/**************************************************************************/ /* light_storage.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef LIGHT_STORAGE_GLES3_H #define LIGHT_STORAGE_GLES3_H #ifdef GLES3_ENABLED #include "platform_gl.h" #include "core/templates/local_vector.h" #include "core/templates/rid_owner.h" #include "core/templates/self_list.h" #include "drivers/gles3/storage/texture_storage.h" #include "servers/rendering/renderer_compositor.h" #include "servers/rendering/storage/light_storage.h" #include "servers/rendering/storage/utilities.h" namespace GLES3 { /* LIGHT */ struct Light { RS::LightType type; float param[RS::LIGHT_PARAM_MAX]; Color color = Color(1, 1, 1, 1); RID projector; bool shadow = false; bool negative = false; bool reverse_cull = false; RS::LightBakeMode bake_mode = RS::LIGHT_BAKE_DYNAMIC; uint32_t max_sdfgi_cascade = 2; uint32_t cull_mask = 0xFFFFFFFF; bool distance_fade = false; real_t distance_fade_begin = 40.0; real_t distance_fade_shadow = 50.0; real_t distance_fade_length = 10.0; RS::LightOmniShadowMode omni_shadow_mode = RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID; RS::LightDirectionalShadowMode directional_shadow_mode = RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL; bool directional_blend_splits = false; RS::LightDirectionalSkyMode directional_sky_mode = RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_AND_SKY; uint64_t version = 0; Dependency dependency; }; /* Light instance */ struct LightInstance { struct ShadowTransform { Projection camera; Transform3D transform; float farplane; float split; float bias_scale; float shadow_texel_size; float range_begin; Rect2 atlas_rect; Vector2 uv_scale; }; ShadowTransform shadow_transform[6]; RS::LightType light_type = RS::LIGHT_DIRECTIONAL; AABB aabb; RID self; RID light; Transform3D transform; uint64_t shadow_pass = 0; uint64_t last_scene_pass = 0; uint64_t last_scene_shadow_pass = 0; uint64_t last_pass = 0; uint32_t cull_mask = 0; uint32_t light_directional_index = 0; Rect2 directional_rect; HashSet<RID> shadow_atlases; // Shadow atlases where this light is registered. int32_t gl_id = -1; int32_t shadow_id = -1; LightInstance() {} }; /* REFLECTION PROBE */ struct ReflectionProbe { RS::ReflectionProbeUpdateMode update_mode = RS::REFLECTION_PROBE_UPDATE_ONCE; int resolution = 256; float intensity = 1.0; RS::ReflectionProbeAmbientMode ambient_mode = RS::REFLECTION_PROBE_AMBIENT_ENVIRONMENT; Color ambient_color; float ambient_color_energy = 1.0; float max_distance = 0; Vector3 size = Vector3(20, 20, 20); Vector3 origin_offset; bool interior = false; bool box_projection = false; bool enable_shadows = false; uint32_t cull_mask = (1 << 20) - 1; float mesh_lod_threshold = 0.01; float baked_exposure = 1.0; Dependency dependency; }; /* LIGHTMAP */ struct Lightmap { RID light_texture; bool uses_spherical_harmonics = false; bool interior = false; AABB bounds = AABB(Vector3(), Vector3(1, 1, 1)); float baked_exposure = 1.0; int32_t array_index = -1; //unassigned PackedVector3Array points; PackedColorArray point_sh; PackedInt32Array tetrahedra; PackedInt32Array bsp_tree; struct BSP { static const int32_t EMPTY_LEAF = INT32_MIN; float plane[4]; int32_t over = EMPTY_LEAF, under = EMPTY_LEAF; }; Dependency dependency; }; class LightStorage : public RendererLightStorage { public: enum ShadowAtlastQuadrant { QUADRANT_SHIFT = 27, OMNI_LIGHT_FLAG = 1 << 26, SHADOW_INDEX_MASK = OMNI_LIGHT_FLAG - 1, SHADOW_INVALID = 0xFFFFFFFF }; private: static LightStorage *singleton; /* LIGHT */ mutable RID_Owner<Light, true> light_owner; /* Light instance */ mutable RID_Owner<LightInstance> light_instance_owner; /* REFLECTION PROBE */ mutable RID_Owner<ReflectionProbe, true> reflection_probe_owner; /* LIGHTMAP */ Vector<RID> lightmap_textures; mutable RID_Owner<Lightmap, true> lightmap_owner; /* SHADOW ATLAS */ // Note: The ShadowAtlas in the OpenGL is virtual. Each light gets assigned its // own texture which is the same size as it would be if it were in a real atlas. // This allows us to maintain the same behavior as the other renderers. struct ShadowAtlas { struct Quadrant { uint32_t subdivision = 0; struct Shadow { RID owner; bool owner_is_omni = false; uint64_t version = 0; uint64_t alloc_tick = 