/*************************************************************************/ /* rasterizer_scene_forward_rd.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "rasterizer_scene_forward_rd.h" #include "core/project_settings.h" #include "servers/visual/rendering_device.h" #include "servers/visual/visual_server_raster.h" static _FORCE_INLINE_ void store_transform(const Transform &p_mtx, float *p_array) { p_array[0] = p_mtx.basis.elements[0][0]; p_array[1] = p_mtx.basis.elements[1][0]; p_array[2] = p_mtx.basis.elements[2][0]; p_array[3] = 0; p_array[4] = p_mtx.basis.elements[0][1]; p_array[5] = p_mtx.basis.elements[1][1]; p_array[6] = p_mtx.basis.elements[2][1]; p_array[7] = 0; p_array[8] = p_mtx.basis.elements[0][2]; p_array[9] = p_mtx.basis.elements[1][2]; p_array[10] = p_mtx.basis.elements[2][2]; p_array[11] = 0; p_array[12] = p_mtx.origin.x; p_array[13] = p_mtx.origin.y; p_array[14] = p_mtx.origin.z; p_array[15] = 1; } static _FORCE_INLINE_ void store_transform_3x3(const Transform &p_mtx, float *p_array) { p_array[0] = p_mtx.basis.elements[0][0]; p_array[1] = p_mtx.basis.elements[1][0]; p_array[2] = p_mtx.basis.elements[2][0]; p_array[3] = 0; p_array[4] = p_mtx.basis.elements[0][1]; p_array[5] = p_mtx.basis.elements[1][1]; p_array[6] = p_mtx.basis.elements[2][1]; p_array[7] = 0; p_array[8] = p_mtx.basis.elements[0][2]; p_array[9] = p_mtx.basis.elements[1][2]; p_array[10] = p_mtx.basis.elements[2][2]; p_array[11] = 0; } static _FORCE_INLINE_ void store_camera(const CameraMatrix &p_mtx, float *p_array) { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { p_array[i * 4 + j] = p_mtx.matrix[i][j]; } } } void RasterizerSceneForwardRD::ShaderData::set_code(const String &p_code) { //compile code = p_code; valid = false; ubo_size = 0; uniforms.clear(); uses_screen_texture = false; if (code == String()) { return; //just invalid, but no error } ShaderCompilerRD::GeneratedCode gen_code; int blend_mode = BLEND_MODE_MIX; int depth_testi = DEPTH_TEST_ENABLED; int cull = CULL_BACK; uses_point_size = false; uses_alpha = false; uses_blend_alpha = false; uses_depth_pre_pass = false; uses_discard = false; uses_roughness = false; uses_normal = false; bool wireframe = false; unshaded = false; uses_vertex = false; uses_sss = false; uses_screen_texture = false; uses_depth_texture = false; uses_normal_texture = false; uses_time = false; writes_modelview_or_projection = false; uses_world_coordinates = false; int depth_drawi = DEPTH_DRAW_OPAQUE; ShaderCompilerRD::IdentifierActions actions; actions.render_mode_values["blend_add"] = Pair(&blend_mode, BLEND_MODE_ADD); actions.render_mode_values["blend_mix"] = Pair(&blend_mode, BLEND_MODE_MIX); actions.render_mode_values["blend_sub"] = Pair(&blend_mode, BLEND_MODE_SUB); actions.render_mode_values["blend_mul"] = Pair(&blend_mode, BLEND_MODE_MUL); actions.render_mode_values["depth_draw_never"] = Pair(&depth_drawi, DEPTH_DRAW_DISABLED); actions.render_mode_values["depth_draw_opaque"] = Pair(&depth_drawi, DEPTH_DRAW_OPAQUE); actions.render_mode_values["depth_draw_always"] = Pair(&depth_drawi, DEPTH_DRAW_ALWAYS); actions.render_mode_values["depth_test_disabled"] = Pair(&depth_testi, DEPTH_TEST_DISABLED); actions.render_mode_values["cull_disabled"] = Pair(&cull, CULL_DISABLED); actions.render_mode_values["cull_front"] = Pair(&cull, CULL_FRONT); actions.render_mode_values["cull_back"] = Pair(&cull, CULL_BACK); actions.render_mode_flags["unshaded"] = &unshaded; actions.render_mode_flags["wireframe"] = &wireframe; actions.usage_flag_pointers["ALPHA"] = &uses_alpha; actions.render_mode_flags["depth_prepass_alpha"] = &uses_depth_pre_pass; actions.usage_flag_pointers["SSS_STRENGTH"] = &uses_sss; actions.usage_flag_pointers["SCREEN_TEXTURE"] = &uses_screen_texture; actions.usage_flag_pointers["DEPTH_TEXTURE"] = &uses_depth_texture; actions.usage_flag_pointers["NORMAL_TEXTURE"] = &uses_normal_texture; actions.usage_flag_pointers["DISCARD"] = &uses_discard; actions.usage_flag_pointers["TIME"] = &uses_time; actions.usage_flag_pointers["ROUGHNESS"] = &uses_roughness; actions.usage_flag_pointers["NORMAL"] = &uses_normal; actions.usage_flag_pointers["NORMALMAP"] = &uses_normal; actions.usage_flag_pointers["POINT_SIZE"] = &uses_point_size; actions.usage_flag_pointers["POINT_COORD"] = &uses_point_size; actions.write_flag_pointers["MODELVIEW_MATRIX"] = &writes_modelview_or_projection; actions.write_flag_pointers["PROJECTION_MATRIX"] = &writes_modelview_or_projection; actions.write_flag_pointers["VERTEX"] = &uses_vertex; actions.uniforms = &uniforms; RasterizerSceneForwardRD *scene_singleton = (RasterizerSceneForwardRD *)RasterizerSceneForwardRD::singleton; Error err = scene_singleton->shader.compiler.compile(VS::SHADER_SPATIAL, code, &actions, path, gen_code); ERR_FAIL_COND(err != OK); if (version.is_null()) { version = scene_singleton->shader.scene_shader.version_create(); } depth_draw = DepthDraw(depth_drawi); depth_test = DepthTest(depth_testi); #if 0 print_line("**compiling shader:"); print_line("**defines:\n"); for (int i = 0; i < gen_code.defines.size(); i++) { print_line(gen_code.defines[i]); } print_line("\n**uniforms:\n" + gen_code.uniforms); print_line("\n**vertex_globals:\n" + gen_code.vertex_global); print_line("\n**vertex_code:\n" + gen_code.vertex); print_line("\n**fragment_globals:\n" + gen_code.fragment_global); print_line("\n**fragment_code:\n" + gen_code.fragment); print_line("\n**light_code:\n" + gen_code.light); #endif scene_singleton->shader.scene_shader.version_set_code(version, gen_code.uniforms, gen_code.vertex_global, gen_code.vertex, gen_code.fragment_global, gen_code.light, gen_code.fragment, gen_code.defines); ERR_FAIL_COND(!scene_singleton->shader.scene_shader.version_is_valid(version)); ubo_size = gen_code.uniform_total_size; ubo_offsets = gen_code.uniform_offsets; texture_uniforms = gen_code.texture_uniforms; //blend modes RD::PipelineColorBlendState::Attachment blend_attachment; switch (blend_mode) { case BLEND_MODE_MIX: { blend_attachment.enable_blend = true; blend_attachment.alpha_blend_op = RD::BLEND_OP_ADD; blend_attachment.color_blend_op = RD::BLEND_OP_ADD; blend_attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; blend_attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; blend_attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_ONE; blend_attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; } break; case BLEND_MODE_ADD: { blend_attachment.enable_blend = true; blend_attachment.alpha_blend_op = RD::BLEND_OP_ADD; blend_attachment.color_blend_op = RD::BLEND_OP_ADD; blend_attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; blend_attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE; blend_attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; blend_attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE; uses_blend_alpha = true; //force alpha used because of blend } break; case BLEND_MODE_SUB: { blend_attachment.enable_blend = true; blend_attachment.alpha_blend_op = RD::BLEND_OP_SUBTRACT; blend_attachment.color_blend_op = RD::BLEND_OP_SUBTRACT; blend_attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; blend_attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE; blend_attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; blend_attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE; uses_blend_alpha = true; //force alpha used because of blend } break; case BLEND_MODE_MUL: { blend_attachment.enable_blend = true; blend_attachment.alpha_blend_op = RD::BLEND_OP_ADD; blend_attachment.color_blend_op = RD::BLEND_OP_ADD; blend_attachment.src_color_blend_factor = RD::BLEND_FACTOR_DST_COLOR; blend_attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ZERO; blend_attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_DST_ALPHA; blend_attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ZERO; uses_blend_alpha = true; //force alpha used because of blend } break; } RD::PipelineColorBlendState blend_state_blend; blend_state_blend.attachments.push_back(blend_attachment); RD::PipelineColorBlendState blend_state_opaque = RD::PipelineColorBlendState::create_disabled(1); RD::PipelineColorBlendState blend_state_opaque_specular = RD::PipelineColorBlendState::create_disabled(2); //update pipelines RD::PipelineDepthStencilState depth_stencil_state; if (depth_test != DEPTH_TEST_DISABLED) { depth_stencil_state.