[vertex] #ifdef USE_GLES_OVER_GL #define mediump #define highp #else precision mediump float; precision mediump int; #endif #include "stdlib.glsl" // // attributes // attribute highp vec4 vertex_attrib; // attrib:0 attribute vec3 normal_attrib; // attrib:1 #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) attribute vec4 tangent_attrib; // attrib:2 #endif #ifdef ENABLE_COLOR_INTERP attribute vec4 color_attrib; // attrib:3 #endif #ifdef ENABLE_UV_INTERP attribute vec2 uv_attrib; // attrib:4 #endif #ifdef ENABLE_UV2_INTERP attribute vec2 uv2_attrib; // attrib:5 #endif #ifdef USE_SKELETON #ifdef USE_SKELETON_SOFTWARE attribute highp vec4 bone_transform_row_0; // attrib:9 attribute highp vec4 bone_transform_row_1; // attrib:10 attribute highp vec4 bone_transform_row_2; // attrib:11 #else attribute vec4 bone_ids; // attrib:6 attribute highp vec4 bone_weights; // attrib:7 uniform highp sampler2D bone_transforms; // texunit:-1 uniform ivec2 skeleton_texture_size; #endif #endif #ifdef USE_INSTANCING attribute highp vec4 instance_xform_row_0; // attrib:12 attribute highp vec4 instance_xform_row_1; // attrib:13 attribute highp vec4 instance_xform_row_2; // attrib:14 attribute highp vec4 instance_color; // attrib:15 attribute highp vec4 instance_custom_data; // attrib:8 #endif // // uniforms // uniform mat4 camera_matrix; uniform mat4 camera_inverse_matrix; uniform mat4 projection_matrix; uniform mat4 projection_inverse_matrix; uniform mat4 world_transform; uniform highp float time; uniform float normal_mult; #ifdef RENDER_DEPTH uniform float light_bias; uniform float light_normal_bias; #endif // // varyings // varying highp vec3 vertex_interp; varying vec3 normal_interp; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) varying vec3 tangent_interp; varying vec3 binormal_interp; #endif #ifdef ENABLE_COLOR_INTERP varying vec4 color_interp; #endif #ifdef ENABLE_UV_INTERP varying vec2 uv_interp; #endif #ifdef ENABLE_UV2_INTERP varying vec2 uv2_interp; #endif VERTEX_SHADER_GLOBALS void main() { highp vec4 vertex = vertex_attrib; mat4 world_matrix = world_transform; #ifdef USE_INSTANCING { highp mat4 m = mat4(instance_xform_row_0, instance_xform_row_1, instance_xform_row_2, vec4(0.0, 0.0, 0.0, 1.0)); world_matrix = world_matrix * transpose(m); } #endif vec3 normal = normal_attrib * normal_mult; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) vec3 tangent = tangent_attrib.xyz; tangent *= normal_mult; float binormalf = tangent_attrib.a; vec3 binormal = normalize(cross(normal, tangent) * binormalf); #endif #ifdef ENABLE_COLOR_INTERP color_interp = color_attrib; #ifdef USE_INSTANCING color_interp *= instance_color; #endif #endif #ifdef ENABLE_UV_INTERP uv_interp = uv_attrib; #endif #ifdef ENABLE_UV2_INTERP uv2_interp = uv2_attrib; #endif #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = world_matrix * vertex; normal = normalize((world_matrix * vec4(normal, 0.0)).xyz); #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) tangent = normalize((world_matrix * vec4(tangent, 0.0)),xyz); binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz); #endif #endif #ifdef USE_SKELETON highp mat4 bone_transform = mat4(0.0); #ifdef USE_SKELETON_SOFTWARE // passing the transform as attributes bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0); bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0); bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0); bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0); #else // look up transform from the "pose texture" { for (int i = 0; i < 4; i++) { ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0); highp mat4 b = mat4(texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)), texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)), texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)), vec4(0.0, 0.0, 0.0, 1.0)); bone_transform += transpose(b) * bone_weights[i]; } } #endif world_matrix = bone_transform * world_matrix; #endif #ifdef USE_INSTANCING vec4 instance_custom = instance_custom_data; #else vec4 instance_custom = vec4(0.0); #endif mat4 modelview = camera_matrix * world_matrix; #define world_transform world_matrix { VERTEX_SHADER_CODE } vec4 outvec = vertex; // use local coordinates #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) vertex = modelview * vertex; normal = normalize((modelview * vec4(normal, 0.0)).xyz); #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) tangent = normalize((modelview * vec4(tangent, 0.0)).xyz); binormal = normalize((modelview * vec4(binormal, 0.0)).xyz); #endif #endif #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = camera_matrix * vertex; normal = normalize((camera_matrix * vec4(normal, 0.0)).xyz); #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) tangent = normalize((camera_matrix * vec4(tangent, 0.0)).xyz); binormal = normalize((camera_matrix * vec4(binormal, 0.0)).xyz); #endif #endif vertex_interp = vertex.xyz; normal_interp = normal; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) tangent_interp = tangent; binormal_interp = binormal; #endif #ifdef RENDER_DEPTH float z_ofs = light_bias; z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias; vertex_interp.z -= z_ofs; #endif gl_Position = projection_matrix * vec4(vertex_interp, 1.0); } [fragment] #extension GL_ARB_shader_texture_lod : require #ifdef USE_GLES_OVER_GL #define mediump #define highp #else precision mediump float; precision mediump int; #endif #include "stdlib.glsl" #define M_PI 3.14159265359 // // uniforms // uniform mat4 camera_matrix; uniform mat4 camera_inverse_matrix; uniform mat4 projection_matrix; uniform mat4 projection_inverse_matrix; uniform mat4 world_transform; uniform highp float time; #ifdef SCREEN_UV_USED uniform vec2 screen_pixel_size; #endif uniform highp sampler2D depth_buffer; //texunit:-5 #if defined(SCREEN_TEXTURE_USED) uniform highp sampler2D screen_texture; //texunit:-6 #endif #ifdef USE_RADIANCE_MAP #define RADIANCE_MAX_LOD 6.0 uniform samplerCube radiance_map; // texunit:-2 uniform mat4 radiance_inverse_xform; #endif uniform float bg_energy; uniform float ambient_sky_contribution; uniform vec4 ambient_color; uniform float ambient_energy; #ifdef LIGHT_PASS #define LIGHT_TYPE_DIRECTIONAL 0 #define LIGHT_TYPE_OMNI 1 #define LIGHT_TYPE_SPOT 2 // general for all lights uniform int light_type; uniform float light_energy; uniform vec4 light_color; uniform float light_specular; // directional uniform vec3 light_direction; // omni uniform vec3 light_position; uniform float light_range; uniform vec4 light_attenuation; // spot uniform float light_spot_attenuation; uniform float light_spot_range; uniform float light_spot_angle; // shadows uniform highp sampler2D light_shadow_atlas; //texunit:-4 uniform float light_has_shadow; uniform mat4 light_shadow_matrix; uniform vec4 light_clamp; // directional shadow uniform highp sampler2D light_directional_shadow; // texunit:-4 uniform vec4 light_split_offsets; uniform mat4 light_shadow_matrix1; uniform mat4 light_shadow_matrix2; uniform mat4 light_shadow_matrix3; uniform mat4 light_shadow_matrix4; #endif // // varyings // varying highp vec3 vertex_interp; varying vec3 normal_interp; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) varying vec3 tangent_interp; varying vec3 binormal_interp; #endif #ifdef ENABLE_COLOR_INTERP varying vec4 color_interp; #endif #ifdef ENABLE_UV_INTERP varying vec2 uv_interp; #endif #ifdef ENABLE_UV2_INTERP varying vec2 uv2_interp; #endif varying vec3 view_interp; vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) { float dielectric = (0.034 * 2.0) * specular; // energy conservation return mix(vec3(dielectric), albedo, metallic); // TODO: reference? } FRAGMENT_SHADER_GLOBALS #ifdef LIGHT_PASS void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light) { float NdotL = dot(N, L); float cNdotL = max(NdotL, 0.0); float NdotV = dot(N, V); float cNdotV = max(NdotV, 0.0); { // calculate diffuse reflection // TODO hardcode Oren Nayar for now float diffuse_brdf_NL; diffuse_brdf_NL = max(0.0,(NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); // diffuse_brdf_NL = cNdotL * (1.0 / M_PI); diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation; } { // calculate specular reflection vec3 R = normalize(-reflect(L,N)); float cRdotV = max(dot(R, V), 0.0); float blob_intensity = pow(cRdotV, (1.0 - roughness) * 256.0); specular_light += light_color * attenuation * blob_intensity * specular_blob_intensity; } } // shadows float sample_shadow(highp sampler2D shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) { // vec4 depth_value = texture2D(shadow, pos); // return depth_value.z; return texture2DProj(shadow, vec4(pos, depth, 1.0)).r; // return (depth_value.x + depth_value.y + depth_value.z + depth_value.w) / 4.0; } #endif void main() { highp vec3 vertex = vertex_interp; vec3 albedo = vec3(1.0); vec3 transmission = vec3(0.0); float metallic = 0.0; float specular = 0.5; vec3 emission = vec3(0.0); float roughness = 1.0; float rim = 0.0; float rim_tint = 0.0; float clearcoat = 0.0; float clearcoat_gloss = 0.0; float anisotropy = 0.0; vec2 anisotropy_flow = vec2(1.0, 0.0); float alpha = 1.0; float side = 1.0; #if defined(ENABLE_AO) float ao = 1.0; float ao_light_affect = 0.0; #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) vec3 binormal = normalize(binormal_interp) * side; vec3 tangent = normalize(tangent_interp) * side; #else vec3 binormal = vec3(0.0); vec3 tangent = vec3(0.0); #endif vec3 normal = normalize(normal_interp) * side; #if defined(ENABLE_NORMALMAP) vec3 normalmap = vec3(0.5); #endif float normaldepth = 1.0; #ifdef ALPHA_SCISSOR_USED float alpha_scissor = 0.5; #endif #ifdef SCREEN_UV_USED vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; #endif { FRAGMENT_SHADER_CODE } #if defined(ENABLE_NORMALMAP) normalmap.xy = normalmap.xy * 2.0 - 1.0; normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); // normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side; normal = normalmap; #endif normal = normalize(normal); vec3 N = normal; vec3 specular_light = vec3(0.0, 0.0, 0.0); vec3 diffuse_light = vec3(0.0, 0.0, 0.0); vec3 ambient_light = vec3(0.0, 0.0, 0.0); vec3 env_reflection_light = vec3(0.0, 0.0, 0.0); vec3 eye_position = -normalize(vertex_interp); #ifdef ALPHA_SCISSOR_USED if (alpha < alpha_scissor) { discard; } #endif // // Lighting // #ifdef LIGHT_PASS if (light_type == LIGHT_TYPE_OMNI) { vec3 light_vec = light_position - vertex; float light_length = length(light_vec); float normalized_distance = light_length / light_range; float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation.w); vec3 attenuation = vec3(omni_attenuation); if (light_has_shadow > 0.5) { highp vec3 splane = (light_shadow_matrix * vec4(vertex, 1.0)).xyz; float shadow_len = length(splane); splane = normalize(splane); vec4 clamp_rect = light_clamp; if (splane.z >= 0.0) { splane.z += 1.0; clamp_rect.y += clamp_rect.w; } else { splane.z = 1.0 - splane.z; } splane.xy /= splane.z; splane.xy = splane.xy * 0.5 + 0.5; splane.z = shadow_len / light_range; splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), splane.xy, splane.z, clamp_rect); if (shadow > splane.z) { } else { attenuation = vec3(0.0); } } light_compute(normal, normalize(light_vec), eye_position, binormal, tangent, light_color.xyz * light_energy, attenuation, albedo, transmission, specular * light_specular, roughness, metallic, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light); } else if (light_type == LIGHT_TYPE_DIRECTIONAL) { vec3 light_vec = -light_direction; vec3 attenuation = vec3(1.0, 1.0, 1.0); float depth_z = -vertex.z; if (light_has_shadow > 0.5) { #ifdef LIGHT_USE_PSSM4 if (depth_z < light_split_offsets.w) { #elif defined(LIGHT_USE_PSSM2) if (depth_z < light_split_offsets.y) { #else if (depth_z < light_split_offsets.x) { #endif vec3 pssm_coord; float pssm_fade = 0.0; #ifdef LIGHT_USE_PSSM_BLEND float pssm_blend; vec3 pssm_coord2; bool use_blend = true; #endif #ifdef LIGHT_USE_PSSM4 if (depth_z < light_split_offsets.y) { if (depth_z < light_split_offsets.x) { highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0)); pssm_coord = splane.xyz / splane.w; #ifdef LIGHT_USE_PSSM_BLEND splane = (light_shadow_matrix2 * vec4(vertex, 1.0)); pssm_coord2 = splane.xyz / splane.w; pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); #endif } else { highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0)); pssm_coord = splane.xyz / splane.w; #ifdef LIGHT_USE_PSSM_BLEND splane = (light_shadow_matrix3 * vec4(vertex, 1.0)); pssm_coord2 = splane.xyz / splane.w; pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); #endif } } else { if (depth_z < light_split_offsets.z) { highp vec4 splane = (light_shadow_matrix3 * vec4(vertex, 1.0)); pssm_coord = splane.xyz / splane.w; #if