0; Shadow() {} }; Vector<Shadow> shadows; LocalVector<GLuint> textures; LocalVector<GLuint> fbos; Quadrant() {} } quadrants[4]; // Ordered from smallest (worst) shadow size to largest (best). int size_order[4] = { 0, 1, 2, 3 }; uint32_t smallest_subdiv = 0; int size = 0; bool use_16_bits = true; GLuint debug_texture = 0; GLuint debug_fbo = 0; HashMap<RID, uint32_t> shadow_owners; }; uint64_t shadow_atlas_realloc_tolerance_msec = 500; RID_Owner<ShadowAtlas> shadow_atlas_owner; void _shadow_atlas_invalidate_shadow(ShadowAtlas::Quadrant::Shadow *p_shadow, RID p_atlas, ShadowAtlas *p_shadow_atlas, uint32_t p_quadrant, uint32_t p_shadow_idx); bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, bool p_omni, int &r_quadrant, int &r_shadow); /* DIRECTIONAL SHADOW */ struct DirectionalShadow { GLuint depth = 0; GLuint fbo = 0; int light_count = 0; int size = 0; bool use_16_bits = true; int current_light = 0; } directional_shadow; public: static LightStorage *get_singleton(); LightStorage(); virtual ~LightStorage(); /* Light API */ Light *get_light(RID p_rid) { return light_owner.get_or_null(p_rid); }; bool owns_light(RID p_rid) { return light_owner.owns(p_rid); }; void _light_initialize(RID p_rid, RS::LightType p_type); virtual RID directional_light_allocate() override; virtual void directional_light_initialize(RID p_rid) override; virtual RID omni_light_allocate() override; virtual void omni_light_initialize(RID p_rid) override; virtual RID spot_light_allocate() override; virtual void spot_light_initialize(RID p_rid) override; virtual void light_free(RID p_rid) override; virtual void light_set_color(RID p_light, const Color &p_color) override; virtual void light_set_param(RID p_light, RS::LightParam p_param, float p_value) override; virtual void light_set_shadow(RID p_light, bool p_enabled) override; virtual void light_set_projector(RID p_light, RID p_texture) override; virtual void light_set_negative(RID p_light, bool p_enable) override; virtual void light_set_cull_mask(RID p_light, uint32_t p_mask) override; virtual void light_set_distance_fade(RID p_light, bool p_enabled, float p_begin, float p_shadow, float p_length) override; virtual void light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) override; virtual void light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode) override; virtual void light_set_max_sdfgi_cascade(RID p_light, uint32_t p_cascade) override {} virtual void light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) override; virtual void light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) override; virtual void light_directional_set_blend_splits(RID p_light, bool p_enable) override; virtual bool light_directional_get_blend_splits(RID p_light) const override; virtual void light_directional_set_sky_mode(RID p_light, RS::LightDirectionalSkyMode p_mode) override; virtual RS::LightDirectionalSkyMode light_directional_get_sky_mode(RID p_light) const override; virtual RS::LightDirectionalShadowMode light_directional_get_shadow_mode(RID p_light) override; virtual RS::LightOmniShadowMode light_omni_get_shadow_mode(RID p_light) override; virtual RS::LightType light_get_type(RID p_light) const override { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, RS::LIGHT_DIRECTIONAL); return light->type; } virtual AABB light_get_aabb(RID p_light) const override; virtual float light_get_param(RID p_light, RS::LightParam p_param) override { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, 0); return light->param[p_param]; } _FORCE_INLINE_ RID light_get_projector(RID p_light) { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, RID()); return light->projector; } virtual Color light_get_color(RID p_light) override { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, Color()); return light->color; } _FORCE_INLINE_ bool light_is_distance_fade_enabled(RID p_light) { const Light *light = light_owner.get_or_null(p_light); return light->distance_fade; } _FORCE_INLINE_ float light_get_distance_fade_begin(RID p_light) { const Light *light = light_owner.get_or_null(p_light); return light->distance_fade_begin; } _FORCE_INLINE_ float light_get_distance_fade_shadow(RID p_light) { const Light *light = light_owner.get_or_null(p_light); return light->distance_fade_shadow; } _FORCE_INLINE_ float light_get_distance_fade_length(RID p_light) { const Light *light = light_owner.get_or_null(p_light); return