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL; depth_stencil_state.enable_depth_write = depth_draw != DEPTH_DRAW_DISABLED ? true : false; } for (int i = 0; i < CULL_VARIANT_MAX; i++) { RD::PolygonCullMode cull_mode_rd_table[3][CULL_VARIANT_MAX] = { { RD::POLYGON_CULL_DISABLED, RD::POLYGON_CULL_FRONT, RD::POLYGON_CULL_BACK }, { RD::POLYGON_CULL_DISABLED, RD::POLYGON_CULL_BACK, RD::POLYGON_CULL_FRONT }, { RD::POLYGON_CULL_DISABLED, RD::POLYGON_CULL_DISABLED, RD::POLYGON_CULL_DISABLED } }; RD::PolygonCullMode cull_mode_rd = cull_mode_rd_table[cull][i]; for (int j = 0; j < VS::PRIMITIVE_MAX; j++) { RD::RenderPrimitive primitive_rd_table[VS::PRIMITIVE_MAX] = { RD::RENDER_PRIMITIVE_POINTS, RD::RENDER_PRIMITIVE_LINES, RD::RENDER_PRIMITIVE_LINESTRIPS, RD::RENDER_PRIMITIVE_TRIANGLES, RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS, }; RD::RenderPrimitive primitive_rd = uses_point_size ? RD::RENDER_PRIMITIVE_POINTS : primitive_rd_table[j]; for (int k = 0; k < SHADER_VERSION_MAX; k++) { RD::PipelineRasterizationState raster_state; raster_state.cull_mode = cull_mode_rd; raster_state.wireframe = wireframe; RD::PipelineColorBlendState blend_state; RD::PipelineDepthStencilState depth_stencil = depth_stencil_state; if (uses_alpha || uses_blend_alpha) { if (k == SHADER_VERSION_COLOR_PASS || k == SHADER_VERSION_VCT_COLOR_PASS || k == SHADER_VERSION_LIGHTMAP_COLOR_PASS) { blend_state = blend_state_blend; if (depth_draw == DEPTH_DRAW_OPAQUE) { depth_stencil.enable_depth_write = false; //alpha does not draw depth } } else if (uses_depth_pre_pass && (k == SHADER_VERSION_DEPTH_PASS || k == SHADER_VERSION_DEPTH_PASS_WITH_NORMAL || k == SHADER_VERSION_DEPTH_PASS_WITH_NORMAL_AND_ROUGHNESS)) { if (k == SHADER_VERSION_DEPTH_PASS) { //none, blend state contains nothing } else { blend_state = blend_state_opaque; //writes to normal and roughness in opaque way } } else { pipelines[i][j][k].clear(); continue; // do not use this version (will error if using it is attempted) } } else { if (k == SHADER_VERSION_COLOR_PASS || k == SHADER_VERSION_VCT_COLOR_PASS || k == SHADER_VERSION_LIGHTMAP_COLOR_PASS) { blend_state = blend_state_opaque; } else if (k == SHADER_VERSION_DEPTH_PASS) { //none, leave empty } else if (k == SHADER_VERSION_DEPTH_PASS_WITH_NORMAL || k == SHADER_VERSION_DEPTH_PASS_WITH_NORMAL_AND_ROUGHNESS) { blend_state = blend_state_opaque; //writes to normal and roughness in opaque way } else { //specular write blend_state = blend_state_opaque_specular; } } RID shader_variant = scene_singleton->shader.scene_shader.version_get_shader(version, k); pipelines[i][j][k].setup(shader_variant, primitive_rd, raster_state, RD::PipelineMultisampleState(), depth_stencil, blend_state, 0); } } } valid = true; } void RasterizerSceneForwardRD::ShaderData::set_default_texture_param(const StringName &p_name, RID p_texture) { if (!p_texture.is_valid()) { default_texture_params.erase(p_name); } else { default_texture_params[p_name] = p_texture; } } void RasterizerSceneForwardRD::ShaderData::get_param_list(List *p_param_list) const { Map order; for (Map::Element *E = uniforms.front(); E; E = E->next()) { if (E->get().texture_order >= 0) { order[E->get().texture_order + 100000] = E->key(); } else { order[E->get().order] = E->key(); } } for (Map::Element *E = order.front(); E; E = E->next()) { PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E->get()]); pi.name = E->get(); p_param_list->push_back(pi); } } bool RasterizerSceneForwardRD::ShaderData::is_param_texture(const StringName &p_param) const { if (!uniforms.has(p_param)) { return false; } return uniforms[p_param].texture_order >= 0; } bool RasterizerSceneForwardRD::ShaderData::is_animated() const { return false; } bool RasterizerSceneForwardRD::ShaderData::casts_shadows() const { return false; } Variant RasterizerSceneForwardRD::ShaderData::get_default_parameter(const StringName &p_parameter) const { if (uniforms.has(p_parameter)) { ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter]; Vector default_value = uniform.default_value; return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint); } return Variant(); } RasterizerSceneForwardRD::ShaderData::ShaderData() { valid = false; uses_screen_texture = false; } RasterizerSceneForwardRD::ShaderData::~ShaderData() { RasterizerSceneForwardRD *scene_singleton = (RasterizerSceneForwardRD *)RasterizerSceneForwardRD::singleton; ERR_FAIL_COND(!scene_singleton); //pipeline variants will clear themselves if shader is gone if (version.is_valid()) { scene_singleton->shader.scene_shader.version_free(version); } } RasterizerStorageRD::ShaderData *RasterizerSceneForwardRD::_create_shader_func() { ShaderData *shader_data = memnew(ShaderData); return shader_data; } void RasterizerSceneForwardRD::MaterialData::set_render_priority(int p_priority) { priority = p_priority - VS::MATERIAL_RENDER_PRIORITY_MIN; //8 bits } void RasterizerSceneForwardRD::MaterialData::set_next_pass(RID p_pass) { next_pass = p_pass; } void RasterizerSceneForwardRD::MaterialData::update_parameters(const Map &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) { RasterizerSceneForwardRD *scene_singleton = (RasterizerSceneForwardRD *)RasterizerSceneForwardRD::singleton; if ((uint32_t)ubo_data.size() != shader_data->ubo_size) { p_uniform_dirty = true; if (uniform_buffer.is_valid()) { RD::get_singleton()->free(uniform_buffer); uniform_buffer = RID(); } ubo_data.resize(shader_data->ubo_size); if (ubo_data.size()) { uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size()); memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear } //clear previous uniform set if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { RD::get_singleton()->free(uniform_set); uniform_set = RID(); } } //check whether buffer changed if (p_uniform_dirty && ubo_data.size()) { update_uniform_buffer(shader_data->uniforms, shader_data->ubo_offsets.ptr(), p_parameters, ubo_data.ptrw(), ubo_data.size(), false); RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw()); } uint32_t tex_uniform_count = shader_data->texture_uniforms.size(); if ((uint32_t)texture_cache.size() != tex_uniform_count) { texture_cache.resize(tex_uniform_count); p_textures_dirty = true; //clear previous uniform set if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { RD::get_singleton()->free(uniform_set); uniform_set = RID(); } } if (p_textures_dirty && tex_uniform_count) { update_textures(p_parameters, shader_data->default_texture_params, shader_data->texture_uniforms, texture_cache.ptrw()); } if (shader_data->ubo_size == 0 && shader_data->texture_uniforms.size() == 0) { // This material does not require an uniform set, so don't create it. return; } if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { //no reason to update uniform set, only UBO (or nothing) was needed to update return; } Vector uniforms; { if (shader_data->ubo_size) { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 0; u.ids.push_back(uniform_buffer); uniforms.push_back(u); } const RID *textures = texture_cache.ptrw(); for (uint32_t i = 0; i < tex_uniform_count; i++) { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1 + i; u.ids.push_back(textures[i]); uniforms.push_back(u); } } uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_singleton->shader.scene_shader.version_get_shader(shader_data->version, 0), 3); } RasterizerSceneForwardRD::MaterialData::~MaterialData() { if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { RD::get_singleton()->free(uniform_set); } if (uniform_buffer.is_valid()) { RD::get_singleton()->free(uniform_buffer); } } RasterizerStorageRD::MaterialData *RasterizerSceneForwardRD::_create_material_func(ShaderData *p_shader) { MaterialData *material_data = memnew(MaterialData); material_data->shader_data = p_shader; material_data->last_frame = false; //update will happen later anyway so do nothing. return material_data; } RasterizerSceneForwardRD::RenderBufferDataForward::~RenderBufferDataForward() { clear(); } void RasterizerSceneForwardRD::RenderBufferDataForward::clear() { if (color_fb.is_valid()) { RD::get_singleton()->free(color_fb); color_fb = RID(); } if (color.is_valid()) { RD::get_singleton()->free(color); color = RID(); } if (depth.is_valid()) { RD::get_singleton()->free(depth); depth = RID(); } } void RasterizerSceneForwardRD::RenderBufferDataForward::configure(RID p_render_target, int p_width, int p_height, VS::ViewportMSAA p_msaa) { clear(); width = p_width; height = p_height; render_target = p_render_target; { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.width = p_width; tf.height = p_height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; color = RD::get_singleton()->texture_create(tf, RD::TextureView()); } { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT; tf.width = p_width; tf.height = p_height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); } { Vector fb; fb.push_back(color); fb.push_back(depth); color_fb = RD::get_singleton()->framebuffer_create(fb); } } RasterizerSceneRD::RenderBufferData *RasterizerSceneForwardRD::_create_render_buffer_data() { return memnew(RenderBufferDataForward); } bool RasterizerSceneForwardRD::free(RID p_rid) { if (RasterizerSceneRD::free(p_rid)) { return true; } return false; } /// INSTANCE DATA /// void RasterizerSceneForwardRD::instance_create_custom_data(InstanceBase *p_instance) { InstanceGeometryData *geom_data = memnew(InstanceGeometryData); geom_data->ubo = RD::get_singleton()->uniform_buffer_create(sizeof(InstanceGeometryData::UBO)); p_instance->custom_data = geom_data; } void RasterizerSceneForwardRD::instance_free_custom_data(InstanceBase *p_instance) { InstanceGeometryData *geom_data = (InstanceGeometryData *)p_instance->custom_data; ERR_FAIL_COND(!geom_data); RD::get_singleton()->free(geom_data->ubo); //uniform sets are freed as dependencies memdelete(geom_data); p_instance->custom_data = nullptr; } void RasterizerSceneForwardRD::instance_custom_data_update_lights(InstanceBase *p_instance) { //unused } void RasterizerSceneForwardRD::instance_custom_data_update_reflection_probes(InstanceBase *p_instance) { //unused } void RasterizerSceneForwardRD::instance_custom_data_update_lightmap(InstanceBase *p_instance) { InstanceGeometryData *geom_data = (InstanceGeometryData *)p_instance->custom_data; ERR_FAIL_COND(!geom_data); geom_data->using_lightmap_gi = p_instance->lightmap.is_valid(); if (geom_data->uniform_set_gi.is_valid() && RD::get_singleton()->uniform_set_is_valid(geom_data->uniform_set_gi)) { RD::get_singleton()->free(geom_data->uniform_set_gi); } geom_data->uniform_set_gi = RID(); } void RasterizerSceneForwardRD::instance_custom_data_update_gi_probes(InstanceBase *p_instance) { InstanceGeometryData *geom_data = (InstanceGeometryData *)p_instance->custom_data; ERR_FAIL_COND(!geom_data); geom_data->using_vct_gi = p_instance->gi_probe_instances.size(); if (geom_data->uniform_set_gi.is_valid() && RD::get_singleton()->uniform_set_is_valid(geom_data->uniform_set_gi)) { RD::get_singleton()->free(geom_data->uniform_set_gi); } geom_data->uniform_set_gi = RID(); } void RasterizerSceneForwardRD::instance_custom_data_update_transform(InstanceBase *p_instance) { InstanceGeometryData *geom_data = (InstanceGeometryData *)p_instance->custom_data; ERR_FAIL_COND(!geom_data); geom_data->ubo_dirty = true; } /// RENDERING /// void RasterizerSceneForwardRD::_render_list(RenderingDevice::DrawListID p_draw_list, RenderingDevice::FramebufferFormatID p_framebuffer_Format, RenderList::Element **p_elements, int p_element_count, bool p_reverse_cull, PassMode p_pass_mode, RID p_screen_uniform_set, bool p_no_gi) { RD::DrawListID draw_list = p_draw_list; RD::FramebufferFormatID framebuffer_format = p_framebuffer_Format; //global scope bindings RD::get_singleton()->draw_list_bind_uniform_set(draw_list, p_screen_uniform_set, 0); MaterialData *prev_material = nullptr; // ShaderData *prev_shader = nullptr; RID prev_vertex_array_rd; RID prev_index_array_rd; RID prev_pipeline_rd; PushConstant push_constant; zeromem(&push_constant, sizeof(PushConstant)); for (int i = 0; i < p_element_count; i++) { const RenderList::Element *e = p_elements[i]; MaterialData *material = e->material; ShaderData *shader = material->shader_data; //find cull variant ShaderData::CullVariant cull_variant; if (p_pass_mode == PASS_MODE_SHADOW && e->instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED) { cull_variant = ShaderData::CULL_VARIANT_DOUBLE_SIDED; } else { bool mirror = e->instance->mirror; if (p_reverse_cull) { mirror = !mirror; } cull_variant = mirror ? ShaderData::CULL_VARIANT_REVERSED : ShaderData::CULL_VARIANT_NORMAL; } //find primitive and vertex format VS::PrimitiveType primitive; switch (e->instance->base_type) { case VS::INSTANCE_MESH: { primitive = storage->mesh_surface_get_primitive(e->instance->base, e->surface_index); } break; case VS::INSTANCE_MULTIMESH: { ERR_CONTINUE(true); //should be a bug } break; case VS::INSTANCE_IMMEDIATE: { ERR_CONTINUE(true); //should be a bug } break; case VS::INSTANCE_PARTICLES: { ERR_CONTINUE(true); //should be a bug } break; default: { ERR_CONTINUE(true); //should be a bug } } InstanceGeometryData *geom_data = (InstanceGeometryData *)e->instance->custom_data; ShaderVersion shader_version; RID instance_uniform_set; switch (p_pass_mode) { case PASS_MODE_COLOR: case PASS_MODE_COLOR_TRANSPARENT: { if (p_no_gi) { instance_uniform_set = geom_data->uniform_set_base; shader_version = SHADER_VERSION_COLOR_PASS; } else if (geom_data->using_lightmap_gi) { instance_uniform_set = geom_data->uniform_set_gi; shader_version = SHADER_VERSION_LIGHTMAP_COLOR_PASS; } else if (geom_data->using_vct_gi) { instance_uniform_set = geom_data->uniform_set_gi; shader_version = SHADER_VERSION_VCT_COLOR_PASS; } else { instance_uniform_set = geom_data->uniform_set_gi; shader_version = SHADER_VERSION_COLOR_PASS; } } break; case PASS_MODE_COLOR_SPECULAR: { if (p_no_gi) { instance_uniform_set = geom_data->uniform_set_base; shader_version = SHADER_VERSION_COLOR_PASS_WITH_SEPARATE_SPECULAR; } else if (geom_data->using_lightmap_gi) { instance_uniform_set = geom_data->uniform_set_gi; shader_version = SHADER_VERSION_LIGHTMAP_COLOR_PASS_WITH_SEPARATE_SPECULAR; } else if (geom_data->using_vct_gi) { instance_uniform_set = geom_data->uniform_set_gi; shader_version = SHADER_VERSION_VCT_COLOR_PASS_WITH_SEPARATE_SPECULAR; } else { instance_uniform_set = geom_data->uniform_set_gi; shader_version = SHADER_VERSION_COLOR_PASS_WITH_SEPARATE_SPECULAR; } } break; case PASS_MODE_SHADOW: { shader_version = SHADER_VERSION_DEPTH_PASS; instance_uniform_set = geom_data->uniform_set_base; } break; case PASS_MODE_DEPTH: { shader_version = SHADER_VERSION_DEPTH_PASS; instance_uniform_set = geom_data->uniform_set_base; } break; case PASS_MODE_DEPTH_NORMAL: { shader_version = SHADER_VERSION_DEPTH_PASS_WITH_NORMAL; instance_uniform_set = geom_data->uniform_set_base; } break; case PASS_MODE_DEPTH_NORMAL_ROUGHNESS: { shader_version = SHADER_VERSION_DEPTH_PASS_WITH_NORMAL_AND_ROUGHNESS; instance_uniform_set = geom_data->uniform_set_base; } break; } RenderPipelineVertexFormatCacheRD *pipeline = nullptr; pipeline = &shader->pipelines[cull_variant][primitive][shader_version]; RD::VertexFormatID vertex_format; RID vertex_array_rd; RID index_array_rd; switch (e->instance->base_type) { case VS::INSTANCE_MESH: { storage->mesh_surface_get_arrays_and_format(e->instance->base, e->surface_index, pipeline->get_vertex_input_mask(), vertex_array_rd, index_array_rd, vertex_format); } break; case VS::INSTANCE_MULTIMESH: { ERR_CONTINUE(true); //should be a bug } break; case VS::INSTANCE_IMMEDIATE: { ERR_CONTINUE(true); //should be a bug } break; case VS::INSTANCE_PARTICLES: { ERR_CONTINUE(true); //should be a bug } break; default: { ERR_CONTINUE(true); //should be a bug } } if (prev_vertex_array_rd != vertex_array_rd) { RD::get_singleton()->draw_list_bind_vertex_array(draw_list, vertex_array_rd); prev_vertex_array_rd = vertex_array_rd; } if (prev_index_array_rd != index_array_rd) { if (index_array_rd.is_valid()) { RD::get_singleton()->draw_list_bind_index_array(draw_list, index_array_rd); } prev_index_array_rd = index_array_rd; } RID pipeline_rd = pipeline->get_render_pipeline(vertex_format, framebuffer_format); if (pipeline_rd != prev_pipeline_rd) { // checking with prev shader does not make so much sense, as // the pipeline may still be different. RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, pipeline_rd); prev_pipeline_rd = pipeline_rd; } if (material != prev_material) { //update uniform set if (material->uniform_set.is_valid()) { RD::get_singleton()->draw_list_bind_uniform_set(draw_list, material->uniform_set, 2); } prev_material = material; } RD::get_singleton()->draw_list_bind_uniform_set(draw_list, instance_uniform_set, 3); RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(PushConstant)); switch (e->instance->base_type) { case VS::INSTANCE_MESH: { RD::get_singleton()->draw_list_draw(draw_list, index_array_rd.is_valid()); } break; case VS::INSTANCE_MULTIMESH: { } break; case VS::INSTANCE_IMMEDIATE: { } break; case VS::INSTANCE_PARTICLES: { } break; default: { ERR_CONTINUE(true); //should be a bug } } } } void RasterizerSceneForwardRD::_setup_environment(RID p_environment, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, bool p_no_fog) { Transform sky_orientation; CameraMatrix projection = p_cam_projection; projection.flip_y(); //store camera into ubo store_camera(projection, scene_state.ubo.projection_matrix); store_camera(projection.inverse(), scene_state.ubo.inv_projection_matrix); store_transform(p_cam_transform, scene_state.ubo.camera_matrix); store_transform(p_cam_transform.affine_inverse(), scene_state.ubo.inv_camera_matrix); //time global variables scene_state.ubo.time = time; RD::get_singleton()->buffer_update(scene_state.uniform_buffer, 0, sizeof(SceneState::UBO), &scene_state.ubo, true); #if 0 //bg and ambient if (p_environment.is_valid()) { state.ubo_data.bg_energy = env->bg_energy; state.ubo_data.ambient_energy = env->ambient_energy; Color linear_ambient_color = env->ambient_color.to_linear(); state.ubo_data.ambient_light_color[0] = linear_ambient_color.r; state.ubo_data.ambient_light_color[1] = linear_ambient_color.g; state.ubo_data.ambient_light_color[2] = linear_ambient_color.b; state.ubo_data.ambient_light_color[3] = linear_ambient_color.a; Color bg_color; switch (env->bg_mode) { case VS::ENV_BG_CLEAR_COLOR: { bg_color = storage->frame.clear_request_color.to_linear(); } break; case VS::ENV_BG_COLOR: { bg_color = env->bg_color.to_linear(); } break; default: { bg_color = Color(0, 0, 0, 1); } break; } state.ubo_data.bg_color[0] = bg_color.r; state.ubo_data.bg_color[1] = bg_color.g; state.ubo_data.bg_color[2] = bg_color.b; state.ubo_data.bg_color[3] = bg_color.a; //use the inverse of our sky_orientation, we may need to skip this if we're using a reflection probe? sky_orientation = Transform(env->sky_orientation, Vector3(0.0, 0.0, 0.0)).affine_inverse(); state.env_radiance_data.ambient_contribution = env->ambient_sky_contribution; state.ubo_data.ambient_occlusion_affect_light = env->ssao_light_affect; state.ubo_data.ambient_occlusion_affect_ssao = env->ssao_ao_channel_affect; //fog Color linear_fog = env->fog_color.to_linear(); state.ubo_data.fog_color_enabled[0] = linear_fog.r; state.ubo_data.fog_color_enabled[1] = linear_fog.g; state.ubo_data.fog_color_enabled[2] = linear_fog.b; state.ubo_data.fog_color_enabled[3] = (!p_no_fog && env->fog_enabled) ? 1.0 : 0.0; state.ubo_data.fog_density = linear_fog.a; Color linear_sun = env->fog_sun_color.to_linear(); state.ubo_data.fog_sun_color_amount[0] = linear_sun.r; state.ubo_data.fog_sun_color_amount[1] = linear_sun.g; state.ubo_data.fog_sun_color_amount[2] = linear_sun.b; state.ubo_data.fog_sun_color_amount[3] = env->fog_sun_amount; state.ubo_data.fog_depth_enabled = env->fog_depth_enabled; state.ubo_data.fog_depth_begin = env->fog_depth_begin; state.ubo_data.fog_depth_end = env->fog_depth_end; state.ubo_data.fog_depth_curve = env->fog_depth_curve; state.ubo_data.fog_transmit_enabled = env->fog_transmit_enabled; state.ubo_data.fog_transmit_curve = env->fog_transmit_curve; state.ubo_data.fog_height_enabled = env->fog_height_enabled; state.ubo_data.fog_height_min = env->fog_height_min; state.ubo_data.fog_height_max = env->fog_height_max; state.ubo_data.fog_height_curve = env->fog_height_curve; } else { state.ubo_data.bg_energy = 1.0; state.ubo_data.ambient_energy = 1.0; //use from clear color instead, since there is no ambient Color linear_ambient_color = storage->frame.clear_request_color.to_linear(); state.ubo_data.ambient_light_color[0] = linear_ambient_color.r; state.ubo_data.ambient_light_color[1] = linear_ambient_color.g; state.ubo_data.ambient_light_color[2] = linear_ambient_color.b; state.ubo_data.ambient_light_color[3] = linear_ambient_color.a; state.ubo_data.bg_color[0] = linear_ambient_color.r; state.ubo_data.bg_color[1] = linear_ambient_color.g; state.ubo_data.bg_color[2] = linear_ambient_color.b; state.ubo_data.bg_color[3] = linear_ambient_color.a; state.env_radiance_data.ambient_contribution = 0; state.ubo_data.ambient_occlusion_affect_light = 0; state.ubo_data.fog_color_enabled[3] = 0.0; } { //directional shadow state.ubo_data.shadow_directional_pixel_size[0] = 1.0 / directional_shadow.size; state.ubo_data.shadow_directional_pixel_size[1] = 1.0 / directional_shadow.size; glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4); glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS); } glBindBuffer(GL_UNIFORM_BUFFER, state.scene_ubo); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(State::SceneDataUBO), &state.ubo_data); glBindBuffer(GL_UNIFORM_BUFFER, 0); //fill up environment store_transform(sky_orientation * p_cam_transform, state.env_radiance_data.transform); glBindBuffer(GL_UNIFORM_BUFFER, state.env_radiance_ubo); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(State::EnvironmentRadianceUBO), &state.env_radiance_data); glBindBuffer(GL_UNIFORM_BUFFER, 0); #endif } void RasterizerSceneForwardRD::_add_geometry(InstanceBase *p_instance, uint32_t p_surface, RID p_material, PassMode p_pass_mode) { RID m_src = p_instance->material_override.is_valid() ? p_instance->material_override : p_material; /*if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_OVERDRAW) { m_src = default_overdraw_material; }*/ MaterialData *material = NULL; if (m_src.is_valid()) { material = (MaterialData *)storage->material_get_data(m_src, RasterizerStorageRD::SHADER_TYPE_3D); if (!material || !material->shader_data->valid) { material = NULL; } } if (!material) { material = (MaterialData *)storage->material_get_data(default_material, RasterizerStorageRD::SHADER_TYPE_3D); } ERR_FAIL_COND(!material); _add_geometry_with_material(p_instance, p_surface, material, p_pass_mode); while (material->next_pass.is_valid()) { material = (MaterialData *)storage->material_get_data(material->next_pass, RasterizerStorageRD::SHADER_TYPE_3D); if (!material || !material->shader_data->valid) break; _add_geometry_with_material(p_instance, p_surface, material, p_pass_mode); } } void RasterizerSceneForwardRD::_add_geometry_with_material(InstanceBase *p_instance, uint32_t p_surface, MaterialData *p_material, PassMode p_pass_mode) { bool has_read_screen_alpha = p_material->shader_data->uses_screen_texture || p_material->shader_data->uses_depth_texture || p_material->shader_data->uses_normal_texture; bool has_base_alpha = (p_material->shader_data->uses_alpha || has_read_screen_alpha); bool has_blend_alpha = p_material->shader_data->uses_blend_alpha; bool has_alpha = has_base_alpha || has_blend_alpha; if (p_material->shader_data->uses_sss) { scene_state.used_sss = true; } if (p_material->shader_data->uses_screen_texture) { scene_state.used_screen_texture = true; } if (p_material->shader_data->uses_depth_texture) { scene_state.used_depth_texture = true; } if (p_material->shader_data->uses_normal_texture) { scene_state.used_normal_texture = true; } if (p_pass_mode != PASS_MODE_COLOR && p_pass_mode != PASS_MODE_COLOR_SPECULAR) { if (has_blend_alpha || has_read_screen_alpha || (has_base_alpha && !p_material->shader_data->uses_depth_pre_pass) || p_material->shader_data->depth_draw == ShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test == ShaderData::DEPTH_TEST_DISABLED || p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_OFF) { //conditions in which no depth pass should be processed return; } if (!p_material->shader_data->writes_modelview_or_projection && !p_material->shader_data->uses_vertex && !p_material->shader_data->uses_discard && !p_material->shader_data->uses_depth_pre_pass) { //shader does not use discard and does not write a vertex position, use generic material if (p_pass_mode == PASS_MODE_SHADOW || p_pass_mode == PASS_MODE_DEPTH) { p_material = (MaterialData *)storage->material_get_data(default_material, RasterizerStorageRD::SHADER_TYPE_3D); } else if (p_pass_mode == PASS_MODE_DEPTH_NORMAL && !p_material->shader_data->uses_normal) { p_material = (MaterialData *)storage->material_get_data(default_material, RasterizerStorageRD::SHADER_TYPE_3D); } else if (p_pass_mode == PASS_MODE_DEPTH_NORMAL_ROUGHNESS && !p_material->shader_data->uses_normal && !p_material->shader_data->uses_roughness) { p_material = (MaterialData *)storage->material_get_data(default_material, RasterizerStorageRD::SHADER_TYPE_3D); } } has_alpha = false; } RenderList::Element *e = (has_alpha || p_material->shader_data->depth_test == ShaderData::DEPTH_TEST_DISABLED) ? render_list.add_alpha_element() : render_list.add_element(); if (!e) return; e->instance = p_instance; e->material = p_material; e->surface_index = p_surface; e->sort_key = 0; if (e->material->last_pass != render_pass) { e->material->last_pass = render_pass; e->material->index = scene_state.current_material_index++; if (e->material->shader_data->last_pass != render_pass) { e->material->shader_data->last_pass = scene_state.current_material_index++; e->material->shader_data->index = scene_state.current_shader_index++; } } e->material_index = e->material->index; e->shader_index = e->shader_index; e->depth_layer = e->instance->depth_layer; e->priority = p_material->priority; if (p_material->shader_data->uses_time) { VisualServerRaster::redraw_request(); } } void RasterizerSceneForwardRD::_fill_render_list(InstanceBase **p_cull_result, int p_cull_count, PassMode p_pass_mode, bool p_no_gi) { scene_state.current_shader_index = 0; scene_state.current_material_index = 0; scene_state.used_sss = false; scene_state.used_screen_texture = false; scene_state.used_normal_texture = false; scene_state.used_depth_texture = false; //fill list for (int i = 0; i < p_cull_count; i++) { InstanceBase *inst = p_cull_result[i]; InstanceGeometryData *geom_data = (InstanceGeometryData *)inst->custom_data; ERR_CONTINUE(!geom_data); if (geom_data->ubo_dirty) { //ubo marked dirty, must be updated InstanceGeometryData::UBO ubo; store_transform(inst->transform, ubo.transform); store_transform_3x3(inst->transform.basis.inverse().transposed(), ubo.normal_transform); ubo.flags = 0; ubo.pad[0] = 0; ubo.pad[1] = 0; ubo.pad[2] = 0; RD::get_singleton()->buffer_update(geom_data->ubo, 0, sizeof(InstanceGeometryData::UBO), &ubo, true); } if (p_no_gi) { if (geom_data->uniform_set_base.is_null() || !RD::get_singleton()->uniform_set_is_valid(geom_data->uniform_set_base)) { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 0; u.ids.push_back(geom_data->ubo); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE_BUFFER; u.binding = 1; u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_MULTIMESH_BUFFER)); uniforms.push_back(u); } geom_data->uniform_set_base = RD::get_singleton()->uniform_set_create(uniforms, default_shader_rd, 3); } } else { if (geom_data->uniform_set_gi.is_null() || !RD::get_singleton()->uniform_set_is_valid(geom_data->uniform_set_gi)) { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 0; u.ids.push_back(geom_data->ubo); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE_BUFFER; u.binding = 1; u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_MULTIMESH_BUFFER)); uniforms.push_back(u); } if (geom_data->using_lightmap_gi) { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; #ifndef _MSC_VER #warning Need to put actual lightmap or lightmap capture texture if exists #endif u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE)); uniforms.push_back(u); } } else if (geom_data->using_vct_gi) { #ifndef _MSC_VER #warning Need to put actual vct textures here #endif } geom_data->uniform_set_gi = RD::get_singleton()->uniform_set_create(uniforms, default_shader_rd, 3); } } //add geometry for drawing switch (inst->base_type) { case VS::INSTANCE_MESH: { const RID *materials = NULL; uint32_t surface_count; materials = storage->mesh_get_surface_count_and_materials(inst->base, surface_count); if (!materials) { continue; //nothing to do } const RID *inst_materials = inst->materials.ptr(); for (uint32_t j = 0; j < surface_count; j++) { RID material = inst_materials[j].is_valid() ? inst_materials[j] : materials[j]; _add_geometry(inst, j, material, p_pass_mode); } //mesh->last_pass=frame; } break; #if 0 case VS::INSTANCE_MULTIMESH: { RasterizerStorageGLES3::MultiMesh *multi_mesh = storage->multimesh_owner.getornull(inst->base); ERR_CONTINUE(!multi_mesh); if (multi_mesh->size == 0 || multi_mesh->visible_instances == 0) continue; RasterizerStorageGLES3::Mesh *mesh = storage->mesh_owner.getornull(multi_mesh->mesh); if (!mesh) continue; //mesh not assigned int ssize = mesh->surfaces.size(); for (int j = 0; j < ssize; j++) { RasterizerStorageGLES3::Surface *s = mesh->surfaces[j]; _add_geometry(s, inst, multi_mesh, -1, p_depth_pass, p_shadow_pass); } } break; case VS::INSTANCE_IMMEDIATE: { RasterizerStorageGLES3::Immediate *immediate = storage->immediate_owner.getornull(inst->base); ERR_CONTINUE(!immediate); _add_geometry(immediate, inst, NULL, -1, p_depth_pass, p_shadow_pass); } break; case VS::INSTANCE_PARTICLES: { RasterizerStorageGLES3::Particles *particles = storage->particles_owner.getornull(inst->base); ERR_CONTINUE(!particles); for (int j = 0; j < particles->draw_passes.size(); j++) { RID pmesh = particles->draw_passes[j]; if (!pmesh.is_valid()) continue; RasterizerStorageGLES3::Mesh *mesh = storage->mesh_owner.getornull(pmesh); if (!mesh) continue; //mesh not assigned int ssize = mesh->surfaces.size(); for (int k = 0; k < ssize; k++) { RasterizerStorageGLES3::Surface *s = mesh->surfaces[k]; _add_geometry(s, inst, particles, -1, p_depth_pass, p_shadow_pass); } } } break; #endif default: { } } } } void RasterizerSceneForwardRD::_render_scene(RenderBufferData *p_buffer_data, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { RenderBufferDataForward *render_buffer = (RenderBufferDataForward *)p_buffer_data; ERR_FAIL_COND(!render_buffer); //bug out for now //first of all, make a new render pass render_pass++; //fill up ubo #if 0 storage->info.render.object_count += p_cull_count; Environment *env = environment_owner.getornull(p_environment); ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_reflection_atlas); if (shadow_atlas && shadow_atlas->size) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 5); glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS); scene_state.ubo.shadow_atlas_pixel_size[0] = 1.0 / shadow_atlas->size; scene_state.ubo.shadow_atlas_pixel_size[1] = 1.0 / shadow_atlas->size; } if (reflection_atlas && reflection_atlas->size) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3); glBindTexture(GL_TEXTURE_2D, reflection_atlas->color); } #endif if (p_reflection_probe.is_valid()) { scene_state.ubo.reflection_multiplier = 0.0; } else { scene_state.ubo.reflection_multiplier = 1.0; } //scene_state.ubo.subsurface_scatter_width = subsurface_scatter_size; scene_state.ubo.shadow_z_offset = 0; scene_state.ubo.shadow_z_slope_scale = 0; p_cam_projection.get_viewport_size(scene_state.ubo.viewport_size[0], scene_state.ubo.viewport_size[1]); if (render_buffer) { scene_state.ubo.screen_pixel_size[0] = 1.0 / render_buffer->width; scene_state.ubo.screen_pixel_size[1] = 1.0 / render_buffer->height; } _setup_environment(p_environment, p_cam_projection, p_cam_transform, p_reflection_probe.is_valid()); #if 0 for (int i = 0; i < p_light_cull_count; i++) { ERR_BREAK(i >= RenderList::MAX_LIGHTS); LightInstance *li = light_instance_owner.getornull(p_light_cull_result[i]); if (li->light_ptr->param[VS::LIGHT_PARAM_CONTACT_SHADOW_SIZE] > CMP_EPSILON) { state.used_contact_shadows = true; } } #endif #if 0 // Do depth prepass if it's explicitly enabled bool use_depth_prepass = storage->config.use_depth_prepass; // If contact shadows are used then we need to do depth prepass even if it's otherwise disabled use_depth_prepass = use_depth_prepass || state.used_contact_shadows; // Never do depth prepass if effects are disabled or if we render overdraws use_depth_prepass = use_depth_prepass && storage->frame.current_rt && !