/**************************************************************************/ /* particles_storage.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifdef GLES3_ENABLED #include "particles_storage.h" #include "material_storage.h" #include "mesh_storage.h" #include "texture_storage.h" #include "utilities.h" #include "servers/rendering/rendering_server_default.h" using namespace GLES3; ParticlesStorage *ParticlesStorage::singleton = nullptr; ParticlesStorage *ParticlesStorage::get_singleton() { return singleton; } ParticlesStorage::ParticlesStorage() { singleton = this; GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); { String global_defines; global_defines += "#define MAX_GLOBAL_SHADER_UNIFORMS 256\n"; // TODO: this is arbitrary for now material_storage->shaders.particles_process_shader.initialize(global_defines, 1); } { // default material and shader for particles shader particles_shader.default_shader = material_storage->shader_allocate(); material_storage->shader_initialize(particles_shader.default_shader); material_storage->shader_set_code(particles_shader.default_shader, R"( // Default particles shader. shader_type particles; void process() { COLOR = vec4(1.0); } )"); particles_shader.default_material = material_storage->material_allocate(); material_storage->material_initialize(particles_shader.default_material); material_storage->material_set_shader(particles_shader.default_material, particles_shader.default_shader); } { particles_shader.copy_shader.initialize(); particles_shader.copy_shader_version = particles_shader.copy_shader.version_create(); } } ParticlesStorage::~ParticlesStorage() { singleton = nullptr; GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); material_storage->material_free(particles_shader.default_material); material_storage->shader_free(particles_shader.default_shader); particles_shader.copy_shader.version_free(particles_shader.copy_shader_version); } /* PARTICLES */ RID ParticlesStorage::particles_allocate() { return particles_owner.allocate_rid(); } void ParticlesStorage::particles_initialize(RID p_rid) { particles_owner.initialize_rid(p_rid, Particles()); } void ParticlesStorage::particles_free(RID p_rid) { update_particles(); Particles *particles = particles_owner.get_or_null(p_rid); particles->dependency.deleted_notify(p_rid); _particles_free_data(particles); particles_owner.free(p_rid); } void ParticlesStorage::particles_set_mode(RID p_particles, RS::ParticlesMode p_mode) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); if (particles->mode == p_mode) { return; } _particles_free_data(particles); particles->mode = p_mode; } void ParticlesStorage::particles_set_emitting(RID p_particles, bool p_emitting) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->emitting = p_emitting; } bool ParticlesStorage::particles_get_emitting(RID p_particles) { ERR_FAIL_COND_V_MSG(RSG::threaded, false, "This function should never be used with threaded rendering, as it stalls the renderer."); Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL_V(particles, false); return particles->emitting; } void ParticlesStorage::_particles_free_data(Particles *particles) { particles->userdata_count = 0; particles->instance_buffer_size_cache = 0; particles->instance_buffer_stride_cache = 0; particles->num_attrib_arrays_cache = 0; particles->process_buffer_stride_cache = 0; if (particles->front_process_buffer != 0) { glDeleteVertexArrays(1, &particles->front_vertex_array); GLES3::Utilities::get_singleton()->buffer_free_data(particles->front_process_buffer); GLES3::Utilities::get_singleton()->buffer_free_data(particles->front_instance_buffer); particles->front_vertex_array = 0; particles->front_process_buffer = 0; particles->front_instance_buffer = 0; glDeleteVertexArrays(1, &particles->back_vertex_array); GLES3::Utilities::get_singleton()->buffer_free_data(particles->back_process_buffer); GLES3::Utilities::get_singleton()->buffer_free_data(particles->back_instance_buffer); particles->back_vertex_array = 0; particles->back_process_buffer = 0; particles->back_instance_buffer = 0; } if (particles->sort_buffer != 0) { GLES3::Utilities::get_singleton()->buffer_free_data(particles->last_frame_buffer); GLES3::Utilities::get_singleton()->buffer_free_data(particles->sort_buffer); particles->last_frame_buffer = 0; particles->sort_buffer = 0; particles->sort_buffer_filled = false; particles->last_frame_buffer_filled = false; } if (particles->frame_params_ubo != 0) { GLES3::Utilities::get_singleton()->buffer_free_data(particles->frame_params_ubo); particles->frame_params_ubo = 0; } } void ParticlesStorage::particles_set_amount(RID p_particles, int p_amount) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); if (particles->amount == p_amount) { return; } _particles_free_data(particles); particles->amount = p_amount; particles->prev_ticks = 0; particles->phase = 0; particles->prev_phase = 0; particles->clear = true; particles->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_PARTICLES); } void ParticlesStorage::particles_set_lifetime(RID p_particles, double p_lifetime) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->lifetime = p_lifetime; } void ParticlesStorage::particles_set_one_shot(RID p_particles, bool p_one_shot) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->one_shot = p_one_shot; } void ParticlesStorage::particles_set_pre_process_time(RID p_particles, double p_time) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->pre_process_time = p_time; } void ParticlesStorage::particles_set_explosiveness_ratio(RID p_particles, real_t p_ratio) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->explosiveness = p_ratio; } void ParticlesStorage::particles_set_randomness_ratio(RID p_particles, real_t p_ratio) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->randomness = p_ratio; } void ParticlesStorage::particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->custom_aabb = p_aabb; particles->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB); } void ParticlesStorage::particles_set_speed_scale(RID p_particles, double p_scale) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->speed_scale = p_scale; } void