light->distance_fade_length; } virtual bool light_has_shadow(RID p_light) const override { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, RS::LIGHT_DIRECTIONAL); return light->shadow; } virtual bool light_has_projector(RID p_light) const override { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, RS::LIGHT_DIRECTIONAL); return TextureStorage::get_singleton()->owns_texture(light->projector); } _FORCE_INLINE_ bool light_is_negative(RID p_light) const { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, RS::LIGHT_DIRECTIONAL); return light->negative; } _FORCE_INLINE_ float light_get_transmittance_bias(RID p_light) const { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, 0.0); return light->param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS]; } virtual bool light_get_reverse_cull_face_mode(RID p_light) const override { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, false); return light->reverse_cull; } virtual RS::LightBakeMode light_get_bake_mode(RID p_light) override; virtual uint32_t light_get_max_sdfgi_cascade(RID p_light) override { return 0; } virtual uint64_t light_get_version(RID p_light) const override; virtual uint32_t light_get_cull_mask(RID p_light) const override; /* LIGHT INSTANCE API */ LightInstance *get_light_instance(RID p_rid) { return light_instance_owner.get_or_null(p_rid); }; bool owns_light_instance(RID p_rid) { return light_instance_owner.owns(p_rid); }; virtual RID light_instance_create(RID p_light) override; virtual void light_instance_free(RID p_light_instance) override; virtual void light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) override; virtual void light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) override; virtual void light_instance_set_shadow_transform(RID p_light_instance, const Projection &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale = 1.0, float p_range_begin = 0, const Vector2 &p_uv_scale = Vector2()) override; virtual void light_instance_mark_visible(RID p_light_instance) override; _FORCE_INLINE_ RID light_instance_get_base_light(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->light; } _FORCE_INLINE_ Transform3D light_instance_get_base_transform(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->transform; } _FORCE_INLINE_ AABB light_instance_get_base_aabb(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->aabb; } _FORCE_INLINE_ void light_instance_set_cull_mask(RID p_light_instance, uint32_t p_cull_mask) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); li->cull_mask = p_cull_mask; } _FORCE_INLINE_ uint32_t light_instance_get_cull_mask(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->cull_mask; } _FORCE_INLINE_ GLuint light_instance_get_shadow_texture(RID p_light_instance, RID p_shadow_atlas) { #ifdef DEBUG_ENABLED LightInstance *li = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_COND_V(!li->shadow_atlases.has(p_shadow_atlas), 0); #endif ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas); ERR_FAIL_NULL_V(shadow_atlas, 0); #ifdef DEBUG_ENABLED ERR_FAIL_COND_V(!shadow_atlas->shadow_owners.has(p_light_instance), 0); #endif uint32_t key = shadow_atlas->shadow_owners[p_light_instance]; uint32_t quadrant = (key >> QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & SHADOW_INDEX_MASK; ERR_FAIL_COND_V(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size(), 0); return shadow_atlas_get_quadrant_shadow_texture(p_shadow_atlas, quadrant, shadow); } _FORCE_INLINE_ bool light_instance_has_shadow_atlas(RID p_light_instance, RID p_shadow_atlas) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_atlases.has(p_shadow_atlas); } _FORCE_INLINE_ float light_instance_get_shadow_texel_size(RID p_light_instance, RID p_shadow_atlas) { #ifdef DEBUG_ENABLED LightInstance *li = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_COND_V(!li->shadow_atlases.has(p_shadow_atlas), 0); #endif ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas); ERR_FAIL_NULL_V(shadow_atlas, 0); #ifdef DEBUG_ENABLED ERR_FAIL_COND_V(!shadow_atlas->shadow_owners.has(p_light_instance), 0); #endif uint32_t key = shadow_atlas->shadow_owners[p_light_instance]; uint32_t quadrant = (key >> QUADRANT_SHIFT) & 0x3; uint32_t quadrant_size = shadow_atlas->size >> 1; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); return