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_NO_3D_EFFECTS]; use_depth_prepass = use_depth_prepass && state.debug_draw != VS::VIEWPORT_DEBUG_DRAW_OVERDRAW; if (use_depth_prepass) { //pre z pass glDisable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glDrawBuffers(0, NULL); glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); glColorMask(0, 0, 0, 0); glClearDepth(1.0f); glClear(GL_DEPTH_BUFFER_BIT); render_list.clear(); _fill_render_list(p_cull_result, p_cull_count, true, false); render_list.sort_by_key(false); state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH, true); _render_list(render_list.elements, render_list.element_count, p_cam_transform, p_cam_projection, 0, false, false, true, false, false); state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH, false); glColorMask(1, 1, 1, 1); if (state.used_contact_shadows) { _prepare_depth_texture(); _bind_depth_texture(); } fb_cleared = true; render_pass++; state.used_depth_prepass = true; } else { state.used_depth_prepass = false; } _setup_lights(p_light_cull_result, p_light_cull_count, p_cam_transform.affine_inverse(), p_cam_projection, p_shadow_atlas); _setup_reflections(p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_cam_transform.affine_inverse(), p_cam_projection, p_reflection_atlas, env); bool use_mrt = false; #endif render_list.clear(); _fill_render_list(p_cull_result, p_cull_count, PASS_MODE_COLOR, render_buffer == nullptr); #if 0 // glEnable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); //rendering to a probe cubemap side ReflectionProbeInstance *probe = reflection_probe_instance_owner.getornull(p_reflection_probe); GLuint current_fbo; if (probe) { ReflectionAtlas *ref_atlas = reflection_atlas_owner.getornull(probe->atlas); ERR_FAIL_COND(!ref_atlas); int target_size = ref_atlas->size / ref_atlas->subdiv; int cubemap_index = reflection_cubemaps.size() - 1; for (int i = reflection_cubemaps.size() - 1; i >= 0; i--) { //find appropriate cubemap to render to if (reflection_cubemaps[i].size > target_size * 2) break; cubemap_index = i; } current_fbo = reflection_cubemaps[cubemap_index].fbo_id[p_reflection_probe_pass]; use_mrt = false; state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, false); glViewport(0, 0, reflection_cubemaps[cubemap_index].size, reflection_cubemaps[cubemap_index].size); glBindFramebuffer(GL_FRAMEBUFFER, current_fbo); } else { use_mrt = env && (state.used_sss || env->ssao_enabled || env->ssr_enabled || env->dof_blur_far_enabled || env->dof_blur_near_enabled); //only enable MRT rendering if any of these is enabled //effects disabled and transparency also prevent using MRTs use_mrt = use_mrt && !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]; use_mrt = use_mrt && !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_NO_3D_EFFECTS]; use_mrt = use_mrt && state.debug_draw != VS::VIEWPORT_DEBUG_DRAW_OVERDRAW; use_mrt = use_mrt && (env->bg_mode != VS::ENV_BG_KEEP && env->bg_mode != VS::ENV_BG_CANVAS); glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); if (use_mrt) { current_fbo = storage->frame.current_rt->buffers.fbo; glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, true); Vector draw_buffers; draw_buffers.push_back(GL_COLOR_ATTACHMENT0); draw_buffers.push_back(GL_COLOR_ATTACHMENT1); draw_buffers.push_back(GL_COLOR_ATTACHMENT2); if (state.used_sss) { draw_buffers.push_back(GL_COLOR_ATTACHMENT3); } glDrawBuffers(draw_buffers.size(), draw_buffers.ptr()); Color black(0, 0, 0, 0); glClearBufferfv(GL_COLOR, 1, black.components); // specular glClearBufferfv(GL_COLOR, 2, black.components); // normal metal rough if (state.used_sss) { glClearBufferfv(GL_COLOR, 3, black.components); // normal metal rough } } else { if (storage->frame.current_rt->buffers.active) { current_fbo = storage->frame.current_rt->buffers.fbo; } else { current_fbo = storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo; } glBindFramebuffer(GL_FRAMEBUFFER, current_fbo); state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, false); Vector draw_buffers; draw_buffers.push_back(GL_COLOR_ATTACHMENT0); glDrawBuffers(draw_buffers.size(), draw_buffers.ptr()); } } if (!fb_cleared) { glClearDepth(1.0f); glClear(GL_DEPTH_BUFFER_BIT); } Color clear_color(0, 0, 0, 0); RasterizerStorageGLES3::Sky *sky = NULL; Ref feed; GLuint env_radiance_tex = 0; if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_OVERDRAW) { clear_color = Color(0, 0, 0, 0); storage->frame.clear_request = false; } else if (!probe && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { clear_color = Color(0, 0, 0, 0); storage->frame.clear_request = false; } else if (!env || env->bg_mode == VS::ENV_BG_CLEAR_COLOR) { if (storage->frame.clear_request) { clear_color = storage->frame.clear_request_color.to_linear(); storage->frame.clear_request = false; } } else if (env->bg_mode == VS::ENV_BG_CANVAS) { clear_color = env->bg_color.to_linear(); storage->frame.clear_request = false; } else if (env->bg_mode == VS::ENV_BG_COLOR) { clear_color = env->bg_color.to_linear(); storage->frame.clear_request = false; } else if (env->bg_mode == VS::ENV_BG_SKY) { storage->frame.clear_request = false; } else if (env->bg_mode == VS::ENV_BG_COLOR_SKY) { clear_color = env->bg_color.to_linear(); storage->frame.clear_request = false; } else if (env->bg_mode == VS::ENV_BG_CAMERA_FEED) { feed = CameraServer::get_singleton()->get_feed_by_id(env->camera_feed_id); storage->frame.clear_request = false; } else { storage->frame.clear_request = false; } if (!env || env->bg_mode != VS::ENV_BG_KEEP) { glClearBufferfv(GL_COLOR, 0, clear_color.components); // specular } VS::EnvironmentBG bg_mode = (!env || (probe && env->bg_mode == VS::ENV_BG_CANVAS)) ? VS::ENV_BG_CLEAR_COLOR : env->bg_mode; //if no environment, or canvas while rendering a probe (invalid use case), use color. if (env) { switch (bg_mode) { case VS::ENV_BG_COLOR_SKY: case VS::ENV_BG_SKY: sky = storage->sky_owner.getornull(env->sky); if (sky) { env_radiance_tex = sky->radiance; } break; case VS::ENV_BG_CANVAS: //copy canvas to 3d buffer and convert it to linear glDisable(GL_BLEND); glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color); storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, true); storage->shaders.copy.set_conditional(CopyShaderGLES3::SRGB_TO_LINEAR, true); storage->shaders.copy.bind(); _copy_screen(true, true); //turn off everything used storage->shaders.copy.set_conditional(CopyShaderGLES3::SRGB_TO_LINEAR, false); storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, false); //restore glEnable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glEnable(GL_CULL_FACE); break; case VS::ENV_BG_CAMERA_FEED: if (feed.is_valid() && (feed->get_base_width() > 0) && (feed->get_base_height() > 0)) { // copy our camera feed to our background glDisable(GL_BLEND); glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_DISPLAY_TRANSFORM, true); storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, true); storage->shaders.copy.set_conditional(CopyShaderGLES3::SRGB_TO_LINEAR, true); if (feed->get_datatype() == CameraFeed::FEED_RGB) { RID camera_RGBA = feed->get_texture(CameraServer::FEED_RGBA_IMAGE); VS::get_singleton()->texture_bind(camera_RGBA, 0); } else if (feed->get_datatype() == CameraFeed::FEED_YCBCR) { RID camera_YCbCr = feed->get_texture(CameraServer::FEED_YCBCR_IMAGE); VS::get_singleton()->texture_bind(camera_YCbCr, 0); storage->shaders.copy.set_conditional(CopyShaderGLES3::YCBCR_TO_SRGB, true); } else if (feed->get_datatype() == CameraFeed::FEED_YCBCR_SEP) { RID camera_Y = feed->get_texture(CameraServer::FEED_Y_IMAGE); RID camera_CbCr = feed->get_texture(CameraServer::FEED_CBCR_IMAGE); VS::get_singleton()->texture_bind(camera_Y, 0); VS::get_singleton()->texture_bind(camera_CbCr, 1); storage->shaders.copy.set_conditional(CopyShaderGLES3::SEP_CBCR_TEXTURE, true); storage->shaders.copy.set_conditional(CopyShaderGLES3::YCBCR_TO_SRGB, true); }; storage->shaders.copy.bind(); storage->shaders.copy.set_uniform(CopyShaderGLES3::DISPLAY_TRANSFORM, feed->get_transform()); _copy_screen(true, true); //turn off everything used storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_DISPLAY_TRANSFORM, false); storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, false); storage->shaders.copy.set_conditional(CopyShaderGLES3::SRGB_TO_LINEAR, false); storage->shaders.copy.set_conditional(CopyShaderGLES3::SEP_CBCR_TEXTURE, false); storage->shaders.copy.set_conditional(CopyShaderGLES3::YCBCR_TO_SRGB, false); //restore