defined(LIGHT_USE_PSSM_BLEND) splane = (light_shadow_matrix4 * vec4(vertex, 1.0)); pssm_coord2 = splane.xyz / splane.w; pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z); #endif } else { highp vec4 splane = (light_shadow_matrix4 * vec4(vertex, 1.0)); pssm_coord = splane.xyz / splane.w; pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z); #if defined(LIGHT_USE_PSSM_BLEND) use_blend = false; #endif } } #endif // LIGHT_USE_PSSM4 #ifdef LIGHT_USE_PSSM2 if (depth_z < light_split_offsets.x) { highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0)); pssm_coord = splane.xyz / splane.w; #ifdef LIGHT_USE_PSSM_BLEND splane = (light_shadow_matrix2 * vec4(vertex, 1.0)); pssm_coord2 = splane.xyz / splane.w; pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); #endif } else { highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0)); pssm_coord = splane.xyz / splane.w; pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); #ifdef LIGHT_USE_PSSM_BLEND use_blend = false; #endif } #endif // LIGHT_USE_PSSM2 #if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) { highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0)); pssm_coord = splane.xyz / splane.w; } #endif float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord.xy, pssm_coord.z, light_clamp); #ifdef LIGHT_USE_PSSM_BLEND if (use_blend) { shadow = mix(shadow, sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend); } #endif attenuation *= shadow; } } light_compute(normal, normalize(light_vec), eye_position, binormal, tangent, light_color.xyz * light_energy, attenuation, albedo, transmission, specular * light_specular, roughness, metallic, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light); } else if (light_type == LIGHT_TYPE_SPOT) { vec3 light_att = vec3(1.0); if (light_has_shadow > 0.5) { highp vec4 splane = (light_shadow_matrix * vec4(vertex, 1.0)); splane.xyz /= splane.w; float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), splane.xy, splane.z, light_clamp); if (shadow > splane.z) { } else { light_att = vec3(0.0); } } vec3 light_rel_vec = light_position - vertex; float light_length = length(light_rel_vec); float normalized_distance = light_length / light_range; float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation.w); vec3 spot_dir = light_direction; float spot_cutoff = light_spot_angle; float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff); float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation); light_att *= vec3(spot_attenuation); light_compute(normal, normalize(light_rel_vec), eye_position, binormal, tangent, light_color.xyz * light_energy, light_att, albedo, transmission, specular * light_specular, roughness, metallic, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light); } gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha); #else #ifdef RENDER_DEPTH #else #ifdef USE_RADIANCE_MAP vec3 ref_vec = reflect(-eye_position, N); ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz); ref_vec.z *= -1.0; env_reflection_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy; { vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz); vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).xyz * bg_energy; ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution); } ambient_light *= ambient_energy; specular_light += env_reflection_light; ambient_light *= albedo; #if defined(ENABLE_AO) ambient_light *= ao; ao_light_affect = mix(1.0, ao, ao_light_affect); specular_light *= ao_light_affect; diffuse_light *= ao_light_affect; #endif diffuse_light *= 1.0 - metallic; ambient_light *= 1.0 - metallic; // environment BRDF approximation // TODO shadeless { const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); const vec4 c1 = vec4( 1.0, 0.0425, 1.04, -0.04); vec4 r = roughness * c0 + c1; float ndotv = clamp(dot(normal,eye_position),0.0,1.0); float a004 = min( r.x * r.x, exp2( -9.28 * ndotv ) ) * r.x + r.y; vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw; vec3 specular_color = metallic_to_specular_color(metallic, specular, albedo); specular_light *= AB.x * specular_color + AB.y; } gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha); // gl_FragColor = vec4(normal, 1.0); #else gl_FragColor = vec4(albedo, alpha); #endif #endif // RENDER_DEPTH #endif // lighting }