float(1.0) / shadow_size; } _FORCE_INLINE_ Projection light_instance_get_shadow_camera(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].camera; } _FORCE_INLINE_ Transform3D light_instance_get_shadow_transform(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].transform; } _FORCE_INLINE_ float light_instance_get_shadow_bias_scale(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].bias_scale; } _FORCE_INLINE_ float light_instance_get_shadow_range(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].farplane; } _FORCE_INLINE_ float light_instance_get_shadow_range_begin(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].range_begin; } _FORCE_INLINE_ Vector2 light_instance_get_shadow_uv_scale(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].uv_scale; } _FORCE_INLINE_ void light_instance_set_directional_shadow_atlas_rect(RID p_light_instance, int p_index, const Rect2 p_atlas_rect) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); li->shadow_transform[p_index].atlas_rect = p_atlas_rect; } _FORCE_INLINE_ Rect2 light_instance_get_directional_shadow_atlas_rect(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].atlas_rect; } _FORCE_INLINE_ float light_instance_get_directional_shadow_split(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].split; } _FORCE_INLINE_ float light_instance_get_directional_shadow_texel_size(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].shadow_texel_size; } _FORCE_INLINE_ void light_instance_set_render_pass(RID p_light_instance, uint64_t p_pass) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); li->last_pass = p_pass; } _FORCE_INLINE_ uint64_t light_instance_get_render_pass(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->last_pass; } _FORCE_INLINE_ void light_instance_set_shadow_pass(RID p_light_instance, uint64_t p_pass) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); li->last_scene_shadow_pass = p_pass; } _FORCE_INLINE_ uint64_t light_instance_get_shadow_pass(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->last_scene_shadow_pass; } _FORCE_INLINE_ void light_instance_set_directional_rect(RID p_light_instance, const Rect2 &p_directional_rect) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); li->directional_rect = p_directional_rect; } _FORCE_INLINE_ Rect2 light_instance_get_directional_rect(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->directional_rect; } _FORCE_INLINE_ RS::LightType light_instance_get_type(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->light_type; } _FORCE_INLINE_ int32_t light_instance_get_gl_id(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->gl_id; } _FORCE_INLINE_ int32_t light_instance_get_shadow_id(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_id; } /* PROBE API */ virtual RID reflection_probe_allocate() override; virtual void reflection_probe_initialize(RID p_rid) override; virtual void reflection_probe_free(RID p_rid) override; virtual void reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) override; virtual void reflection_probe_set_intensity(RID p_probe, float p_intensity) override; virtual void reflection_probe_set_ambient_mode(RID p_probe, RS::ReflectionProbeAmbientMode p_mode) override; virtual void reflection_probe_set_ambient_color(RID p_probe, const Color &p_color) override; virtual void reflection_probe_set_ambient_energy(RID p_probe, float p_energy) override; virtual void reflection_probe_set_max_distance(RID p_probe, float p_distance) override; virtual void reflection_probe_set_size(RID p_probe, const Vector3 &p_size) override; virtual void reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) override; virtual void reflection_probe_set_as_interior(RID p_probe, bool p_enable) override; virtual void reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) override; virtual void reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) override; virtual void reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) override; virtual void reflection_probe_set_resolution(RID p_probe, int p_resolution) override; virtual void reflection_probe_set_mesh_lod_threshold(RID p_probe, float p_ratio) override; virtual float reflection_probe_get_mesh_lod_threshold(RID p_probe) const override; virtual AABB reflection_probe_get_aabb(RID p_probe) const override; virtual RS::ReflectionProbeUpdateMode