/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btPersistentManifold.h" #include "LinearMath/btTransform.h" #include "LinearMath/btSerializer.h" #ifdef BT_USE_DOUBLE_PRECISION #define btCollisionObjectData btCollisionObjectDoubleData #else #define btCollisionObjectData btCollisionObjectFloatData #endif btScalar gContactBreakingThreshold = btScalar(0.02); ContactDestroyedCallback gContactDestroyedCallback = 0; ContactProcessedCallback gContactProcessedCallback = 0; ContactStartedCallback gContactStartedCallback = 0; ContactEndedCallback gContactEndedCallback = 0; ///gContactCalcArea3Points will approximate the convex hull area using 3 points ///when setting it to false, it will use 4 points to compute the area: it is more accurate but slower bool gContactCalcArea3Points = true; btPersistentManifold::btPersistentManifold() : btTypedObject(BT_PERSISTENT_MANIFOLD_TYPE), m_body0(0), m_body1(0), m_cachedPoints(0), m_companionIdA(0), m_companionIdB(0), m_index1a(0) { } #ifdef DEBUG_PERSISTENCY #include void btPersistentManifold::DebugPersistency() { int i; printf("DebugPersistency : numPoints %d\n", m_cachedPoints); for (i = 0; i < m_cachedPoints; i++) { printf("m_pointCache[%d].m_userPersistentData = %x\n", i, m_pointCache[i].m_userPersistentData); } } #endif //DEBUG_PERSISTENCY void btPersistentManifold::clearUserCache(btManifoldPoint& pt) { void* oldPtr = pt.m_userPersistentData; if (oldPtr) { #ifdef DEBUG_PERSISTENCY int i; int occurance = 0; for (i = 0; i < m_cachedPoints; i++) { if (m_pointCache[i].m_userPersistentData == oldPtr) { occurance++; if (occurance > 1) printf("error in clearUserCache\n"); } } btAssert(occurance <= 0); #endif //DEBUG_PERSISTENCY if (pt.m_userPersistentData && gContactDestroyedCallback) { (*gContactDestroyedCallback)(pt.m_userPersistentData); pt.m_userPersistentData = 0; } #ifdef DEBUG_PERSISTENCY DebugPersistency(); #endif } } static inline btScalar calcArea4Points(const btVector3& p0, const btVector3& p1, const btVector3& p2, const btVector3& p3) { // It calculates possible 3 area constructed from random 4 points and returns the biggest one. btVector3 a[3], b[3]; a[0] = p0 - p1; a[1] = p0 - p2; a[2] = p0 - p3; b[0] = p2 - p3; b[1] = p1 - p3; b[2] = p1 - p2; //todo: Following 3 cross production can be easily optimized by SIMD. btVector3 tmp0 = a[0].cross(b[0]); btVector3 tmp1 = a[1].cross(b[1]); btVector3 tmp2 = a[2].cross(b[2]); return btMax(btMax(tmp0.length2(), tmp1.length2()), tmp2.length2()); } int btPersistentManifold::sortCachedPoints(const btManifoldPoint& pt) { //calculate 4 possible cases areas, and take biggest area //also need to keep 'deepest' int maxPenetrationIndex = -1; #define KEEP_DEEPEST_POINT 1 #ifdef KEEP_DEEPEST_POINT btScalar maxPenetration = pt.getDistance(); for (int i = 0; i < 4; i++) { if (m_pointCache[i].getDistance() < maxPenetration) { maxPenetrationIndex = i; maxPenetration = m_pointCache[i].getDistance(); } } #endif //KEEP_DEEPEST_POINT btScalar res0(btScalar(0.)), res1(btScalar(0.)), res2(btScalar(0.)), res3(btScalar(0.)); if (gContactCalcArea3Points) { if (maxPenetrationIndex != 0) { btVector3 a0 = pt.m_localPointA - m_pointCache[1].m_localPointA; btVector3 b0 = m_pointCache[3].m_localPointA - m_pointCache[2].m_localPointA; btVector3 cross = a0.cross(b0); res0 = cross.length2(); } if (maxPenetrationIndex != 1) { btVector3 a1 = pt.m_localPointA - m_pointCache[0].m_localPointA; btVector3 b1 = m_pointCache[3].m_localPointA - m_pointCache[2].m_localPointA; btVector3 cross = a1.cross(b1); res1 = cross.length2(); } if (maxPenetrationIndex != 2) { btVector3 a2 = pt.m_localPointA - m_pointCache[0].m_localPointA; btVector3 b2 = m_pointCache[3].m_localPointA - m_pointCache[1].m_localPointA; btVector3 cross = a2.cross(b2); res2 = cross.length2(); } if (maxPenetrationIndex != 3) { btVector3 a3 = pt.m_localPointA - m_pointCache[0].m_localPointA; btVector3 b3 = m_pointCache[2].m_localPointA - m_pointCache[1].m_localPointA; btVector3 cross = a3.cross(b3); res3 = cross.length2(); } } else { if (maxPenetrationIndex != 0) { res0 = calcArea4Points(pt.m_localPointA, m_pointCache[1].m_localPointA, m_pointCache[2].m_localPointA, m_pointCache[3].m_localPointA); } if (maxPenetrationIndex != 1) { res1 = calcArea4Points(pt.m_localPointA, m_pointCache[0].m_localPointA, m_pointCache[2].m_localPointA, m_pointCache[3].m_localPointA); } if (maxPenetrationIndex != 2) { res2 = calcArea4Points(pt.m_localPointA, m_pointCache[0].m_localPointA, m_pointCache[1].m_localPointA, m_pointCache[3].m_localPointA); } if (maxPenetrationIndex != 3) { res3 = calcArea4Points(pt.m_localPointA, m_pointCache[0].m_localPointA, m_pointCache[1].m_localPointA, m_pointCache[2].m_localPointA); } } btVector4 maxvec(res0, res1, res2, res3); int biggestarea = maxvec.closestAxis4(); return biggestarea; } int btPersistentManifold::getCacheEntry(const btManifoldPoint& newPoint) const { btScalar shortestDist = getContactBreakingThreshold() * getContactBreakingThreshold(); int size = getNumContacts(); int nearestPoint = -1; for (int i = 0; i < size; i++) { const btManifoldPoint& mp = m_pointCache[i]; btVector3 diffA = mp.m_localPointA - newPoint.m_localPointA; const btScalar distToManiPoint = diffA.dot(diffA); if (distToManiPoint < shortestDist) { shortestDist = distToManiPoint; nearestPoint = i; } } return nearestPoint; } int btPersistentManifold::addManifoldPoint(const btManifoldPoint& newPoint, bool isPredictive) { if (!isPredictive) { btAssert(validContactDistance(newPoint)); } int insertIndex = getNumContacts(); if (insertIndex == MANIFOLD_CACHE_SIZE) { #if MANIFOLD_CACHE_SIZE >= 4 //sort cache so best points come first, based on area insertIndex = sortCachedPoints(newPoint); #else insertIndex = 0; #endif clearUserCache(m_pointCache[insertIndex]); } else { m_cachedPoints++; } if (insertIndex < 0) insertIndex = 0; btAssert(m_pointCache[insertIndex].m_userPersistentData == 0); m_pointCache[insertIndex] = newPoint; return insertIndex; } btScalar btPersistentManifold::getContactBreakingThreshold() const { return m_contactBreakingThreshold; } void btPersistentManifold::refreshContactPoints(const btTransform& trA, const btTransform& trB) { int i; #ifdef DEBUG_PERSISTENCY printf("refreshContactPoints posA = (%f,%f,%f) posB = (%f,%f,%f)\n", trA.getOrigin().getX(), trA.getOrigin().getY(), trA.getOrigin().getZ(), trB.getOrigin().getX(), trB.getOrigin().getY(), trB.getOrigin().getZ()); #endif //DEBUG_PERSISTENCY /// first refresh worldspace positions and distance for (i = getNumContacts() - 1; i >= 0; i--) { btManifoldPoint& manifoldPoint = m_pointCache[i]; manifoldPoint.m_positionWorldOnA = trA(manifoldPoint.m_localPointA); manifoldPoint.m_positionWorldOnB = trB(manifoldPoint.m_localPointB); manifoldPoint.m_distance1 = (manifoldPoint.m_positionWorldOnA - manifoldPoint.m_positionWorldOnB).dot(manifoldPoint.m_normalWorldOnB); manifoldPoint.m_lifeTime++; } /// then btScalar distance2d; btVector3 projectedDifference, projectedPoint; for (i = getNumContacts() - 1; i >= 0; i--) { btManifoldPoint& manifoldPoint = m_pointCache[i]; //contact becomes invalid when signed distance exceeds margin (projected on contactnormal direction) if (!validContactDistance(manifoldPoint)) { removeContactPoint(i); } else { //todo: friction anchor may require the contact to be around a bit longer //contact also becomes invalid when relative movement orthogonal to normal exceeds margin projectedPoint = manifoldPoint.m_positionWorldOnA - manifoldPoint.m_normalWorldOnB * manifoldPoint.m_distance1; projectedDifference = manifoldPoint.m_positionWorldOnB - projectedPoint; distance2d = projectedDifference.dot(projectedDifference); if (distance2d > getContactBreakingThreshold() * getContactBreakingThreshold()) { removeContactPoint(i); } else { //contact point processed callback if (gContactProcessedCallback) (*gContactProcessedCallback)(manifoldPoint, (void*)m_body0, (void*)m_body1); } } } #ifdef DEBUG_PERSISTENCY DebugPersistency(); #endif // } int btPersistentManifold::calculateSerializeBufferSize() const { return sizeof(btPersistentManifoldData); } const char* btPersistentManifold::serialize(const class btPersistentManifold* manifold, void* dataBuffer, class btSerializer* serializer) const { btPersistentManifoldData* dataOut = (btPersistentManifoldData*)dataBuffer; memset(dataOut, 0, sizeof(btPersistentManifoldData)); dataOut->m_body0 = (btCollisionObjectData*)serializer->getUniquePointer((void*)manifold->getBody0()); dataOut->m_body1 = (btCollisionObjectData*)serializer->getUniquePointer((void*)manifold->getBody1()); dataOut->m_contactBreakingThreshold = manifold->getContactBreakingThreshold(); dataOut->m_contactProcessingThreshold = manifold->getContactProcessingThreshold(); dataOut->m_numCachedPoints = manifold->getNumContacts(); dataOut->m_companionIdA = manifold->m_companionIdA; dataOut->m_companionIdB = manifold->m_companionIdB; dataOut->m_index1a = manifold->m_index1a; dataOut->m_objectType = manifold->m_objectType; for (int i = 0; i < this->getNumContacts(); i++) { const btManifoldPoint& pt = manifold->getContactPoint(i); dataOut->m_pointCacheAppliedImpulse[i] = pt.m_appliedImpulse; dataOut->m_pointCachePrevRHS[i] = pt.m_prevRHS; dataOut->m_pointCacheAppliedImpulseLateral1[i] = pt.m_appliedImpulseLateral1; dataOut->m_pointCacheAppliedImpulseLateral2[i] = pt.m_appliedImpulseLateral2; pt.m_localPointA.serialize(dataOut->m_pointCacheLocalPointA[i]); pt.m_localPointB.serialize(dataOut->m_pointCacheLocalPointB[i]); pt.m_normalWorldOnB.serialize(dataOut->m_pointCacheNormalWorldOnB[i]); dataOut->m_pointCacheDistance[i] = pt.m_distance1; dataOut->m_pointCacheCombinedContactDamping1[i] = pt.m_combinedContactDamping1; dataOut->m_pointCacheCombinedContactStiffness1[i] = pt.m_combinedContactStiffness1; dataOut->m_pointCacheLifeTime[i] = pt.m_lifeTime; dataOut->m_pointCacheFrictionCFM[i] = pt.m_frictionCFM; dataOut->m_pointCacheContactERP[i] = pt.m_contactERP; dataOut->m_pointCacheContactCFM[i] = pt.m_contactCFM; dataOut->m_pointCacheContactPointFlags[i] = pt.m_contactPointFlags; dataOut->m_pointCacheIndex0[i] = pt.m_index0; dataOut->m_pointCacheIndex1[i] = pt.m_index1; dataOut->m_pointCachePartId0[i] = pt.m_partId0; dataOut->m_pointCachePartId1[i] = pt.m_partId1; pt.m_positionWorldOnA.serialize(dataOut->m_pointCachePositionWorldOnA[i]); pt.m_positionWorldOnB.serialize(dataOut->m_pointCachePositionWorldOnB[i]); dataOut->m_pointCacheCombinedFriction[i] = pt.m_combinedFriction; pt.m_lateralFrictionDir1.serialize(dataOut->m_pointCacheLateralFrictionDir1[i]); pt.m_lateralFrictionDir2.serialize(dataOut->m_pointCacheLateralFrictionDir2[i]); dataOut->m_pointCacheCombinedRollingFriction[i] = pt.m_combinedRollingFriction; dataOut->m_pointCacheCombinedSpinningFriction[i] = pt.m_combinedSpinningFriction; dataOut->m_pointCacheCombinedRestitution[i] = pt.m_combinedRestitution; dataOut->m_pointCacheContactMotion1[i] = pt.m_contactMotion1; dataOut->m_pointCacheContactMotion2[i] = pt.m_contactMotion2; } return btPersistentManifoldDataName; } void btPersistentManifold::deSerialize(const struct btPersistentManifoldDoubleData* manifoldDataPtr) { m_contactBreakingThreshold = manifoldDataPtr->m_contactBreakingThreshold; m_contactProcessingThreshold = manifoldDataPtr->m_contactProcessingThreshold; m_cachedPoints = manifoldDataPtr->m_numCachedPoints; m_companionIdA = manifoldDataPtr->m_companionIdA; m_companionIdB = manifoldDataPtr->m_companionIdB; //m_index1a = manifoldDataPtr->m_index1a; m_objectType = manifoldDataPtr->m_objectType; for (int i = 0; i < this->getNumContacts(); i++) { btManifoldPoint& pt = m_pointCache[i]; pt.m_appliedImpulse = manifoldDataPtr->m_pointCacheAppliedImpulse[i]; pt.m_prevRHS = manifoldDataPtr->m_pointCachePrevRHS[i]; pt.m_appliedImpulseLateral1 = manifoldDataPtr->m_pointCacheAppliedImpulseLateral1[i]; pt.m_appliedImpulseLateral2 = manifoldDataPtr->m_pointCacheAppliedImpulseLateral2[i]; pt.m_localPointA.deSerializeDouble(manifoldDataPtr->m_pointCacheLocalPointA[i]); pt.m_localPointB.deSerializeDouble(manifoldDataPtr->m_pointCacheLocalPointB[i]); pt.m_normalWorldOnB.deSerializeDouble(manifoldDataPtr->m_pointCacheNormalWorldOnB[i]); pt.m_distance1 = manifoldDataPtr->m_pointCacheDistance[i]; pt.m_combinedContactDamping1 = manifoldDataPtr->m_pointCacheCombinedContactDamping1[i]; pt.m_combinedContactStiffness1 = manifoldDataPtr->m_pointCacheCombinedContactStiffness1[i]; pt.m_lifeTime = manifoldDataPtr->m_pointCacheLifeTime[i]; pt.m_frictionCFM = manifoldDataPtr->m_pointCacheFrictionCFM[i]; pt.m_contactERP = manifoldDataPtr->m_pointCacheContactERP[i]; pt.m_contactCFM = manifoldDataPtr->m_pointCacheContactCFM[i]; pt.m_contactPointFlags = manifoldDataPtr->m_pointCacheContactPointFlags[i]; pt.m_index0 = manifoldDataPtr->m_pointCacheIndex0[i]; pt.m_index1 = manifoldDataPtr->m_pointCacheIndex1[i]; pt.m_partId0 = manifoldDataPtr->m_pointCachePartId0[i]; pt.m_partId1 = manifoldDataPtr->m_pointCachePartId1[i]; pt.m_positionWorldOnA.deSerializeDouble(manifoldDataPtr->m_pointCachePositionWorldOnA[i]); pt.m_positionWorldOnB.deSerializeDouble(manifoldDataPtr->m_pointCachePositionWorldOnB[i]); pt.m_combinedFriction = manifoldDataPtr->m_pointCacheCombinedFriction[i]; pt.m_lateralFrictionDir1.deSerializeDouble(manifoldDataPtr->m_pointCacheLateralFrictionDir1[i]); pt.m_lateralFrictionDir2.deSerializeDouble(manifoldDataPtr->m_pointCacheLateralFrictionDir2[i]); pt.m_combinedRollingFriction = manifoldDataPtr->m_pointCacheCombinedRollingFriction[i]; pt.m_combinedSpinningFriction = manifoldDataPtr->m_pointCacheCombinedSpinningFriction[i]; pt.m_combinedRestitution = manifoldDataPtr->m_pointCacheCombinedRestitution[i]; pt.m_contactMotion1 = manifoldDataPtr->m_pointCacheContactMotion1[i]; pt.m_contactMotion2 = manifoldDataPtr->m_pointCacheContactMotion2[i]; } } void btPersistentManifold::deSerialize(const struct btPersistentManifoldFloatData* manifoldDataPtr) { m_contactBreakingThreshold = manifoldDataPtr->m_contactBreakingThreshold; m_contactProcessingThreshold = manifoldDataPtr->m_contactProcessingThreshold; m_cachedPoints = manifoldDataPtr->m_numCachedPoints; m_companionIdA = manifoldDataPtr->m_companionIdA; m_companionIdB = manifoldDataPtr->m_companionIdB; //m_index1a = manifoldDataPtr->m_index1a; m_objectType = manifoldDataPtr->m_objectType; for (int i = 0; i < this->getNumContacts(); i++) { btManifoldPoint& pt = m_pointCache[i]; pt.m_appliedImpulse = manifoldDataPtr->m_pointCacheAppliedImpulse[i]; pt.m_prevRHS = manifoldDataPtr->m_pointCachePrevRHS[i]; pt.m_appliedImpulseLateral1 = manifoldDataPtr->m_pointCacheAppliedImpulseLateral1[i]; pt.m_appliedImpulseLateral2 = manifoldDataPtr->m_pointCacheAppliedImpulseLateral2[i]; pt.m_localPointA.deSerialize(manifoldDataPtr->m_pointCacheLocalPointA[i]); pt.m_localPointB.deSerialize(manifoldDataPtr->m_pointCacheLocalPointB[i]); pt.m_normalWorldOnB.deSerialize(manifoldDataPtr->m_pointCacheNormalWorldOnB[i]); pt.m_distance1 = manifoldDataPtr->m_pointCacheDistance[i]; pt.m_combinedContactDamping1 = manifoldDataPtr->m_pointCacheCombinedContactDamping1[i]; pt.m_combinedContactStiffness1 = manifoldDataPtr->m_pointCacheCombinedContactStiffness1[i]; pt.m_lifeTime = manifoldDataPtr->m_pointCacheLifeTime[i]; pt.m_frictionCFM = manifoldDataPtr->m_pointCacheFrictionCFM[i]; pt.m_contactERP = manifoldDataPtr->m_pointCacheContactERP[i]; pt.m_contactCFM = manifoldDataPtr->m_pointCacheContactCFM[i]; pt.m_contactPointFlags = manifoldDataPtr->m_pointCacheContactPointFlags[i]; pt.m_index0 = manifoldDataPtr->m_pointCacheIndex0[i]; pt.m_index1 = manifoldDataPtr->m_pointCacheIndex1[i]; pt.m_partId0 = manifoldDataPtr->m_pointCachePartId0[i]; pt.m_partId1 = manifoldDataPtr->m_pointCachePartId1[i]; pt.m_positionWorldOnA.deSerialize(manifoldDataPtr->m_pointCachePositionWorldOnA[i]); pt.m_positionWorldOnB.deSerialize(manifoldDataPtr->m_pointCachePositionWorldOnB[i]); pt.m_combinedFriction = manifoldDataPtr->m_pointCacheCombinedFriction[i]; pt.m_lateralFrictionDir1.deSerialize(manifoldDataPtr->m_pointCacheLateralFrictionDir1[i]); pt.m_lateralFrictionDir2.deSerialize(manifoldDataPtr->m_pointCacheLateralFrictionDir2[i]); pt.m_combinedRollingFriction = manifoldDataPtr->m_pointCacheCombinedRollingFriction[i]; pt.m_combinedSpinningFriction = manifoldDataPtr->m_pointCacheCombinedSpinningFriction[i]; pt.m_combinedRestitution = manifoldDataPtr->m_pointCacheCombinedRestitution[i]; pt.m_contactMotion1 = manifoldDataPtr->m_pointCacheContactMotion1[i]; pt.m_contactMotion2 = manifoldDataPtr->m_pointCacheContactMotion2[i]; } }