ParticlesStorage::particles_set_use_local_coordinates(RID p_particles, bool p_enable) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->use_local_coords = p_enable; particles->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_PARTICLES); } void ParticlesStorage::particles_set_fixed_fps(RID p_particles, int p_fps) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->fixed_fps = p_fps; _particles_free_data(particles); particles->prev_ticks = 0; particles->phase = 0; particles->prev_phase = 0; particles->clear = true; particles->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_PARTICLES); } void ParticlesStorage::particles_set_interpolate(RID p_particles, bool p_enable) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->interpolate = p_enable; } void ParticlesStorage::particles_set_fractional_delta(RID p_particles, bool p_enable) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->fractional_delta = p_enable; } void ParticlesStorage::particles_set_trails(RID p_particles, bool p_enable, double p_length) { if (p_enable) { WARN_PRINT_ONCE_ED("The GL Compatibility rendering backend does not support particle trails."); } } void ParticlesStorage::particles_set_trail_bind_poses(RID p_particles, const Vector &p_bind_poses) { if (p_bind_poses.size() != 0) { WARN_PRINT_ONCE_ED("The GL Compatibility rendering backend does not support particle trails."); } } void ParticlesStorage::particles_set_collision_base_size(RID p_particles, real_t p_size) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->collision_base_size = p_size; } void ParticlesStorage::particles_set_transform_align(RID p_particles, RS::ParticlesTransformAlign p_transform_align) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->transform_align = p_transform_align; } void ParticlesStorage::particles_set_process_material(RID p_particles, RID p_material) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->process_material = p_material; particles->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_PARTICLES); //the instance buffer may have changed } RID ParticlesStorage::particles_get_process_material(RID p_particles) const { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL_V(particles, RID()); return particles->process_material; } void ParticlesStorage::particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->draw_order = p_order; } void ParticlesStorage::particles_set_draw_passes(RID p_particles, int p_passes) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->draw_passes.resize(p_passes); } void ParticlesStorage::particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); ERR_FAIL_INDEX(p_pass, particles->draw_passes.size()); particles->draw_passes.write[p_pass] = p_mesh; particles->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_PARTICLES); } void ParticlesStorage::particles_restart(RID p_particles) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->restart_request = true; } void ParticlesStorage::particles_set_subemitter(RID p_particles, RID p_subemitter_particles) { if (p_subemitter_particles.is_valid()) { WARN_PRINT_ONCE_ED("The GL Compatibility rendering backend does not support particle sub-emitters."); } } void ParticlesStorage::particles_emit(RID p_particles, const Transform3D &p_transform, const Vector3 &p_velocity, const Color &p_color, const Color &p_custom, uint32_t p_emit_flags) { WARN_PRINT_ONCE_ED("The GL Compatibility rendering backend does not support manually emitting particles."); } void ParticlesStorage::particles_request_process(RID p_particles) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); if (!particles->dirty) { particles->dirty = true; particles->update_list = particle_update_list; particle_update_list = particles; } } AABB ParticlesStorage::particles_get_current_aabb(RID p_particles) { if (RSG::threaded) { WARN_PRINT_ONCE("Calling this function with threaded rendering enabled stalls the renderer, use with care."); } const Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL_V(particles, AABB()); int total_amount = particles->amount; // If available, read from the sort buffer which should be 2 frames out of date. // This will help alleviate GPU stalls. GLuint read_buffer = particles->sort_buffer_filled ? particles->sort_buffer : particles->back_instance_buffer; Vector buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, read_buffer, total_amount * sizeof(ParticleInstanceData3D)); ERR_FAIL_COND_V(buffer.size() != (int)(total_amount * sizeof(ParticleInstanceData3D)), AABB()); Transform3D inv = particles->emission_transform.affine_inverse(); AABB aabb; if (buffer.size()) { bool first = true; const uint8_t *data_ptr = (const uint8_t *)buffer.ptr(); uint32_t particle_data_size = sizeof(ParticleInstanceData3D) + sizeof(float) * particles->userdata_count; for (int i = 0; i < total_amount; i++) { const ParticleInstanceData3D &particle_data = *(const ParticleInstanceData3D *)&data_ptr[particle_data_size * i]; // If scale is 0.0, we assume the particle is inactive. if (particle_data.xform[0] > 0.0) { Vector3 pos = Vector3(particle_data.xform[3], particle_data.xform[7], particle_data.xform[11]); if (!particles->use_local_coords) { pos = inv.xform(pos); } if (first) { aabb.position = pos; first = false; } else { aabb.expand_to(pos); } } } } float longest_axis_size = 0; for (int i = 0; i < particles->draw_passes.size(); i++) { if (particles->draw_passes[i].is_valid()) { AABB maabb = MeshStorage::get_singleton()->mesh_get_aabb(particles->draw_passes[i], RID()); longest_axis_size = MAX(maabb.get_longest_axis_size(), longest_axis_size); } } aabb.grow_by(longest_axis_size); return aabb; } AABB ParticlesStorage::particles_get_aabb(RID p_particles) const { const Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL_V(particles, AABB()); return particles->custom_aabb; } void ParticlesStorage::particles_set_emission_transform(RID p_particles, const Transform3D &p_transform) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->emission_transform = p_transform; } int ParticlesStorage::particles_get_draw_passes(RID p_particles) const { const Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL_V(particles, 0); return