/*************************************************************************/ /* navigation_mesh_generator.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "core/math/convex_hull.h" #ifndef _3D_DISABLED #include "navigation_mesh_generator.h" //#include "core/math/quick_hull.h" //#include "core/math/convex_hull.h" #include "core/os/thread.h" #include "scene/3d/mesh_instance.h" #include "scene/3d/multimesh_instance.h" #include "scene/3d/physics_body.h" #include "scene/resources/box_shape.h" #include "scene/resources/capsule_shape.h" #include "scene/resources/concave_polygon_shape.h" #include "scene/resources/convex_polygon_shape.h" #include "scene/resources/cylinder_shape.h" #include "scene/resources/height_map_shape.h" #include "scene/resources/plane_shape.h" #include "scene/resources/primitive_meshes.h" #include "scene/resources/shape.h" #include "scene/resources/sphere_shape.h" #include "modules/modules_enabled.gen.h" // For csg, gridmap. #ifdef TOOLS_ENABLED #include "editor/editor_node.h" #include "editor/editor_settings.h" #endif #ifdef MODULE_CSG_ENABLED #include "modules/csg/csg_shape.h" #endif #ifdef MODULE_GRIDMAP_ENABLED #include "modules/gridmap/grid_map.h" #endif NavigationMeshGenerator *NavigationMeshGenerator::singleton = NULL; void NavigationMeshGenerator::_add_vertex(const Vector3 &p_vec3, Vector &p_vertices) { p_vertices.push_back(p_vec3.x); p_vertices.push_back(p_vec3.y); p_vertices.push_back(p_vec3.z); } void NavigationMeshGenerator::_add_mesh(const Ref &p_mesh, const Transform &p_xform, Vector &p_vertices, Vector &p_indices) { int current_vertex_count; for (int i = 0; i < p_mesh->get_surface_count(); i++) { current_vertex_count = p_vertices.size() / 3; if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) { continue; } int index_count = 0; if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) { index_count = p_mesh->surface_get_array_index_len(i); } else { index_count = p_mesh->surface_get_array_len(i); } ERR_CONTINUE((index_count == 0 || (index_count % 3) != 0)); int face_count = index_count / 3; Array a = p_mesh->surface_get_arrays(i); PoolVector mesh_vertices = a[Mesh::ARRAY_VERTEX]; PoolVector::Read vr = mesh_vertices.read(); if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) { PoolVector mesh_indices = a[Mesh::ARRAY_INDEX]; PoolVector::Read ir = mesh_indices.read(); for (int j = 0; j < mesh_vertices.size(); j++) { _add_vertex(p_xform.xform(vr[j]), p_vertices); } for (int j = 0; j < face_count; j++) { // CCW p_indices.push_back(current_vertex_count + (ir[j * 3 + 0])); p_indices.push_back(current_vertex_count + (ir[j * 3 + 2])); p_indices.push_back(current_vertex_count + (ir[j * 3 + 1])); } } else { face_count = mesh_vertices.size() / 3; for (int j = 0; j < face_count; j++) { _add_vertex(p_xform.xform(vr[j * 3 + 0]), p_vertices); _add_vertex(p_xform.xform(vr[j * 3 + 2]), p_vertices); _add_vertex(p_xform.xform(vr[j * 3 + 1]), p_vertices); p_indices.push_back(current_vertex_count + (j * 3 + 0)); p_indices.push_back(current_vertex_count + (j * 3 + 1)); p_indices.push_back(current_vertex_count + (j * 3 + 2)); } } } } void NavigationMeshGenerator::_add_mesh_array(const Array &p_array, const Transform &p_xform, Vector &p_vertices, Vector &p_indices) { PoolVector mesh_vertices = p_array[Mesh::ARRAY_VERTEX]; PoolVector::Read vr = mesh_vertices.read(); PoolVector mesh_indices = p_array[Mesh::ARRAY_INDEX]; PoolVector::Read ir = mesh_indices.read(); const int face_count = mesh_indices.size() / 3; const int current_vertex_count = p_vertices.size() / 3; for (int j = 0; j < mesh_vertices.size(); j++) { _add_vertex(p_xform.xform(vr[j]), p_vertices); } for (int j = 0; j < face_count; j++) { // CCW p_indices.push_back(current_vertex_count + (ir[j * 3 + 0])); p_indices.push_back(current_vertex_count + (ir[j * 3 + 2])); p_indices.push_back(current_vertex_count + (ir[j * 3 + 1])); } } void NavigationMeshGenerator::_add_faces(const PoolVector3Array &p_faces, const Transform &p_xform, Vector &p_vertices, Vector &p_indices) { int face_count = p_faces.size() / 3; int current_vertex_count = p_vertices.size() / 3; for (int j = 0; j < face_count; j++) { _add_vertex(p_xform.xform(p_faces[j * 3 + 0]), p_vertices); _add_vertex(p_xform.xform(p_faces[j * 3 + 1]), p_vertices); _add_vertex(p_xform.xform(p_faces[j * 3 + 2]), p_vertices); p_indices.push_back(current_vertex_count + (j * 3 + 0)); p_indices.push_back(current_vertex_count + (j * 3 + 2)); p_indices.push_back(current_vertex_count + (j * 3 + 1)); } } void NavigationMeshGenerator::_parse_geometry(const Transform &p_navmesh_xform, Node *p_node, Vector &p_vertices, Vector &p_indices, int p_generate_from, uint32_t p_collision_mask, bool p_recurse_children) { if (Object::cast_to(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) { MeshInstance *mesh_instance = Object::cast_to(p_node); Ref mesh = mesh_instance->get_mesh(); if (mesh.is_valid()) { _add_mesh(mesh, p_navmesh_xform * mesh_instance->get_global_transform(), p_vertices, p_indices); } } if (Object::cast_to(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) { MultiMeshInstance *multimesh_instance = Object::cast_to(p_node); Ref multimesh = multimesh_instance->get_multimesh(); if (multimesh.is_valid()) { Ref mesh = multimesh->get_mesh(); if (mesh.is_valid()) { int n = multimesh->get_visible_instance_count(); if (n == -1) { n = multimesh->get_instance_count(); } for (int i = 0; i < n; i++) { _add_mesh(mesh, p_navmesh_xform * multimesh_instance->get_global_transform() * multimesh->get_instance_transform(i), p_vertices, p_indices); } } } } #ifdef MODULE_CSG_ENABLED if (Object::cast_to(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) { CSGShape *csg_shape = Object::cast_to(p_node); Array meshes = csg_shape->get_meshes(); if (!meshes.empty()) { Ref mesh = meshes[1]; if (mesh.is_valid()) { _add_mesh(mesh, p_navmesh_xform * csg_shape->get_global_transform(), p_vertices, p_indices); } } } #endif if (Object::cast_to(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES) { StaticBody *static_body = Object::cast_to(p_node); if (static_body->get_collision_layer() & p_collision_mask) { List shape_owners; static_body->get_shape_owners(&shape_owners); for (List::Element *E = shape_owners.front(); E; E = E->next()) { uint32_t shape_owner = E->get(); const int shape_count = static_body->shape_owner_get_shape_count(shape_owner); for (int i = 0; i < shape_count; i++) { if (static_body->is_shape_owner_disabled(i)) { continue; } Ref s = static_body->shape_owner_get_shape(shape_owner, i); if (s.is_null()) { continue; } const Transform transform = p_navmesh_xform * static_body->get_global_transform() * static_body->shape_owner_get_transform(shape_owner); BoxShape *box = Object::cast_to(*s); if (box) { Array arr; arr.resize(VS::ARRAY_MAX); CubeMesh::create_mesh_array(arr, box->get_extents() * 2.0); _add_mesh_array(arr, transform, p_vertices, p_indices); } CapsuleShape *capsule = Object::cast_to(*s); if (capsule) { Array arr; arr.resize(VS::ARRAY_MAX); CapsuleMesh::create_mesh_array(arr, capsule->get_radius(), capsule->get_height() / 