reflection_probe_get_update_mode(RID p_probe) const override; virtual uint32_t reflection_probe_get_cull_mask(RID p_probe) const override; virtual Vector3 reflection_probe_get_size(RID p_probe) const override; virtual Vector3 reflection_probe_get_origin_offset(RID p_probe) const override; virtual float reflection_probe_get_origin_max_distance(RID p_probe) const override; virtual bool reflection_probe_renders_shadows(RID p_probe) const override; /* REFLECTION ATLAS */ virtual RID reflection_atlas_create() override; virtual void reflection_atlas_free(RID p_ref_atlas) override; virtual int reflection_atlas_get_size(RID p_ref_atlas) const override; virtual void reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) override; /* REFLECTION PROBE INSTANCE */ virtual RID reflection_probe_instance_create(RID p_probe) override; virtual void reflection_probe_instance_free(RID p_instance) override; virtual void reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) override; virtual void reflection_probe_release_atlas_index(RID p_instance) override; virtual bool reflection_probe_instance_needs_redraw(RID p_instance) override; virtual bool reflection_probe_instance_has_reflection(RID p_instance) override; virtual bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) override; virtual Ref<RenderSceneBuffers> reflection_probe_atlas_get_render_buffers(RID p_reflection_atlas) override; virtual bool reflection_probe_instance_postprocess_step(RID p_instance) override; /* LIGHTMAP CAPTURE */ Lightmap *get_lightmap(RID p_rid) { return lightmap_owner.get_or_null(p_rid); }; bool owns_lightmap(RID p_rid) { return lightmap_owner.owns(p_rid); }; virtual RID lightmap_allocate() override; virtual void lightmap_initialize(RID p_rid) override; virtual void lightmap_free(RID p_rid) override; virtual void lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) override; virtual void lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds) override; virtual void lightmap_set_probe_interior(RID p_lightmap, bool p_interior) override; virtual void lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) override; virtual void lightmap_set_baked_exposure_normalization(RID p_lightmap, float p_exposure) override; virtual PackedVector3Array lightmap_get_probe_capture_points(RID p_lightmap) const override; virtual PackedColorArray lightmap_get_probe_capture_sh(RID p_lightmap) const override; virtual PackedInt32Array lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const override; virtual PackedInt32Array lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const override; virtual AABB lightmap_get_aabb(RID p_lightmap) const override; virtual void lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh) override; virtual bool lightmap_is_interior(RID p_lightmap) const override; virtual void lightmap_set_probe_capture_update_speed(float p_speed) override; virtual float lightmap_get_probe_capture_update_speed() const override; /* LIGHTMAP INSTANCE */ virtual RID lightmap_instance_create(RID p_lightmap) override; virtual void lightmap_instance_free(RID p_lightmap) override; virtual void lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) override; /* SHADOW ATLAS API */ bool owns_shadow_atlas(RID p_rid) { return shadow_atlas_owner.owns(p_rid); }; virtual RID shadow_atlas_create() override; virtual void shadow_atlas_free(RID p_atlas) override; virtual void shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits = true) override; virtual void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) override; virtual bool shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) override; _FORCE_INLINE_ bool shadow_atlas_owns_light_instance(RID p_atlas, RID p_light_instance) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL_V(atlas, false); return atlas->shadow_owners.has(p_light_instance); } _FORCE_INLINE_ uint32_t shadow_atlas_get_light_instance_key(RID p_atlas, RID p_light_instance) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL_V(atlas, -1); return atlas->shadow_owners[p_light_instance]; } _FORCE_INLINE_ int shadow_atlas_get_size(RID p_atlas) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL_V(atlas, 0); return atlas->size; } _FORCE_INLINE_ GLuint shadow_atlas_get_debug_fb(RID p_atlas) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL_V(atlas, 