particles->draw_passes.size(); } RID ParticlesStorage::particles_get_draw_pass_mesh(RID p_particles, int p_pass) const { const Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL_V(particles, RID()); ERR_FAIL_INDEX_V(p_pass, particles->draw_passes.size(), RID()); return particles->draw_passes[p_pass]; } void ParticlesStorage::particles_add_collision(RID p_particles, RID p_particles_collision_instance) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->collisions.insert(p_particles_collision_instance); } void ParticlesStorage::particles_remove_collision(RID p_particles, RID p_particles_collision_instance) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->collisions.erase(p_particles_collision_instance); } void ParticlesStorage::particles_set_canvas_sdf_collision(RID p_particles, bool p_enable, const Transform2D &p_xform, const Rect2 &p_to_screen, GLuint p_texture) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); particles->has_sdf_collision = p_enable; particles->sdf_collision_transform = p_xform; particles->sdf_collision_to_screen = p_to_screen; particles->sdf_collision_texture = p_texture; } // Does one step of processing particles by reading from back_process_buffer and writing to front_process_buffer. void ParticlesStorage::_particles_process(Particles *p_particles, double p_delta) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); double new_phase = Math::fmod(p_particles->phase + (p_delta / p_particles->lifetime) * p_particles->speed_scale, 1.0); //update current frame ParticlesFrameParams frame_params; if (p_particles->clear) { p_particles->cycle_number = 0; p_particles->random_seed = Math::rand(); } else if (new_phase < p_particles->phase) { if (p_particles->one_shot) { p_particles->emitting = false; } p_particles->cycle_number++; } frame_params.emitting = p_particles->emitting; frame_params.system_phase = new_phase; frame_params.prev_system_phase = p_particles->phase; p_particles->phase = new_phase; frame_params.time = RSG::rasterizer->get_total_time(); frame_params.delta = p_delta * p_particles->speed_scale; frame_params.random_seed = p_particles->random_seed; frame_params.explosiveness = p_particles->explosiveness; frame_params.randomness = p_particles->randomness; if (p_particles->use_local_coords) { GLES3::MaterialStorage::store_transform(Transform3D(), frame_params.emission_transform); } else { GLES3::MaterialStorage::store_transform(p_particles->emission_transform, frame_params.emission_transform); } frame_params.cycle = p_particles->cycle_number; frame_params.frame = p_particles->frame_counter++; frame_params.pad0 = 0; frame_params.pad1 = 0; frame_params.pad2 = 0; { //collision and attractors frame_params.collider_count = 0; frame_params.attractor_count = 0; frame_params.particle_size = p_particles->collision_base_size; GLuint collision_heightmap_texture = 0; Transform3D to_particles; if (p_particles->use_local_coords) { to_particles = p_particles->emission_transform.affine_inverse(); } if (p_particles->has_sdf_collision && p_particles->sdf_collision_texture != 0) { //2D collision Transform2D xform = p_particles->sdf_collision_transform; //will use dotproduct manually so invert beforehand if (!p_particles->use_local_coords) { Transform2D emission; emission.columns[0] = Vector2(p_particles->emission_transform.basis.get_column(0).x, p_particles->emission_transform.basis.get_column(0).y); emission.columns[1] = Vector2(p_particles->emission_transform.basis.get_column(1).x, p_particles->emission_transform.basis.get_column(1).y); emission.set_origin(Vector2(p_particles->emission_transform.origin.x, p_particles->emission_transform.origin.y)); xform = xform * emission.affine_inverse(); } Transform2D revert = xform.affine_inverse(); frame_params.collider_count = 1; frame_params.colliders[0].transform[0] = xform.columns[0][0]; frame_params.colliders[0].transform[1] = xform.columns[0][1]; frame_params.colliders[0].transform[2] = 0; frame_params.colliders[0].transform[3] = xform.columns[2][0]; frame_params.colliders[0].transform[4] = xform.columns[1][0]; frame_params.colliders[0].transform[5] = xform.columns[1][1]; frame_params.colliders[0].transform[6] = 0; frame_params.colliders[0].transform[7] = xform.columns[2][1]; frame_params.colliders[0].transform[8] = revert.columns[0][0]; frame_params.colliders[0].transform[9] = revert.columns[0][1]; frame_params.colliders[0].transform[10] = 0; frame_params.colliders[0].transform[11] = revert.columns[2][0]; frame_params.colliders[0].transform[12] = revert.columns[1][0]; frame_params.colliders[0].transform[13] = revert.columns[1][1]; frame_params.colliders[0].transform[14] = 0; frame_params.colliders[0].transform[15] = revert.columns[2][1]; frame_params.colliders[0].extents[0] = p_particles->sdf_collision_to_screen.size.x; frame_params.colliders[0].extents[1] = p_particles->sdf_collision_to_screen.size.y; frame_params.colliders[0].extents[2] = p_particles->sdf_collision_to_screen.position.x; frame_params.colliders[0].scale = p_particles->sdf_collision_to_screen.position.y; frame_params.colliders[0].type = ParticlesFrameParams::COLLISION_TYPE_2D_SDF; collision_heightmap_texture = p_particles->sdf_collision_texture; } for (const RID &E : p_particles->collisions) { ParticlesCollisionInstance *pci = particles_collision_instance_owner.get_or_null(E); if (!pci || !pci->active) { continue; } ParticlesCollision *pc = particles_collision_owner.get_or_null(pci->collision); ERR_CONTINUE(!pc); Transform3D to_collider = pci->transform; if (p_particles->use_local_coords) { to_collider = to_particles * to_collider; } Vector3 scale = to_collider.basis.get_scale(); to_collider.basis.orthonormalize(); if (pc->type <= RS::PARTICLES_COLLISION_TYPE_VECTOR_FIELD_ATTRACT) { //attractor if (frame_params.attractor_count >= ParticlesFrameParams::MAX_ATTRACTORS) { continue; } ParticlesFrameParams::Attractor &attr = frame_params.attractors[frame_params.attractor_count]; GLES3::MaterialStorage::store_transform(to_collider, attr.transform); attr.strength = pc->attractor_strength; attr.attenuation = pc->attractor_attenuation; attr.directionality = pc->attractor_directionality; switch (pc->type) { case RS::PARTICLES_COLLISION_TYPE_SPHERE_ATTRACT: { attr.type = ParticlesFrameParams::ATTRACTOR_TYPE_SPHERE; float radius = pc->radius; radius *= (scale.x + scale.y + scale.z) / 3.0; attr.extents[0] = radius; attr.extents[1] = radius; attr.extents[2] = radius; } break; case RS::PARTICLES_COLLISION_TYPE_BOX_ATTRACT: { attr.type = ParticlesFrameParams::ATTRACTOR_TYPE_BOX; Vector3 extents = pc->extents * scale; attr.extents[0] = extents.x; attr.extents[1] = extents.y; attr.extents[2] = extents.z; } break; case RS::PARTICLES_COLLISION_TYPE_VECTOR_FIELD_ATTRACT: { WARN_PRINT_ONCE_ED("Vector field particle attractors are not available in the GL Compatibility rendering backend."); } break; default: { } } frame_params.attractor_count++; } else { //collider if (frame_params.collider_count >= ParticlesFrameParams::MAX_COLLIDERS) { continue; } ParticlesFrameParams::Collider &col = frame_params.colliders[frame_params.collider_count]; GLES3::MaterialStorage::store_transform(to_collider, col.transform); switch (pc->type) { case RS::PARTICLES_COLLISION_TYPE_SPHERE_COLLIDE: { col.type = ParticlesFrameParams::COLLISION_TYPE_SPHERE; float radius = pc->radius; radius *= (scale.x + scale.y + scale.z) / 3.0; col.extents[0] = radius; col.extents[1] = radius; col.extents[2] = radius; } break; case RS::PARTICLES_COLLISION_TYPE_BOX_COLLIDE: { col.type = ParticlesFrameParams::COLLISION_TYPE_BOX; Vector3 extents = pc->extents * scale; col.extents[0] = extents.x; col.extents[1] = extents.y; col.extents[2] = extents.z; } break; case RS::PARTICLES_COLLISION_TYPE_SDF_COLLIDE: { WARN_PRINT_ONCE_ED("SDF Particle Colliders are not available in the GL Compatibility rendering backend."); } break; case RS::PARTICLES_COLLISION_TYPE_HEIGHTFIELD_COLLIDE: { if (collision_heightmap_texture != 0) { //already taken continue; } col.type = ParticlesFrameParams::COLLISION_TYPE_HEIGHT_FIELD; Vector3 extents = pc->extents * scale; col.extents[0] = extents.x; col.extents[1] = extents.y; col.extents[2] = extents.z; collision_heightmap_texture = pc->heightfield_texture; } break; default: { } } frame_params.collider_count++; } } // Bind heightmap or SDF texture. GLuint heightmap = collision_heightmap_texture; if (heightmap == 0) { GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_BLACK)); heightmap = tex->tex_id; } glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, heightmap); } if (p_particles->frame_params_ubo == 0) { glGenBuffers(1, &p_particles->frame_params_ubo); glBindBufferBase(GL_UNIFORM_BUFFER, PARTICLES_FRAME_UNIFORM_LOCATION, p_particles->frame_params_ubo); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, p_particles->frame_params_ubo, sizeof(ParticlesFrameParams), &frame_params, GL_STREAM_DRAW, "Particle Frame UBO"); } else { // Update per-frame UBO. glBindBufferBase(GL_UNIFORM_BUFFER, PARTICLES_FRAME_UNIFORM_LOCATION, p_particles->frame_params_ubo); glBufferData(GL_UNIFORM_BUFFER, sizeof(ParticlesFrameParams), &frame_params, GL_STREAM_DRAW); } // Get shader and set shader uniforms; ParticleProcessMaterialData *m = static_cast(material_storage->material_get_data(p_particles->process_material, RS::SHADER_PARTICLES)); if (!m) { m = static_cast(material_storage->material_get_data(particles_shader.default_material, RS::SHADER_PARTICLES)); } ERR_FAIL_NULL(m); ParticlesShaderGLES3::ShaderVariant variant = ParticlesShaderGLES3::MODE_DEFAULT; uint32_t specialization = 0; for (uint32_t i = 0; i < p_particles->userdata_count; i++) { specialization |= (1 << i); } if (p_particles->mode == RS::ParticlesMode::PARTICLES_MODE_3D) { specialization |= ParticlesShaderGLES3::MODE_3D; } RID version = particles_shader.default_shader_version; if (m->shader_data->version.is_valid() && m->shader_data->valid) { // Bind material uniform buffer and textures. m->bind_uniforms(); version = m->shader_data->version; } bool success = material_storage->shaders.particles_process_shader.version_bind_shader(version, variant, specialization); if (!success) { return; } material_storage->shaders.particles_process_shader.version_set_uniform(ParticlesShaderGLES3::LIFETIME, p_particles->lifetime, version, variant, specialization); material_storage->shaders.particles_process_shader.version_set_uniform(ParticlesShaderGLES3::CLEAR, p_particles->clear, version, variant, specialization); material_storage->shaders.particles_process_shader.version_set_uniform(ParticlesShaderGLES3::TOTAL_PARTICLES, uint32_t(p_particles->amount), version, variant, specialization); material_storage->shaders.particles_process_shader.version_set_uniform(ParticlesShaderGLES3::USE_FRACTIONAL_DELTA, p_particles->fractional_delta, version, variant, specialization); p_particles->clear = false; p_particles->has_collision_cache = m->shader_data->uses_collision; glBindVertexArray(p_particles->back_vertex_array); glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, p_particles->front_process_buffer); glBeginTransformFeedback(GL_POINTS); glDrawArrays(GL_POINTS, 0, p_particles->amount); glEndTransformFeedback(); glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0); glBindVertexArray(0); SWAP(p_particles->front_process_buffer, p_particles->back_process_buffer); SWAP(p_particles->front_vertex_array, p_particles->back_vertex_array); } void ParticlesStorage::particles_set_view_axis(RID p_particles, const Vector3 &p_axis, const Vector3 &p_up_axis) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL(particles); if (particles->draw_order != RS::PARTICLES_DRAW_ORDER_VIEW_DEPTH && particles->transform_align != RS::PARTICLES_TRANSFORM_ALIGN_Z_BILLBOARD && particles->transform_align != RS::PARTICLES_TRANSFORM_ALIGN_Z_BILLBOARD_Y_TO_VELOCITY) { return; } if (particles->front_process_buffer == 0) { return; //particles have not processed yet } Vector3 axis = -p_axis; // cameras look to z negative if (particles->use_local_coords) { axis = particles->emission_transform.basis.xform_inv(axis).normalized(); } // Sort will be done on CPU since we don't have compute shaders. // If the sort_buffer has valid data // Use a buffer that is 2 frames out of date to avoid stalls. if (particles->draw_order == RS::PARTICLES_DRAW_ORDER_VIEW_DEPTH && particles->sort_buffer_filled) { glBindBuffer(GL_ARRAY_BUFFER, particles->sort_buffer); ParticleInstanceData3D *particle_array; #ifndef __EMSCRIPTEN__ particle_array = static_cast(glMapBufferRange(GL_ARRAY_BUFFER, 0, particles->amount * sizeof(ParticleInstanceData3D), GL_MAP_READ_BIT | GL_MAP_WRITE_BIT)); ERR_FAIL_NULL(particle_array); #else LocalVector particle_vector; particle_vector.resize(particles->amount); particle_array = particle_vector.ptr(); glGetBufferSubData(GL_ARRAY_BUFFER, 0, particles->amount * sizeof(ParticleInstanceData3D), particle_array); #endif SortArray sorter; sorter.compare.z_dir = axis; sorter.sort(particle_array, particles->amount); #ifndef __EMSCRIPTEN__ glUnmapBuffer(GL_ARRAY_BUFFER); #else glBufferSubData(GL_ARRAY_BUFFER, 0, particles->amount * sizeof(ParticleInstanceData3D), particle_vector.ptr()); #endif } glEnable(GL_RASTERIZER_DISCARD); _particles_update_instance_buffer(particles, axis, p_up_axis); glDisable(GL_RASTERIZER_DISCARD); } void ParticlesStorage::_particles_update_buffers(Particles *particles) { GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); uint32_t userdata_count = 0; if (particles->process_material.is_valid()) { GLES3::ParticleProcessMaterialData *material_data = static_cast(material_storage->material_get_data(particles->process_material, RS::SHADER_PARTICLES)); if (material_data && material_data->shader_data->version.is_valid() && material_data->shader_data->valid) { userdata_count = material_data->shader_data->userdata_count; } } if (userdata_count != particles->userdata_count) { // Mismatch userdata, re-create buffers. _particles_free_data(particles); } if (particles->amount > 0 && particles->front_process_buffer == 0) { int total_amount = particles->amount; particles->userdata_count = userdata_count; uint32_t xform_size = particles->mode == RS::PARTICLES_MODE_2D ? 2 : 3; particles->instance_buffer_stride_cache = sizeof(float) * 4 * (xform_size + 1); particles->instance_buffer_size_cache = particles->instance_buffer_stride_cache * total_amount; particles->num_attrib_arrays_cache = 5 + userdata_count + (xform_size - 2); particles->process_buffer_stride_cache = sizeof(float) * 4 * particles->num_attrib_arrays_cache; PackedByteArray data; data.resize_zeroed(particles->process_buffer_stride_cache * total_amount); PackedByteArray instance_data; instance_data.resize_zeroed(particles->instance_buffer_size_cache); { glGenVertexArrays(1, &particles->front_vertex_array); glBindVertexArray(particles->front_vertex_array); glGenBuffers(1, &particles->front_process_buffer); glGenBuffers(1, &particles->front_instance_buffer); glBindBuffer(GL_ARRAY_BUFFER, particles->front_process_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, particles->front_process_buffer, particles->process_buffer_stride_cache * total_amount, data.ptr(), GL_DYNAMIC_COPY, "Particles front process buffer"); for (uint32_t j = 0; j < particles->num_attrib_arrays_cache; j++) { glEnableVertexAttribArray(j); glVertexAttribPointer(j, 4, GL_FLOAT, GL_FALSE, particles->process_buffer_stride_cache, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * j)); } glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, particles->front_instance_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, particles->front_instance_buffer, particles->instance_buffer_size_cache, instance_data.ptr(), GL_DYNAMIC_COPY, "Particles front instance buffer"); } { glGenVertexArrays(1, &particles->back_vertex_array); glBindVertexArray(particles->back_vertex_array); glGenBuffers(1, &particles->back_process_buffer); glGenBuffers(1, &particles->back_instance_buffer); glBindBuffer(GL_ARRAY_BUFFER, particles->back_process_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, particles->back_process_buffer, particles->process_buffer_stride_cache * total_amount, data.ptr(), GL_DYNAMIC_COPY, "Particles back process buffer"); for (uint32_t j = 0; j < particles->num_attrib_arrays_cache; j++) { glEnableVertexAttribArray(j); glVertexAttribPointer(j, 4, GL_FLOAT, GL_FALSE, particles->process_buffer_stride_cache, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * j)); } glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, particles->back_instance_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, particles->back_instance_buffer, particles->instance_buffer_size_cache, instance_data.ptr(), GL_DYNAMIC_COPY, "Particles back instance buffer"); } glBindBuffer(GL_ARRAY_BUFFER, 0); } } void ParticlesStorage::_particles_allocate_history_buffers(Particles *particles) { if (particles->sort_buffer == 0) { glGenBuffers(1, &particles->last_frame_buffer); glBindBuffer(GL_ARRAY_BUFFER, particles->last_frame_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, particles->last_frame_buffer, particles->instance_buffer_size_cache, nullptr, GL_DYNAMIC_READ, "Particles last frame buffer"); glGenBuffers(1, &particles->sort_buffer); glBindBuffer(GL_ARRAY_BUFFER, particles->sort_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, particles->sort_buffer, particles->instance_buffer_size_cache, nullptr, GL_DYNAMIC_READ, "Particles sort buffer"); particles->sort_buffer_filled = false; particles->last_frame_buffer_filled = false; glBindBuffer(GL_ARRAY_BUFFER, 0); } } void ParticlesStorage::_particles_update_instance_buffer(Particles *particles, const Vector3 &p_axis, const Vector3 &p_up_axis) { ParticlesCopyShaderGLES3::ShaderVariant variant = ParticlesCopyShaderGLES3::MODE_DEFAULT; uint64_t specialization = 0; if (particles->mode == RS::ParticlesMode::PARTICLES_MODE_3D) { specialization |= ParticlesCopyShaderGLES3::MODE_3D; } bool success = particles_shader.copy_shader.version_bind_shader(particles_shader.copy_shader_version, variant, specialization); if (!success) { return; } // Affect 2D only. if (particles->use_local_coords) { // In local mode, particle positions are calculated locally (relative to the node position) // and they're also drawn locally. // It works as expected, so we just pass an identity transform. particles_shader.copy_shader.version_set_uniform(ParticlesCopyShaderGLES3::INV_EMISSION_TRANSFORM, Transform3D(), particles_shader.copy_shader_version, variant, specialization); } else { // In global mode, particle positions are calculated