2.0); _add_mesh_array(arr, transform, p_vertices, p_indices); } CylinderShape *cylinder = Object::cast_to(*s); if (cylinder) { Array arr; arr.resize(VS::ARRAY_MAX); CylinderMesh::create_mesh_array(arr, cylinder->get_radius(), cylinder->get_radius(), cylinder->get_height()); _add_mesh_array(arr, transform, p_vertices, p_indices); } SphereShape *sphere = Object::cast_to(*s); if (sphere) { Array arr; arr.resize(VS::ARRAY_MAX); SphereMesh::create_mesh_array(arr, sphere->get_radius(), sphere->get_radius() * 2.0); _add_mesh_array(arr, transform, p_vertices, p_indices); } ConcavePolygonShape *concave_polygon = Object::cast_to(*s); if (concave_polygon) { _add_faces(concave_polygon->get_faces(), transform, p_vertices, p_indices); } ConvexPolygonShape *convex_polygon = Object::cast_to(*s); if (convex_polygon) { Vector varr = Variant(convex_polygon->get_points()); Geometry::MeshData md; Error err = ConvexHullComputer::convex_hull(varr, md); if (err == OK) { PoolVector3Array faces; for (int j = 0; j < md.faces.size(); ++j) { Geometry::MeshData::Face face = md.faces[j]; for (int k = 2; k < face.indices.size(); ++k) { faces.push_back(md.vertices[face.indices[0]]); faces.push_back(md.vertices[face.indices[k - 1]]); faces.push_back(md.vertices[face.indices[k]]); } } _add_faces(faces, transform, p_vertices, p_indices); } } HeightMapShape *heightmap_shape = Object::cast_to(*s); if (heightmap_shape) { int heightmap_depth = heightmap_shape->get_map_depth(); int heightmap_width = heightmap_shape->get_map_width(); if (heightmap_depth >= 2 && heightmap_width >= 2) { const PoolRealArray &map_data = heightmap_shape->get_map_data(); Vector2 heightmap_gridsize(heightmap_width - 1, heightmap_depth - 1); Vector2 start = heightmap_gridsize * -0.5; PoolVector3Array vertex_array; vertex_array.resize((heightmap_depth - 1) * (heightmap_width - 1) * 6); int map_data_current_index = 0; for (int d = 0; d < heightmap_depth - 1; d++) { for (int w = 0; w < heightmap_width - 1; w++) { if (map_data_current_index + 1 + heightmap_depth < map_data.size()) { float top_left_height = map_data[map_data_current_index]; float top_right_height = map_data[map_data_current_index + 1]; float bottom_left_height = map_data[map_data_current_index + heightmap_depth]; float bottom_right_height = map_data[map_data_current_index + 1 + heightmap_depth]; Vector3 top_left = Vector3(start.x + w, top_left_height, start.y + d); Vector3 top_right = Vector3(start.x + w + 1.0, top_right_height, start.y + d); Vector3 bottom_left = Vector3(start.x + w, bottom_left_height, start.y + d + 1.0); Vector3 bottom_right = Vector3(start.x + w + 1.0, bottom_right_height, start.y + d + 1.0); vertex_array.push_back(top_right); vertex_array.push_back(bottom_left); vertex_array.push_back(top_left); vertex_array.push_back(top_right); vertex_array.push_back(bottom_right); vertex_array.push_back(bottom_left); } map_data_current_index += 1; } } if (vertex_array.size() > 0) { _add_faces(vertex_array, transform, p_vertices, p_indices); } } } } } } } #ifdef MODULE_GRIDMAP_ENABLED GridMap *gridmap = Object::cast_to(p_node); if (gridmap) { if (p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) { Array meshes = gridmap->get_meshes(); Transform xform = gridmap->get_global_transform(); for (int i = 0; i < meshes.size(); i += 2) { Ref mesh = meshes[i + 1]; if (mesh.is_valid()) { Transform mesh_xform = meshes[i]; _add_mesh(mesh, p_navmesh_xform * xform * mesh_xform, p_vertices, p_indices); } } } if (p_generate_from != NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES && (gridmap->get_collision_layer() & p_collision_mask)) { Array shapes = gridmap->get_collision_shapes(); for (int i = 0; i < shapes.size(); i += 2) { RID shape = shapes[i + 1]; PhysicsServer::ShapeType type = PhysicsServer::get_singleton()->shape_get_type(shape); Variant data = PhysicsServer::get_singleton()->shape_get_data(shape); switch (type) { case PhysicsServer::SHAPE_SPHERE: { real_t radius = data; Array arr; arr.resize(VS::ARRAY_MAX); SphereMesh::create_mesh_array(arr, radius, radius * 2.0); _add_mesh_array(arr, shapes[i], p_vertices, p_indices); } break; case PhysicsServer::SHAPE_BOX: { Vector3 extents = data; Array arr; arr.resize(VS::ARRAY_MAX); CubeMesh::create_mesh_array(arr, extents * 2.0); _add_mesh_array(arr, shapes[i], p_vertices, p_indices); } break; case PhysicsServer::SHAPE_CAPSULE: { Dictionary dict = data; real_t radius = dict["radius"]; real_t height = dict["height"]; Array arr; arr.resize(VS::ARRAY_MAX); CapsuleMesh::create_mesh_array(arr, radius, height * 0.5); _add_mesh_array(arr, shapes[i], p_vertices, p_indices); } break; case PhysicsServer::SHAPE_CYLINDER: { Dictionary dict = data; real_t radius = dict["radius"]; real_t height = dict["height"]; Array arr; arr.resize(VS::ARRAY_MAX); CylinderMesh::create_mesh_array(arr, radius, radius, height); _add_mesh_array(arr, shapes[i], p_vertices, p_indices); } break; case PhysicsServer::SHAPE_CONVEX_POLYGON: { PoolVector3Array vertices = data; Geometry::MeshData md; Error err = ConvexHullComputer::convex_hull(vertices, md); if (err == OK) { PoolVector3Array faces; for (int j = 0; j < md.faces.size(); ++j) { Geometry::MeshData::Face face = md.faces[j]; for (int k = 2; k < face.indices.size(); ++k) { faces.push_back(md.vertices[face.indices[0]]); faces.push_back(md.vertices[face.indices[k - 1]]); faces.push_back(md.vertices[face.indices[k]]); } } _add_faces(faces, shapes[i], p_vertices, p_indices); } } break; case PhysicsServer::SHAPE_CONCAVE_POLYGON: { PoolVector3Array faces = data; _add_faces(faces, shapes[i], p_vertices, p_indices); } break; case PhysicsServer::SHAPE_HEIGHTMAP: { Dictionary dict = data; ///< dict( int:"width", int:"depth",float:"cell_size", float_array:"heights" int heightmap_depth = dict["depth"]; int heightmap_width = dict["width"]; if (heightmap_depth >= 2 && heightmap_width >= 2) { const PoolRealArray &map_data = dict["heights"]; Vector2 heightmap_gridsize(heightmap_width - 1, heightmap_depth - 1); Vector2 start = heightmap_gridsize * -0.5; PoolVector3Array vertex_array; vertex_array.resize((heightmap_depth - 1) * (heightmap_width - 1) * 6); int map_data_current_index = 0; for (int d = 0; d < heightmap_depth - 1; d++) { for (int w = 0; w < heightmap_width - 1; w++) { if (map_data_current_index + 1 + heightmap_depth < map_data.size()) { float top_left_height = map_data[map_data_current_index]; float top_right_height = map_data[map_data_current_index + 1]; float bottom_left_height = map_data[map_data_current_index + heightmap_depth]; float bottom_right_height = map_data[map_data_current_index + 1 + heightmap_depth]; Vector3 top_left = Vector3(start.x + w, top_left_height, start.y + d); Vector3 top_right = Vector3(start.x + w + 1.0, top_right_height, start.y + d); Vector3 bottom_left = Vector3(start.x + w, bottom_left_height, start.y + d + 1.0); Vector3 bottom_right = Vector3(start.x + w + 1.0, bottom_right_height, start.y + d + 