glEnable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glEnable(GL_CULL_FACE); } else { // don't have a feed, just show greenscreen :) clear_color = Color(0.0, 1.0, 0.0, 1.0); } break; default: { } } } if (probe && probe->probe_ptr->interior) { env_radiance_tex = 0; //for rendering probe interiors, radiance must not be used. } state.texscreen_copied = false; glBlendEquation(GL_FUNC_ADD); if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_BLEND); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDisable(GL_BLEND); } #endif render_list.sort_by_key(false); { //regular forward for now Vector c; c.push_back(Color(0, 0, 0, 1)); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(render_buffer->color_fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_CONTINUE, c); _render_list(draw_list, RD::get_singleton()->framebuffer_get_format(render_buffer->color_fb), render_list.elements, render_list.element_count, false, PASS_MODE_COLOR, default_render_buffer_uniform_set, render_buffer == nullptr); RD::get_singleton()->draw_list_end(); } //_render_list #if 0 if (state.directional_light_count == 0) { directional_light = NULL; _render_list(render_list.elements, render_list.element_count, p_cam_transform, p_cam_projection, env_radiance_tex, false, false, false, false, shadow_atlas != NULL); } else { for (int i = 0; i < state.directional_light_count; i++) { directional_light = directional_lights[i]; if (i > 0) { glEnable(GL_BLEND); } _setup_directional_light(i, p_cam_transform.affine_inverse(), shadow_atlas != NULL && shadow_atlas->size > 0); _render_list(render_list.elements, render_list.element_count, p_cam_transform, p_cam_projection, env_radiance_tex, false, false, false, i > 0, shadow_atlas != NULL); } } state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, false); if (use_mrt) { GLenum gldb = GL_COLOR_ATTACHMENT0; glDrawBuffers(1, &gldb); } if (env && env->bg_mode == VS::ENV_BG_SKY && (!storage->frame.current_rt || (!storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT] && state.debug_draw != VS::VIEWPORT_DEBUG_DRAW_OVERDRAW))) { /* if (use_mrt) { glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->buffers.fbo); //switch to alpha fbo for sky, only diffuse/ambient matters */ if (sky && sky->panorama.is_valid()) _draw_sky(sky, p_cam_projection, p_cam_transform, false, env->sky_custom_fov, env->bg_energy, env->sky_orientation); } //_render_list_forward(&alpha_render_list,camera_transform,camera_transform_inverse,camera_projection,false,fragment_lighting,true); //glColorMask(1,1,1,1); //state.scene_shader.set_conditional( SceneShaderGLES3::USE_FOG,false); if (use_mrt) { _render_mrts(env, p_cam_projection); } else { // Here we have to do the blits/resolves that otherwise are done in the MRT rendering, in particular // - prepare screen texture for any geometry that uses a shader with screen texture // - prepare depth texture for any geometry that uses a shader with depth texture bool framebuffer_dirty = false; if (storage->frame.current_rt && storage->frame.current_rt->buffers.active && state.used_screen_texture) { glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glReadBuffer(GL_COLOR_ATTACHMENT0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); _blur_effect_buffer(); framebuffer_dirty = true; } if (storage->frame.current_rt && storage->frame.current_rt->buffers.active && state.used_depth_texture) { _prepare_depth_texture(); framebuffer_dirty = true; } if (framebuffer_dirty) { // Restore framebuffer glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); } } if (storage->frame.current_rt && state.used_depth_texture && storage->frame.current_rt->buffers.active) { _bind_depth_texture(); } if (storage->frame.current_rt && state.used_screen_texture && storage->frame.current_rt->buffers.active) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 7); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); } glEnable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); #endif render_list.sort_by_reverse_depth_and_priority(true); { RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(render_buffer->color_fb, RD::INITIAL_ACTION_CONTINUE, RD::FINAL_ACTION_READ_COLOR_DISCARD_DEPTH); _render_list(draw_list, RD::get_singleton()->framebuffer_get_format(render_buffer->color_fb), render_list.elements, render_list.element_count, false, PASS_MODE_COLOR, default_render_buffer_uniform_set, render_buffer == nullptr); RD::get_singleton()->draw_list_end(); } //_render_list #if 0 if (state.directional_light_count == 0) { directional_light = NULL; _render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, p_cam_transform, p_cam_projection, env_radiance_tex, false, true, false, false, shadow_atlas != NULL); } else { for (int i = 0; i < state.directional_light_count; i++) { directional_light = directional_lights[i]; _setup_directional_light(i, p_cam_transform.affine_inverse(), shadow_atlas != NULL && shadow_atlas->size > 0); _render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, p_cam_transform, p_cam_projection, env_radiance_tex, false, true, false, i > 0, shadow_atlas != NULL); } } #endif if (p_reflection_probe.is_valid()) { //rendering a probe, do no more! return; } RasterizerEffectsRD *effects = storage->get_effects(); effects->copy(render_buffer->color, storage->render_target_get_rd_framebuffer(render_buffer->render_target), Rect2()); storage->render_target_disable_clear_request(render_buffer->render_target); #if 0 _post_process(env, p_cam_projection); // Needed only for debugging /* if (shadow_atlas && storage->frame.current_rt) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1)); } if (storage->frame.current_rt) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, exposure_shrink[4].color); //glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->exposure.color); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 16, storage->frame.current_rt->height / 16), Rect2(0, 0, 1, 1)); } if (reflection_atlas && storage->frame.current_rt) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, reflection_atlas->color); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1)); } if (directional_shadow.fbo) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1)); } if ( env_radiance_tex) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, env_radiance_tex); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1)); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); }*/ //disable all stuff #endif } RasterizerSceneForwardRD *RasterizerSceneForwardRD::singleton = NULL; void RasterizerSceneForwardRD::set_scene_pass(uint64_t p_pass) { scene_pass = p_pass; } void RasterizerSceneForwardRD::set_time(double p_time) { time = p_time; } RasterizerSceneForwardRD::RasterizerSceneForwardRD(RasterizerStorageRD *p_storage) { singleton = this; storage = p_storage; /* SHADER */ { String defines; Vector shader_versions; shader_versions.push_back("\n#define MODE_RENDER_DEPTH\n"); shader_versions.push_back("\n#define MODE_RENDER_DEPTH\n#define ENABLE_WRITE_NORMAL_BUFFER\n"); shader_versions.push_back("\n#define MODE_RENDER_DEPTH\n#define ENABLE_WRITE_NORMAL_ROUGHNESS_BUFFER\n"); shader_versions.push_back(""); shader_versions.push_back("\n#define MODE_MULTIPLE_RENDER_TARGETS\n"); shader_versions.push_back("\n#define USE_VOXEL_CONE_TRACING\n"); shader_versions.push_back("\n#define MODE_MULTIPLE_RENDER_TARGETS\n#define USE_VOXEL_CONE_TRACING\n"); shader_versions.push_back("\n#define USE_LIGHTMAP\n"); shader_versions.push_back("\n#define MODE_MULTIPLE_RENDER_TARGETS\n#define USE_LIGHTMAP\n"); shader.scene_shader.initialize(shader_versions, defines); } storage->shader_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_3D, _create_shader_funcs); storage->material_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_3D, _create_material_funcs); { //shader compiler ShaderCompilerRD::DefaultIdentifierActions