s, blend); } } #undef BIAS_FUNC } else { //no soft shadows float depth_z = -vertex.z; vec4 pssm_coord; vec3 light_dir = directional_lights.data[i].direction; vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))); #define BIAS_FUNC(m_var, m_idx) \ m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \ vec3 normal_bias = base_normal_bias * directional_lights.data[i].shadow_normal_bias[m_idx]; \ normal_bias -= light_dir * dot(light_dir, normal_bias); \ m_var.xyz += normal_bias; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 0) pssm_coord = (directional_lights.data[i].shadow_matrix1 * v); } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 1) pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 2) pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); } else { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 3) pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); } pssm_coord /= pssm_coord.w; shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); if (directional_lights.data[i].blend_splits) { float pssm_blend; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 1) pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z); } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 2) pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z); } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 3) pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z); } else { pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached) } pssm_coord /= pssm_coord.w; float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); shadow = mix(shadow, shadow2, pssm_blend); } shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance #undef BIAS_FUNC } } // shadows if (i < 4) { shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8); } else { shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8); } } for (uint i = 0; i < 8; i++) { if (i >= scene_data.directional_light_count) { break; } if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) { continue; //not masked } #ifdef LIGHT_TRANSMITTANCE_USED float transmittance_z = transmittance_depth; if (directional_lights.data[i].shadow_enabled) { float depth_z = -vertex.z; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0); vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex; trans_coord /= trans_coord.w; float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; shadow_z *= directional_lights.data[i].shadow_z_range.x; float z = trans_coord.z * directional_lights.data[i].shadow_z_range.x; transmittance_z = z - shadow_z; } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0); vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex; trans_coord /= trans_coord.w; float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; shadow_z *= directional_lights.data[i].shadow_z_range.y; float z = trans_coord.z * directional_lights.data[i].shadow_z_range.y; transmittance_z = z - shadow_z; } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0); vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex; trans_coord /= trans_coord.w; float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; shadow_z *= directional_lights.data[i].shadow_z_range.z; float z = trans_coord.z * directional_lights.data[i].shadow_z_range.z; transmittance_z = z - shadow_z; } else { vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0); vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex; trans_coord /= trans_coord.w; float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; shadow_z *= directional_lights.data[i].shadow_z_range.w; float z = trans_coord.z * directional_lights.data[i].shadow_z_range.w; transmittance_z = z - shadow_z; } } #endif float shadow = 1.0; if (i < 4) { shadow = float(shadow0 >> (i * 8) & 0xFF) / 255.0; } else { shadow = float(shadow1 >> ((i - 4) * 8) & 0xFF) / 255.0; } blur_shadow(shadow); float size_A = sc_use_light_soft_shadows ? directional_lights.data[i].size : 0.0; light_compute(normal, directional_lights.data[i].direction, normalize(view), size_A, directional_lights.data[i].color * directional_lights.data[i].energy, shadow, f0, orms, 1.0, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED transmittance_color, transmittance_depth, transmittance_boost, transmittance_z, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, albedo, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif diffuse_light, specular_light); } } { //omni lights uint cluster_omni_offset = cluster_offset; uint item_min; uint item_max; uint item_from; uint item_to; cluster_get_item_range(cluster_omni_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to); #ifdef USE_SUBGROUPS item_from = subgroupBroadcastFirst(subgroupMin(item_from)); item_to = subgroupBroadcastFirst(subgroupMax(item_to)); #endif for (uint i = item_from; i < item_to; i++) { uint mask = cluster_buffer.data[cluster_omni_offset + i]; mask &= cluster_get_range_clip_mask(i, item_min, item_max); #ifdef USE_SUBGROUPS uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask)); #else uint merged_mask = mask; #endif while (merged_mask != 0) { uint bit = findMSB(merged_mask); merged_mask &= ~(1 << bit); #ifdef USE_SUBGROUPS if (((1 << bit) & mask) == 0) { //do not process if not originally here continue; } #endif uint light_index = 32 * i + bit; if (!bool(omni_lights.data[light_index].mask & instances.data[instance_index].layer_mask)) { continue; //not masked } if (omni_lights.data[light_index].bake_mode == LIGHT_BAKE_STATIC && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { continue; // Statically baked light and object uses lightmap, skip } float shadow = light_process_omni_shadow(light_index, vertex, normal); shadow = blur_shadow(shadow); light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED transmittance_color, transmittance_depth, transmittance_boost, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, albedo, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED tangent, binormal, anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif diffuse_light, specular_light); } } } { //spot lights uint cluster_spot_offset = cluster_offset + scene_data.cluster_type_size; uint item_min; uint item_max; uint item_from; uint item_to; cluster_get_item_range(cluster_spot_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to); #ifdef USE_SUBGROUPS item_from = subgroupBroadcastFirst(subgroupMin(item_from)); item_to = subgroupBroadcastFirst(subgroupMax(item_to)); #endif for (uint i = item_from; i < item_to; i++) { uint mask = cluster_buffer.data[cluster_spot_offset + i]; mask &= cluster_get_range_clip_mask(i, item_min, item_max); #ifdef USE_SUBGROUPS uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask)); #else uint merged_mask = mask; #endif while (merged_mask != 0) { uint bit = findMSB(merged_mask); merged_mask &= ~(1 << bit); #ifdef USE_SUBGROUPS if (((1 << bit) & mask) == 0) { //do not process if not originally here continue; } #endif uint light_index = 32 * i + bit; if (!bool(spot_lights.data[light_index].mask & instances.data[instance_index].layer_mask)) { continue; //not masked } if (spot_lights.data[light_index].bake_mode == LIGHT_BAKE_STATIC && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { continue; // Statically baked light and object uses lightmap, skip } float shadow = light_process_spot_shadow(light_index, vertex, normal); shadow = blur_shadow(shadow); light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED transmittance_color, transmittance_depth, transmittance_boost, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, albedo, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED tangent, binormal, anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif diffuse_light, specular_light); } } } #ifdef USE_SHADOW_TO_OPACITY alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0)); #if defined(ALPHA_SCISSOR_USED) if (alpha < alpha_scissor) { discard; } #endif // ALPHA_SCISSOR_USED #ifdef USE_OPAQUE_PREPASS if (alpha < opaque_prepass_threshold) { discard; } #endif // USE_OPAQUE_PREPASS #endif // USE_SHADOW_TO_OPACITY #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) #ifdef MODE_RENDER_DEPTH #ifdef MODE_RENDER_SDF { vec3 local_pos = (scene_data.sdf_to_bounds * vec4(vertex, 1.0)).xyz; ivec3 grid_pos = scene_data.sdf_offset + ivec3(local_pos * vec3(scene_data.sdf_size)); uint albedo16 = 0x1; //solid flag albedo16 |= clamp(uint(albedo.r * 31.0), 0, 31) << 11; albedo16 |= clamp(uint(albedo.g * 31.0), 0, 31) << 6; albedo16 |= clamp(uint(albedo.b * 31.0), 0, 31) << 1; imageStore(albedo_volume_grid, grid_pos, uvec4(albedo16)); uint facing_bits = 0; const vec3 aniso_dir[6] = vec3[]( vec3(1, 0, 0), vec3(0, 1, 0), vec3(0, 0, 1), vec3(-1, 0, 0), vec3(0, -1, 0), vec3(0, 0, -1)); vec3 cam_normal = mat3(scene_data.camera_matrix) * normalize(normal_interp); float closest_dist = -1e20; for (uint i = 0; i < 6; i++) { float d = dot(cam_normal, aniso_dir[i]); if (d > closest_dist) { closest_dist = d; facing_bits = (1 << i); } } imageAtomicOr(geom_facing_grid, grid_pos, facing_bits); //store facing bits if (length(emission) > 0.001) { float lumas[6]; vec3 light_total = vec3(0); for (int i = 0; i < 6; i++) { float strength = max(0.0, dot(cam_normal, aniso_dir[i])); vec3 light = emission * strength; light_total += light; lumas[i] = max(light.r, max(light.g, light.b)); } float luma_total = max(light_total.r, max(light_total.g, light_total.b)); uint light_aniso = 0; for (int i = 0; i < 6; i++) { light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5); } //compress to RGBE9995 to save space const float pow2to9 = 512.0f; const float B = 15.0f; const float N = 9.0f; const float LN2 = 0.6931471805599453094172321215; float cRed = clamp(light_total.r, 0.0, 65408.0); float cGreen = clamp(light_total.g, 0.0, 65408.0); float cBlue = clamp(light_total.b, 0.0, 65408.0); float cMax = max(cRed, max(cGreen, cBlue)); float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B; float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f); float exps = expp + 1.0f; if (0.0 <= sMax && sMax < pow2to9) { exps = expp; } float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f); float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f); float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f); //store as 8985 to have 2 extra neighbour bits uint light_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25); imageStore(emission_grid, grid_pos, uvec4(light_rgbe)); imageStore(emission_aniso_grid, grid_pos, uvec4(light_aniso)); } } #endif #ifdef MODE_RENDER_MATERIAL albedo_output_buffer.rgb = albedo; albedo_output_buffer.a = alpha; normal_output_buffer.rgb = normal * 0.5 + 0.5; normal_output_buffer.a = 0.0; depth_output_buffer.r = -vertex.z; orm_output_buffer.r = ao; orm_output_buffer.g = roughness; orm_output_buffer.b = metallic; orm_output_buffer.a = sss_strength; emission_output_buffer.rgb = emission; emission_output_buffer.a = 0.0; #endif #ifdef MODE_RENDER_NORMAL_ROUGHNESS normal_roughness_output_buffer = vec4(normal * 0.5 + 0.5, roughness); #ifdef MODE_RENDER_VOXEL_GI if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_VOXEL_GI)) { // process voxel_gi_instances uint index1 = instances.data[instance_index].gi_offset & 0xFFFF; uint index2 = instances.data[instance_index].gi_offset >> 16; voxel_gi_buffer.x = index1 & 0xFF; voxel_gi_buffer.y = index2 & 0xFF; } else { voxel_gi_buffer.x = 0xFF; voxel_gi_buffer.y = 0xFF; } #endif #endif //MODE_RENDER_NORMAL_ROUGHNESS //nothing happens, so a tree-ssa optimizer will result in no fragment shader :) #else // multiply by albedo diffuse_light *= albedo; // ambient must be multiplied by albedo at the end // apply direct light AO ao = unpackUnorm4x8(orms).x; specular_light *= ao; diffuse_light *= ao; // apply metallic metallic = unpackUnorm4x8(orms).z; diffuse_light *= 1.0 - metallic; ambient_light *= 1.0 - metallic; //restore fog fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba)); #ifdef MODE_MULTIPLE_RENDER_TARGETS #ifdef MODE_UNSHADED diffuse_buffer = vec4(albedo.rgb, 0.0); specular_buffer = vec4(0.0); #else #ifdef SSS_MODE_SKIN sss_strength = -sss_strength; #endif diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength); specular_buffer = vec4(specular_light, metallic); #endif diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a); specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a); #else //MODE_MULTIPLE_RENDER_TARGETS #ifdef MODE_UNSHADED frag_color = vec4(albedo, alpha); #else frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha); //frag_color = vec4(1.0); #endif //USE_NO_SHADING // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky. frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a); ; #endif //MODE_MULTIPLE_RENDER_TARGETS #endif //MODE_RENDER_DEPTH }