0); if (atlas->debug_fbo != 0) { return atlas->debug_fbo; } glGenFramebuffers(1, &atlas->debug_fbo); glBindFramebuffer(GL_FRAMEBUFFER, atlas->debug_fbo); if (atlas->debug_texture == 0) { atlas->debug_texture = shadow_atlas_get_debug_texture(p_atlas); } glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, atlas->debug_texture); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, atlas->debug_texture, 0); glBindFramebuffer(GL_FRAMEBUFFER, 0); return atlas->debug_fbo; } _FORCE_INLINE_ GLuint shadow_atlas_get_debug_texture(RID p_atlas) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL_V(atlas, 0); if (atlas->debug_texture != 0) { return atlas->debug_texture; } glGenTextures(1, &atlas->debug_texture); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, atlas->debug_texture); glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, atlas->size, atlas->size, 0, GL_RED, GL_UNSIGNED_INT, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_R, GL_RED); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, GL_RED); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, GL_RED); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_A, GL_ONE); glBindTexture(GL_TEXTURE_2D, 0); return atlas->debug_texture; } _FORCE_INLINE_ int shadow_atlas_get_quadrant_shadows_length(RID p_atlas, uint32_t p_quadrant) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL_V(atlas, 0); ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0); return atlas->quadrants[p_quadrant].shadows.size(); } _FORCE_INLINE_ uint32_t shadow_atlas_get_quadrant_shadows_allocated(RID p_atlas, uint32_t p_quadrant) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL_V(atlas, 0); ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0); return atlas->quadrants[p_quadrant].textures.size(); } _FORCE_INLINE_ uint32_t shadow_atlas_get_quadrant_subdivision(RID p_atlas, uint32_t p_quadrant) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL_V(atlas, 0); ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0); return atlas->quadrants[p_quadrant].subdivision; } _FORCE_INLINE_ GLuint shadow_atlas_get_quadrant_shadow_texture(RID p_atlas, uint32_t p_quadrant, uint32_t p_shadow) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL_V(atlas, 0); ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0); ERR_FAIL_UNSIGNED_INDEX_V(p_shadow, atlas->quadrants[p_quadrant].textures.size(), 0); return atlas->quadrants[p_quadrant].textures[p_shadow]; } _FORCE_INLINE_ GLuint shadow_atlas_get_quadrant_shadow_fb(RID p_atlas, uint32_t p_quadrant, uint32_t p_shadow) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL_V(atlas, 0); ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0); ERR_FAIL_UNSIGNED_INDEX_V(p_shadow, atlas->quadrants[p_quadrant].fbos.size(), 0); return atlas->quadrants[p_quadrant].fbos[p_shadow]; } _FORCE_INLINE_ int shadow_atlas_get_quadrant_shadow_size(RID p_atlas, uint32_t p_quadrant) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL_V(atlas, 0); ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0); return (atlas->size >> 1) / atlas->quadrants[p_quadrant].subdivision; } _FORCE_INLINE_ bool shadow_atlas_get_quadrant_shadow_is_omni(RID p_atlas, uint32_t p_quadrant, uint32_t p_shadow) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL_V(atlas, false); ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, false); ERR_FAIL_UNSIGNED_INDEX_V(p_shadow, (uint32_t)atlas->quadrants[p_quadrant].shadows.size(), false); return atlas->quadrants[p_quadrant].shadows[p_shadow].owner_is_omni; } virtual void shadow_atlas_update(RID p_atlas) override; virtual void directional_shadow_atlas_set_size(int p_size, bool p_16_bits = true) override; virtual int get_directional_light_shadow_size(RID p_light_intance) override; virtual void set_directional_shadow_count(int p_count) override; Rect2i get_directional_shadow_rect(); void update_directional_shadow_atlas(); _FORCE_INLINE_ GLuint directional_shadow_get_texture() { return directional_shadow.depth; } _FORCE_INLINE_ int directional_shadow_get_size() { return directional_shadow.size; } _FORCE_INLINE_ GLuint direction_shadow_get_fb() { return directional_shadow.fbo; } _FORCE_INLINE_ void directional_shadow_increase_current_light() { directional_shadow.current_light++; } }; } // namespace GLES3 #endif // GLES3_ENABLED #endif // LIGHT_STORAGE_GLES3_H