actions; actions.renames["WORLD_MATRIX"] = "world_matrix"; actions.renames["WORLD_NORMAL_MATRIX"] = "world_normal_matrix"; actions.renames["INV_CAMERA_MATRIX"] = "scene_data.camera_inverse_matrix"; actions.renames["CAMERA_MATRIX"] = "scene_data.camera_matrix"; actions.renames["PROJECTION_MATRIX"] = "projection_matrix"; actions.renames["INV_PROJECTION_MATRIX"] = "scene_data.inv_projection_matrix"; actions.renames["MODELVIEW_MATRIX"] = "modelview"; actions.renames["MODELVIEW_NORMAL_MATRIX"] = "modelview_normal"; actions.renames["VERTEX"] = "vertex"; actions.renames["NORMAL"] = "normal"; actions.renames["TANGENT"] = "tangent"; actions.renames["BINORMAL"] = "binormal"; actions.renames["POSITION"] = "position"; actions.renames["UV"] = "uv_interp"; actions.renames["UV2"] = "uv2_interp"; actions.renames["COLOR"] = "color_interp"; actions.renames["POINT_SIZE"] = "gl_PointSize"; actions.renames["INSTANCE_ID"] = "gl_InstanceIndex"; //builtins actions.renames["TIME"] = "scene_data.time"; actions.renames["VIEWPORT_SIZE"] = "scene_data.viewport_size"; actions.renames["FRAGCOORD"] = "gl_FragCoord"; actions.renames["FRONT_FACING"] = "gl_FrontFacing"; actions.renames["NORMALMAP"] = "normalmap"; actions.renames["NORMALMAP_DEPTH"] = "normaldepth"; actions.renames["ALBEDO"] = "albedo"; actions.renames["ALPHA"] = "alpha"; actions.renames["METALLIC"] = "metallic"; actions.renames["SPECULAR"] = "specular"; actions.renames["ROUGHNESS"] = "roughness"; actions.renames["RIM"] = "rim"; actions.renames["RIM_TINT"] = "rim_tint"; actions.renames["CLEARCOAT"] = "clearcoat"; actions.renames["CLEARCOAT_GLOSS"] = "clearcoat_gloss"; actions.renames["ANISOTROPY"] = "anisotropy"; actions.renames["ANISOTROPY_FLOW"] = "anisotropy_flow"; actions.renames["SSS_STRENGTH"] = "sss_strength"; actions.renames["TRANSMISSION"] = "transmission"; actions.renames["AO"] = "ao"; actions.renames["AO_LIGHT_AFFECT"] = "ao_light_affect"; actions.renames["EMISSION"] = "emission"; actions.renames["POINT_COORD"] = "gl_PointCoord"; actions.renames["INSTANCE_CUSTOM"] = "instance_custom"; actions.renames["SCREEN_UV"] = "screen_uv"; actions.renames["SCREEN_TEXTURE"] = "screen_texture"; actions.renames["DEPTH_TEXTURE"] = "depth_buffer"; actions.renames["NORMAL_TEXTURE"] = "normal_buffer"; actions.renames["DEPTH"] = "gl_FragDepth"; actions.renames["OUTPUT_IS_SRGB"] = "true"; //for light actions.renames["VIEW"] = "view"; actions.renames["LIGHT_COLOR"] = "light_color"; actions.renames["LIGHT"] = "light"; actions.renames["ATTENUATION"] = "attenuation"; actions.renames["DIFFUSE_LIGHT"] = "diffuse_light"; actions.renames["SPECULAR_LIGHT"] = "specular_light"; actions.usage_defines["TANGENT"] = "#define ENABLE_TANGENT_INTERP\n"; actions.usage_defines["BINORMAL"] = "@TANGENT"; actions.usage_defines["RIM"] = "#define LIGHT_USE_RIM\n"; actions.usage_defines["RIM_TINT"] = "@RIM"; actions.usage_defines["CLEARCOAT"] = "#define LIGHT_USE_CLEARCOAT\n"; actions.usage_defines["CLEARCOAT_GLOSS"] = "@CLEARCOAT"; actions.usage_defines["ANISOTROPY"] = "#define LIGHT_USE_ANISOTROPY\n"; actions.usage_defines["ANISOTROPY_FLOW"] = "@ANISOTROPY"; actions.usage_defines["AO"] = "#define ENABLE_AO\n"; actions.usage_defines["AO_LIGHT_AFFECT"] = "#define ENABLE_AO\n"; actions.usage_defines["UV"] = "#define ENABLE_UV_INTERP\n"; actions.usage_defines["UV2"] = "#define ENABLE_UV2_INTERP\n"; actions.usage_defines["NORMALMAP"] = "#define ENABLE_NORMALMAP\n"; actions.usage_defines["NORMALMAP_DEPTH"] = "@NORMALMAP"; actions.usage_defines["COLOR"] = "#define ENABLE_COLOR_INTERP\n"; actions.usage_defines["INSTANCE_CUSTOM"] = "#define ENABLE_INSTANCE_CUSTOM\n"; actions.usage_defines["POSITION"] = "#define OVERRIDE_POSITION\n"; actions.usage_defines["SSS_STRENGTH"] = "#define ENABLE_SSS\n"; actions.usage_defines["TRANSMISSION"] = "#define TRANSMISSION_USED\n"; actions.usage_defines["SCREEN_TEXTURE"] = "#define SCREEN_TEXTURE_USED\n"; actions.usage_defines["SCREEN_UV"] = "#define SCREEN_UV_USED\n"; actions.usage_defines["DIFFUSE_LIGHT"] = "#define USE_LIGHT_SHADER_CODE\n"; actions.usage_defines["SPECULAR_LIGHT"] = "#define USE_LIGHT_SHADER_CODE\n"; actions.render_mode_defines["skip_vertex_transform"] = "#define SKIP_TRANSFORM_USED\n"; actions.render_mode_defines["world_vertex_coords"] = "#define VERTEX_WORLD_COORDS_USED\n"; actions.render_mode_defines["ensure_correct_normals"] = "#define ENSURE_CORRECT_NORMALS\n"; actions.render_mode_defines["cull_front"] = "#define DO_SIDE_CHECK\n"; actions.render_mode_defines["cull_disabled"] = "#define DO_SIDE_CHECK\n"; bool force_lambert = GLOBAL_GET("rendering/quality/shading/force_lambert_over_burley"); if (!force_lambert) { actions.render_mode_defines["diffuse_burley"] = "#define DIFFUSE_BURLEY\n"; } actions.render_mode_defines["diffuse_oren_nayar"] = "#define DIFFUSE_OREN_NAYAR\n"; actions.render_mode_defines["diffuse_lambert_wrap"] = "#define DIFFUSE_LAMBERT_WRAP\n"; actions.render_mode_defines["diffuse_toon"] = "#define DIFFUSE_TOON\n"; bool force_blinn = GLOBAL_GET("rendering/quality/shading/force_blinn_over_ggx"); if (!force_blinn) { actions.render_mode_defines["specular_schlick_ggx"] = "#define SPECULAR_SCHLICK_GGX\n"; } else { actions.render_mode_defines["specular_schlick_ggx"] = "#define SPECULAR_BLINN\n"; } actions.render_mode_defines["specular_blinn"] = "#define SPECULAR_BLINN\n"; actions.render_mode_defines["specular_phong"] = "#define SPECULAR_PHONG\n"; actions.render_mode_defines["specular_toon"] = "#define SPECULAR_TOON\n"; actions.render_mode_defines["specular_disabled"] = "#define SPECULAR_DISABLED\n"; actions.render_mode_defines["shadows_disabled"] = "#define SHADOWS_DISABLED\n"; actions.render_mode_defines["ambient_light_disabled"] = "#define AMBIENT_LIGHT_DISABLED\n"; actions.render_mode_defines["shadow_to_opacity"] = "#define USE_SHADOW_TO_OPACITY\n"; actions.sampler_array_name = "material_samplers"; actions.base_texture_binding_index = 1; actions.texture_layout_set = 2; actions.base_uniform_string = "material."; actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP; actions.default_repeat = ShaderLanguage::REPEAT_ENABLE; shader.compiler.initialize(actions); } //render list render_list.max_elements = GLOBAL_DEF_RST("rendering/limits/rendering/max_renderable_elements", (int)256000); render_list.init(); scene_pass = 0; render_pass = 0; { //default material and shader default_shader = storage->shader_create(); storage->shader_set_code(default_shader, "shader_type spatial;\n"); default_material = storage->material_create(); storage->material_set_shader(default_material, default_shader); MaterialData *md = (MaterialData *)storage->material_get_data(default_material, RasterizerStorageRD::SHADER_TYPE_3D); default_shader_rd = shader.scene_shader.version_get_shader(md->shader_data->version, SHADER_VERSION_COLOR_PASS); } //default render buffer and scene state uniform set { Vector uniforms; { RD::Uniform u; u.binding = 1; u.type = RD::UNIFORM_TYPE_TEXTURE; u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE)); uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.type = RD::UNIFORM_TYPE_TEXTURE; u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE)); uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.type = RD::UNIFORM_TYPE_TEXTURE; u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE)); uniforms.push_back(u); } scene_state.uniform_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(SceneState::UBO)); { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 4; u.ids.push_back(scene_state.uniform_buffer); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 5; u.ids.resize(12); RID *ids_ptr = u.ids.ptrw(); ids_ptr[0] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[1] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[2] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[3] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[4] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[5] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[6] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[7] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[8] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[9] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[10] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[11] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); uniforms.push_back(u); } default_render_buffer_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, default_shader_rd, 0); } } RasterizerSceneForwardRD::~RasterizerSceneForwardRD() { }