globally (relative to the canvas origin) // but they're drawn locally. // So, we need to pass the inverse of the emission transform to bring the // particles to local coordinates before drawing. Transform3D inv = particles->emission_transform.affine_inverse(); particles_shader.copy_shader.version_set_uniform(ParticlesCopyShaderGLES3::INV_EMISSION_TRANSFORM, inv, particles_shader.copy_shader_version, variant, specialization); } particles_shader.copy_shader.version_set_uniform(ParticlesCopyShaderGLES3::FRAME_REMAINDER, particles->interpolate ? particles->frame_remainder : 0.0, particles_shader.copy_shader_version, variant, specialization); particles_shader.copy_shader.version_set_uniform(ParticlesCopyShaderGLES3::ALIGN_MODE, uint32_t(particles->transform_align), particles_shader.copy_shader_version, variant, specialization); particles_shader.copy_shader.version_set_uniform(ParticlesCopyShaderGLES3::ALIGN_UP, p_up_axis, particles_shader.copy_shader_version, variant, specialization); particles_shader.copy_shader.version_set_uniform(ParticlesCopyShaderGLES3::SORT_DIRECTION, p_axis, particles_shader.copy_shader_version, variant, specialization); glBindVertexArray(particles->back_vertex_array); glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, 0, particles->front_instance_buffer, 0, particles->instance_buffer_size_cache); glBeginTransformFeedback(GL_POINTS); if (particles->draw_order == RS::PARTICLES_DRAW_ORDER_LIFETIME) { uint32_t lifetime_split = (MIN(int(particles->amount * particles->phase), particles->amount - 1) + 1) % particles->amount; uint32_t stride = particles->process_buffer_stride_cache; glBindBuffer(GL_ARRAY_BUFFER, particles->back_process_buffer); // Offset VBO so you render starting at the newest particle. if (particles->amount - lifetime_split > 0) { glEnableVertexAttribArray(0); // Color. glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * lifetime_split + sizeof(float) * 4 * 0)); glEnableVertexAttribArray(1); // .xyz: velocity. .z: flags. glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * lifetime_split + sizeof(float) * 4 * 1)); glEnableVertexAttribArray(2); // Custom. glVertexAttribPointer(2, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * lifetime_split + sizeof(float) * 4 * 2)); glEnableVertexAttribArray(3); // Xform1. glVertexAttribPointer(3, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * lifetime_split + sizeof(float) * 4 * 3)); glEnableVertexAttribArray(4); // Xform2. glVertexAttribPointer(4, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * lifetime_split + sizeof(float) * 4 * 4)); if (particles->mode == RS::PARTICLES_MODE_3D) { glEnableVertexAttribArray(5); // Xform3. glVertexAttribPointer(5, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * lifetime_split + sizeof(float) * 4 * 5)); } uint32_t to_draw = particles->amount - lifetime_split; glDrawArrays(GL_POINTS, 0, to_draw); } // Then render from index 0 up intil the newest particle. if (lifetime_split > 0) { glEndTransformFeedback(); // Now output to the second portion of the instance buffer. glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, 0, particles->front_instance_buffer, particles->instance_buffer_stride_cache * (particles->amount - lifetime_split), particles->instance_buffer_stride_cache * (lifetime_split)); glBeginTransformFeedback(GL_POINTS); // Reset back to normal. for (uint32_t j = 0; j < particles->num_attrib_arrays_cache; j++) { glEnableVertexAttribArray(j); glVertexAttribPointer(j, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * j)); } glDrawArrays(GL_POINTS, 0, lifetime_split); } } else { glDrawArrays(GL_POINTS, 0, particles->amount); } glEndTransformFeedback(); glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0, 0, 0); glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); } void ParticlesStorage::update_particles() { glEnable(GL_RASTERIZER_DISCARD); GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer(); glBindBufferBase(GL_UNIFORM_BUFFER, PARTICLES_GLOBALS_UNIFORM_LOCATION, global_buffer); glBindBuffer(GL_UNIFORM_BUFFER, 0); while (particle_update_list) { // Use transform feedback to process particles. Particles *particles = particle_update_list; particle_update_list = particles->update_list; particles->update_list = nullptr; particles->dirty = false; _particles_update_buffers(particles); if (particles->restart_request) { particles->prev_ticks = 0; particles->phase = 0; particles->prev_phase = 0; particles->clear = true; particles->restart_request = false; } if (particles->inactive && !particles->emitting) { //go next continue; } if (particles->emitting) { if (particles->inactive) { //restart system from scratch particles->prev_ticks = 0; particles->phase = 0; particles->prev_phase = 0; particles->clear = true; } particles->inactive = false; particles->inactive_time = 0; } else { particles->inactive_time += particles->speed_scale * RSG::rasterizer->get_frame_delta_time(); if (particles->inactive_time > particles->lifetime * 1.2) { particles->inactive = true; continue; } } // Copy the instance buffer that was last used into the last_frame buffer. // sort_buffer should now be 2 frames out of date. if (particles->draw_order == RS::PARTICLES_DRAW_ORDER_VIEW_DEPTH || particles->draw_order == RS::PARTICLES_DRAW_ORDER_REVERSE_LIFETIME) { _particles_allocate_history_buffers(particles); SWAP(particles->last_frame_buffer, particles->sort_buffer); glBindBuffer(GL_COPY_READ_BUFFER, particles->back_instance_buffer); glBindBuffer(GL_COPY_WRITE_BUFFER, particles->last_frame_buffer); glCopyBufferSubData(GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, 0, 0, particles->instance_buffer_size_cache); // Last frame's last_frame turned into this frame's sort buffer. particles->sort_buffer_filled = particles->last_frame_buffer_filled; particles->sort_buffer_phase = particles->last_frame_phase; particles->last_frame_buffer_filled = true; particles->last_frame_phase = particles->phase; glBindBuffer(GL_COPY_READ_BUFFER, 0); glBindBuffer(GL_COPY_WRITE_BUFFER, 0); } int fixed_fps = 0; if (particles->fixed_fps > 0) { fixed_fps = particles->fixed_fps; } bool zero_time_scale = Engine::get_singleton()->get_time_scale() <= 