1.0); vertex_array.push_back(top_right); vertex_array.push_back(bottom_left); vertex_array.push_back(top_left); vertex_array.push_back(top_right); vertex_array.push_back(bottom_right); vertex_array.push_back(bottom_left); } map_data_current_index += 1; } } if (vertex_array.size() > 0) { _add_faces(vertex_array, shapes[i], p_vertices, p_indices); } } } break; default: { WARN_PRINT("Unsupported collision shape type."); } break; } } } } #endif if (p_recurse_children) { for (int i = 0; i < p_node->get_child_count(); i++) { _parse_geometry(p_navmesh_xform, p_node->get_child(i), p_vertices, p_indices, p_generate_from, p_collision_mask, p_recurse_children); } } } void NavigationMeshGenerator::_convert_detail_mesh_to_native_navigation_mesh(const rcPolyMeshDetail *p_detail_mesh, Ref p_nav_mesh) { PoolVector nav_vertices; for (int i = 0; i < p_detail_mesh->nverts; i++) { const float *v = &p_detail_mesh->verts[i * 3]; nav_vertices.append(Vector3(v[0], v[1], v[2])); } p_nav_mesh->set_vertices(nav_vertices); for (int i = 0; i < p_detail_mesh->nmeshes; i++) { const unsigned int *m = &p_detail_mesh->meshes[i * 4]; const unsigned int bverts = m[0]; const unsigned int btris = m[2]; const unsigned int ntris = m[3]; const unsigned char *tris = &p_detail_mesh->tris[btris * 4]; for (unsigned int j = 0; j < ntris; j++) { Vector nav_indices; nav_indices.resize(3); // Polygon order in recast is opposite than godot's nav_indices.write[0] = ((int)(bverts + tris[j * 4 + 0])); nav_indices.write[1] = ((int)(bverts + tris[j * 4 + 2])); nav_indices.write[2] = ((int)(bverts + tris[j * 4 + 1])); p_nav_mesh->add_polygon(nav_indices); } } } void NavigationMeshGenerator::_build_recast_navigation_mesh( Ref p_nav_mesh, #ifdef TOOLS_ENABLED EditorProgress *ep, #endif rcHeightfield *hf, rcCompactHeightfield *chf, rcContourSet *cset, rcPolyMesh *poly_mesh, rcPolyMeshDetail *detail_mesh, Vector &vertices, Vector &indices) { rcContext ctx; #ifdef TOOLS_ENABLED if (ep) ep->step(TTR("Setting up Configuration..."), 1); #endif const float *verts = vertices.ptr(); const int nverts = vertices.size() / 3; const int *tris = indices.ptr(); const int ntris = indices.size() / 3; float bmin[3], bmax[3]; rcCalcBounds(verts, nverts, bmin, bmax); rcConfig cfg; memset(&cfg, 0, sizeof(cfg)); cfg.cs = p_nav_mesh->get_cell_size(); cfg.ch = p_nav_mesh->get_cell_height(); cfg.walkableSlopeAngle = p_nav_mesh->get_agent_max_slope(); cfg.walkableHeight = (int)Math::ceil(p_nav_mesh->get_agent_height() / cfg.ch); cfg.walkableClimb = (int)Math::floor(p_nav_mesh->get_agent_max_climb() / cfg.ch); cfg.walkableRadius = (int)Math::ceil(p_nav_mesh->get_agent_radius() / cfg.cs); cfg.maxEdgeLen = (int)(p_nav_mesh->get_edge_max_length() / p_nav_mesh->get_cell_size()); cfg.maxSimplificationError = p_nav_mesh->get_edge_max_error(); cfg.minRegionArea = (int)(p_nav_mesh->get_region_min_size() * p_nav_mesh->get_region_min_size()); cfg.mergeRegionArea = (int)(p_nav_mesh->get_region_merge_size() * p_nav_mesh->get_region_merge_size()); cfg.maxVertsPerPoly = (int)p_nav_mesh->get_verts_per_poly(); cfg.detailSampleDist = MAX(p_nav_mesh->get_cell_size() * p_nav_mesh->get_detail_sample_distance(), 0.1f); cfg.detailSampleMaxError = p_nav_mesh->get_cell_height() * p_nav_mesh->get_detail_sample_max_error(); cfg.bmin[0] = bmin[0]; cfg.bmin[1] = bmin[1]; cfg.bmin[2] = bmin[2]; cfg.bmax[0] = bmax[0]; cfg.bmax[1] = bmax[1]; cfg.bmax[2] = bmax[2]; AABB baking_aabb = p_nav_mesh->get_filter_baking_aabb(); bool aabb_has_no_volume = baking_aabb.has_no_area(); if (!aabb_has_no_volume) { Vector3 baking_aabb_offset = p_nav_mesh->get_filter_baking_aabb_offset(); cfg.bmin[0] = baking_aabb.position[0] + baking_aabb_offset.x; cfg.bmin[1] = baking_aabb.position[1] + baking_aabb_offset.y; cfg.bmin[2] = baking_aabb.position[2] + baking_aabb_offset.z; cfg.bmax[0] = cfg.bmin[0] + baking_aabb.size[0]; cfg.bmax[1] = cfg.bmin[1] + baking_aabb.size[1]; cfg.bmax[2] = cfg.bmin[2] + baking_aabb.size[2]; } #ifdef TOOLS_ENABLED if (ep) ep->step(TTR("Calculating grid size..."), 2); #endif rcCalcGridSize(cfg.bmin, cfg.bmax, cfg.cs, &cfg.width, &cfg.height); // ~30000000 seems to be around sweetspot where Editor baking breaks if ((cfg.width * cfg.height) > 30000000) { WARN_PRINT("NavigationMesh baking process will likely fail." "\nSource geometry is suspiciously big for the current Cell Size and Cell Height in the NavMesh Resource bake settings." "\nIf baking does not fail, the resulting NavigationMesh will create serious pathfinding performance issues." "\nIt is advised to increase Cell Size and/or Cell Height in the NavMesh Resource bake settings or reduce the size / scale of the source geometry."); } #ifdef TOOLS_ENABLED if (ep) ep->step(TTR("Creating heightfield..."), 3); #endif hf = rcAllocHeightfield(); ERR_FAIL_COND(!hf); ERR_FAIL_COND(!rcCreateHeightfield(&ctx, *hf, cfg.width, cfg.height, cfg.bmin, cfg.bmax, cfg.cs, cfg.ch)); #ifdef TOOLS_ENABLED if (ep) ep->step(TTR("Marking walkable triangles..."), 4); #endif { Vector tri_areas; tri_areas.resize(ntris); ERR_FAIL_COND(tri_areas.size() == 0); memset(tri_areas.ptrw(), 0, ntris * sizeof(unsigned char)); rcMarkWalkableTriangles(&ctx, cfg.walkableSlopeAngle, verts, nverts, tris, ntris, tri_areas.ptrw()); ERR_FAIL_COND(!rcRasterizeTriangles(&ctx, verts, nverts, tris, tri_areas.ptr(), ntris, *hf, cfg.walkableClimb)); } if (p_nav_mesh->get_filter_low_hanging_obstacles()) { rcFilterLowHangingWalkableObstacles(&ctx, cfg.walkableClimb, *hf); } if (p_nav_mesh->get_filter_ledge_spans()) { rcFilterLedgeSpans(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf); } if (p_nav_mesh->get_filter_walkable_low_height_spans()) { rcFilterWalkableLowHeightSpans(&ctx, cfg.walkableHeight, *hf); } #ifdef TOOLS_ENABLED if (ep) ep->step(TTR("Constructing compact heightfield..."), 5); #endif chf = rcAllocCompactHeightfield(); ERR_FAIL_COND(!chf); ERR_FAIL_COND(!rcBuildCompactHeightfield(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf, *chf)); rcFreeHeightField(hf); hf = 0; #ifdef TOOLS_ENABLED if (ep) ep->step(TTR("Eroding walkable area..."), 6); #endif ERR_FAIL_COND(!rcErodeWalkableArea(&ctx, cfg.walkableRadius, *chf)); #ifdef TOOLS_ENABLED if (ep) ep->step(TTR("Partitioning..."), 7); #endif if (p_nav_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_WATERSHED) { ERR_FAIL_COND(!rcBuildDistanceField(&ctx, *chf)); ERR_FAIL_COND(!rcBuildRegions(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea)); } else if (p_nav_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_MONOTONE) { ERR_FAIL_COND(!rcBuildRegionsMonotone(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea)); } else { ERR_FAIL_COND(!rcBuildLayerRegions(&ctx, *chf, 0, cfg.minRegionArea)); } #ifdef TOOLS_ENABLED if (ep) ep->step(TTR("Creating contours..."), 8); #endif cset = rcAllocContourSet(); ERR_FAIL_COND(!cset); ERR_FAIL_COND(!rcBuildContours(&ctx, *chf, cfg.maxSimplificationError, cfg.maxEdgeLen, *cset)); #ifdef TOOLS_ENABLED if (ep) ep->step(TTR("Creating polymesh..."), 9); #endif poly_mesh = rcAllocPolyMesh(); ERR_FAIL_COND(!poly_mesh); ERR_FAIL_COND(!rcBuildPolyMesh(&ctx, *cset, cfg.maxVertsPerPoly, *poly_mesh)); detail_mesh = rcAllocPolyMeshDetail(); ERR_FAIL_COND(!detail_mesh); ERR_FAIL_COND(!rcBuildPolyMeshDetail(&ctx, *poly_mesh, *chf, cfg.detailSampleDist, cfg.detailSampleMaxError, *detail_mesh)); rcFreeCompactHeightfield(chf); chf = 0; rcFreeContourSet(cset); cset = 0; #ifdef TOOLS_ENABLED if (ep) ep->step(TTR("Converting to native navigation mesh..."), 10); #endif _convert_detail_mesh_to_native_navigation_mesh(detail_mesh, p_nav_mesh); rcFreePolyMesh(poly_mesh); poly_mesh = 0; rcFreePolyMeshDetail(detail_mesh); detail_mesh = 0; } NavigationMeshGenerator *NavigationMeshGenerator::get_singleton() { return singleton; } NavigationMeshGenerator::NavigationMeshGenerator() { singleton = this; } NavigationMeshGenerator::~NavigationMeshGenerator() { } void NavigationMeshGenerator::bake(Ref p_nav_mesh, Node *p_node) { ERR_FAIL_COND_MSG(!p_nav_mesh.is_valid(), "Invalid Navigation Mesh"); #ifdef TOOLS_ENABLED EditorProgress *ep(nullptr); // FIXME #endif #if 0 // After discussion on devchat disabled EditorProgress for now as it is not thread-safe and uses hacks and Main::iteration() for steps. // EditorProgress randomly crashes the Engine when the bake function is used with a thread e.g. inside Editor with a tool script and procedural navigation // This was not a problem in older versions as previously Godot was unable to (re)bake NavigationMesh at runtime. // If EditorProgress is fixed and made thread-safe this should be enabled again. if (Engine::get_singleton()->is_editor_hint()) { ep = memnew(EditorProgress("bake", TTR("Navigation Mesh Generator Setup:"), 11)); } if (ep) ep->step(TTR("Parsing Geometry..."), 0); #endif Vector vertices; Vector indices; List parse_nodes; if (p_nav_mesh->get_source_geometry_mode() == NavigationMesh::SOURCE_GEOMETRY_NAVMESH_CHILDREN) { parse_nodes.push_back(p_node); } else { p_node->get_tree()->get_nodes_in_group(p_nav_mesh->get_source_group_name(), &parse_nodes); } Transform navmesh_xform = Object::cast_to(p_node)->get_global_transform().affine_inverse(); for (const List::Element *E = parse_nodes.front(); E; E = E->next()) { NavigationMesh::ParsedGeometryType geometry_type = p_nav_mesh->get_parsed_geometry_type(); uint32_t collision_mask = p_nav_mesh->get_collision_mask(); bool recurse_children = p_nav_mesh->get_source_geometry_mode() != NavigationMesh::SOURCE_GEOMETRY_GROUPS_EXPLICIT; _parse_geometry(navmesh_xform, E->get(), vertices, indices, geometry_type, collision_mask, recurse_children); } if (vertices.size() > 0 && indices.size() > 0) { rcHeightfield *hf = nullptr; rcCompactHeightfield *chf = nullptr; rcContourSet *cset = nullptr; rcPolyMesh *poly_mesh = nullptr; rcPolyMeshDetail *detail_mesh = nullptr; _build_recast_navigation_mesh( p_nav_mesh, #ifdef TOOLS_ENABLED ep, #endif hf, chf, cset, poly_mesh, detail_mesh, vertices, indices); rcFreeHeightField(hf); hf = 0; rcFreeCompactHeightfield(chf); chf = 0; rcFreeContourSet(cset); cset = 0; rcFreePolyMesh(poly_mesh); poly_mesh = 0; rcFreePolyMeshDetail(detail_mesh); detail_mesh = 0; } #ifdef TOOLS_ENABLED if (ep) ep->step(TTR("Done!"), 11); if (ep) memdelete(ep); #endif p_nav_mesh->property_list_changed_notify(); } void NavigationMeshGenerator::clear(Ref p_nav_mesh) { if (p_nav_mesh.is_valid()) { p_nav_mesh->clear_polygons(); p_nav_mesh->set_vertices(PoolVector()); } } void NavigationMeshGenerator::_bind_methods() { ClassDB::bind_method(D_METHOD("bake", "nav_mesh", "root_node"), &NavigationMeshGenerator::bake); ClassDB::bind_method(D_METHOD("clear", "nav_mesh"), &NavigationMeshGenerator::clear); } #endif