0.0; if (particles->clear && particles->pre_process_time > 0.0) { double frame_time; if (fixed_fps > 0) { frame_time = 1.0 / fixed_fps; } else { frame_time = 1.0 / 30.0; } double todo = particles->pre_process_time; while (todo >= 0) { _particles_process(particles, frame_time); todo -= frame_time; } } if (fixed_fps > 0) { double frame_time; double decr; if (zero_time_scale) { frame_time = 0.0; decr = 1.0 / fixed_fps; } else { frame_time = 1.0 / fixed_fps; decr = frame_time; } double delta = RSG::rasterizer->get_frame_delta_time(); if (delta > 0.1) { //avoid recursive stalls if fps goes below 10 delta = 0.1; } else if (delta <= 0.0) { //unlikely but.. delta = 0.001; } double todo = particles->frame_remainder + delta; while (todo >= frame_time) { _particles_process(particles, frame_time); todo -= decr; } particles->frame_remainder = todo; } else { if (zero_time_scale) { _particles_process(particles, 0.0); } else { _particles_process(particles, RSG::rasterizer->get_frame_delta_time()); } } // Copy particles to instance buffer and pack Color/Custom. // We don't have camera information here, so don't copy here if we need camera information for view depth or align mode. if (particles->draw_order != RS::PARTICLES_DRAW_ORDER_VIEW_DEPTH && particles->transform_align != RS::PARTICLES_TRANSFORM_ALIGN_Z_BILLBOARD && particles->transform_align != RS::PARTICLES_TRANSFORM_ALIGN_Z_BILLBOARD_Y_TO_VELOCITY) { _particles_update_instance_buffer(particles, Vector3(0.0, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)); if (particles->draw_order == RS::PARTICLES_DRAW_ORDER_REVERSE_LIFETIME && particles->sort_buffer_filled) { if (particles->mode == RS::ParticlesMode::PARTICLES_MODE_2D) { _particles_reverse_lifetime_sort(particles); } else { _particles_reverse_lifetime_sort(particles); } } } SWAP(particles->front_instance_buffer, particles->back_instance_buffer); // At the end of update, the back_buffer contains the most up-to-date-information to read from. particles->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB); } glDisable(GL_RASTERIZER_DISCARD); } template void ParticlesStorage::_particles_reverse_lifetime_sort(Particles *particles) { glBindBuffer(GL_ARRAY_BUFFER, particles->sort_buffer); ParticleInstanceData *particle_array; uint32_t buffer_size = particles->amount * sizeof(ParticleInstanceData); #ifndef __EMSCRIPTEN__ particle_array = static_cast(glMapBufferRange(GL_ARRAY_BUFFER, 0, buffer_size, GL_MAP_READ_BIT | GL_MAP_WRITE_BIT)); ERR_FAIL_NULL(particle_array); #else LocalVector particle_vector; particle_vector.resize(particles->amount); particle_array = particle_vector.ptr(); glGetBufferSubData(GL_ARRAY_BUFFER, 0, buffer_size, particle_array); #endif uint32_t lifetime_split = (MIN(int(particles->amount * particles->sort_buffer_phase), particles->amount - 1) + 1) % particles->amount; for (uint32_t i = 0; i < lifetime_split / 2; i++) { SWAP(particle_array[i], particle_array[lifetime_split - i - 1]); } for (uint32_t i = 0; i < (particles->amount - lifetime_split) / 2; i++) { SWAP(particle_array[lifetime_split + i], particle_array[particles->amount - 1 - i]); } #ifndef __EMSCRIPTEN__ glUnmapBuffer(GL_ARRAY_BUFFER); #else glBufferSubData(GL_ARRAY_BUFFER, 0, buffer_size, particle_vector.ptr()); #endif glBindBuffer(GL_ARRAY_BUFFER, 0); } Dependency *ParticlesStorage::particles_get_dependency(RID p_particles) const { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL_V(particles, nullptr); return &particles->dependency; } bool ParticlesStorage::particles_is_inactive(RID p_particles) const { ERR_FAIL_COND_V_MSG(RSG::threaded, false, "This function should never be used with threaded rendering, as it stalls the renderer."); const Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL_V(particles, false); return !particles->emitting && particles->inactive; } /* PARTICLES COLLISION API */ RID ParticlesStorage::particles_collision_allocate() { return particles_collision_owner.allocate_rid(); } void ParticlesStorage::particles_collision_initialize(RID p_rid) { particles_collision_owner.initialize_rid(p_rid, ParticlesCollision()); } void ParticlesStorage::particles_collision_free(RID p_rid) { ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_rid); if (particles_collision->heightfield_texture != 0) { GLES3::Utilities::get_singleton()->texture_free_data(particles_collision->heightfield_texture); particles_collision->heightfield_texture = 0; glDeleteFramebuffers(1, &particles_collision->heightfield_fb); particles_collision->heightfield_fb = 0; } particles_collision->dependency.deleted_notify(p_rid); particles_collision_owner.free(p_rid); } GLuint ParticlesStorage::particles_collision_get_heightfield_framebuffer(RID p_particles_collision) const { ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL_V(particles_collision, 0); ERR_FAIL_COND_V(particles_collision->type != RS::PARTICLES_COLLISION_TYPE_HEIGHTFIELD_COLLIDE, 0); if (particles_collision->heightfield_texture == 0) { //create const int resolutions[RS::PARTICLES_COLLISION_HEIGHTFIELD_RESOLUTION_MAX] = { 256, 512, 1024, 2048, 4096, 8192 }; Size2i size; if (particles_collision->extents.x > particles_collision->extents.z) { size.x = resolutions[particles_collision->heightfield_resolution]; size.y = int32_t(particles_collision->extents.z / particles_collision->extents.x * size.x); } else { size.y = resolutions[particles_collision->heightfield_resolution]; size.x = int32_t(particles_collision->extents.x / particles_collision->extents.z * size.y); } glGenTextures(1, &particles_collision->heightfield_texture); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, particles_collision->heightfield_texture); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32F, size.x, size.y, 0, GL_DEPTH_COMPONENT, GL_FLOAT, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glGenFramebuffers(1, &particles_collision->heightfield_fb); glBindFramebuffer(GL_FRAMEBUFFER, particles_collision->heightfield_fb); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, particles_collision->heightfield_texture, 0); #ifdef DEBUG_ENABLED GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { WARN_PRINT("Could create heightmap texture status: " + GLES3::TextureStorage::get_singleton()->get_framebuffer_error(status)); } #endif GLES3::Utilities::get_singleton()->texture_allocated_data(particles_collision->heightfield_texture, size.x * size.y * 4, "Particles collision heightfield texture"); particles_collision->heightfield_fb_size = size; glBindTexture(GL_TEXTURE_2D, 0); glBindFramebuffer(GL_FRAMEBUFFER, 0); } return particles_collision->heightfield_fb; } void ParticlesStorage::particles_collision_set_collision_type(RID p_particles_collision, RS::ParticlesCollisionType p_type) { ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL(particles_collision); if (p_type == particles_collision->type) { return; } if (particles_collision->heightfield_texture != 0) { GLES3::Utilities::get_singleton()->texture_free_data(particles_collision->heightfield_texture); particles_collision->heightfield_texture = 0; glDeleteFramebuffers(1, &particles_collision->heightfield_fb); particles_collision->heightfield_fb = 0; } particles_collision->type = p_type; particles_collision->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB); } void ParticlesStorage::particles_collision_set_cull_mask(RID p_particles_collision, uint32_t p_cull_mask) { ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL(particles_collision); particles_collision->cull_mask = p_cull_mask; } void ParticlesStorage::particles_collision_set_sphere_radius(RID p_particles_collision, real_t p_radius) { ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL(particles_collision); particles_collision->radius = p_radius; particles_collision->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB); } void ParticlesStorage::particles_collision_set_box_extents(RID p_particles_collision, const Vector3 &p_extents) { ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL(particles_collision); particles_collision->extents = p_extents; particles_collision->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB); } void ParticlesStorage::particles_collision_set_attractor_strength(RID p_particles_collision, real_t p_strength) { ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL(particles_collision); particles_collision->attractor_strength = p_strength; } void ParticlesStorage::particles_collision_set_attractor_directionality(RID p_particles_collision, real_t p_directionality) { ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL(particles_collision); particles_collision->attractor_directionality = p_directionality; } void ParticlesStorage::particles_collision_set_attractor_attenuation(RID p_particles_collision, real_t p_curve) { ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL(particles_collision); particles_collision->attractor_attenuation = p_curve; } void ParticlesStorage::particles_collision_set_field_texture(RID p_particles_collision, RID p_texture) { WARN_PRINT_ONCE_ED("The GL Compatibility rendering backend does not support SDF collisions in 3D particle shaders"); } void ParticlesStorage::particles_collision_height_field_update(RID p_particles_collision) { ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL(particles_collision); particles_collision->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB); } void ParticlesStorage::particles_collision_set_height_field_resolution(RID p_particles_collision, RS::ParticlesCollisionHeightfieldResolution p_resolution) { ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL(particles_collision); ERR_FAIL_INDEX(p_resolution, RS::PARTICLES_COLLISION_HEIGHTFIELD_RESOLUTION_MAX); if (particles_collision->heightfield_resolution == p_resolution) { return; } particles_collision->heightfield_resolution = p_resolution; if (particles_collision->heightfield_texture != 0) { GLES3::Utilities::get_singleton()->texture_free_data(particles_collision->heightfield_texture); particles_collision->heightfield_texture = 0; glDeleteFramebuffers(1, &particles_collision->heightfield_fb); particles_collision->heightfield_fb = 0; } } AABB ParticlesStorage::particles_collision_get_aabb(RID p_particles_collision) const { ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL_V(particles_collision, AABB()); switch (particles_collision->type) { case RS::PARTICLES_COLLISION_TYPE_SPHERE_ATTRACT: case RS::PARTICLES_COLLISION_TYPE_SPHERE_COLLIDE: { AABB aabb; aabb.position = -Vector3(1, 1, 1) * particles_collision->radius; aabb.size = Vector3(2, 2, 2) * particles_collision->radius; return aabb; } default: { AABB aabb; aabb.position = -particles_collision->extents; aabb.size = particles_collision->extents * 2; return aabb; } } } Vector3 ParticlesStorage::particles_collision_get_extents(RID p_particles_collision) const { const ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL_V(particles_collision, Vector3()); return particles_collision->extents; } bool ParticlesStorage::particles_collision_is_heightfield(RID p_particles_collision) const { const ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL_V(particles_collision, false); return particles_collision->type == RS::PARTICLES_COLLISION_TYPE_HEIGHTFIELD_COLLIDE; } Dependency *ParticlesStorage::particles_collision_get_dependency(RID p_particles_collision) const { ParticlesCollision *pc = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL_V(pc, nullptr); return &pc->dependency; } /* Particles collision instance */ RID ParticlesStorage::particles_collision_instance_create(RID p_collision) { ParticlesCollisionInstance pci; pci.collision = p_collision; return particles_collision_instance_owner.make_rid(pci); } void ParticlesStorage::particles_collision_instance_free(RID p_rid) { particles_collision_instance_owner.free(p_rid); } void ParticlesStorage::particles_collision_instance_set_transform(RID p_collision_instance, const Transform3D &p_transform) { ParticlesCollisionInstance *pci = particles_collision_instance_owner.get_or_null(p_collision_instance); ERR_FAIL_NULL(pci); pci->transform = p_transform; } void ParticlesStorage::particles_collision_instance_set_active(RID p_collision_instance, bool p_active) { ParticlesCollisionInstance *pci = particles_collision_instance_owner.get_or_null(p_collision_instance); ERR_FAIL_NULL(pci); pci->active = p_active; } #endif // GLES3_ENABLED