// SPDX-License-Identifier: Apache-2.0 // ---------------------------------------------------------------------------- // Copyright 2011-2023 Arm Limited // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy // of the License at: // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations // under the License. // ---------------------------------------------------------------------------- /** * @brief Functions for converting between symbolic and physical encodings. */ #include "astcenc_internal.h" #include /** * @brief Reverse bits in a byte. * * @param p The value to reverse. * * @return The reversed result. */ static inline int bitrev8(int p) { p = ((p & 0x0F) << 4) | ((p >> 4) & 0x0F); p = ((p & 0x33) << 2) | ((p >> 2) & 0x33); p = ((p & 0x55) << 1) | ((p >> 1) & 0x55); return p; } /** * @brief Read up to 8 bits at an arbitrary bit offset. * * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so may * span two separate bytes in memory. * * @param bitcount The number of bits to read. * @param bitoffset The bit offset to read from, between 0 and 7. * @param[in,out] ptr The data pointer to read from. * * @return The read value. */ static inline int read_bits( int bitcount, int bitoffset, const uint8_t* ptr ) { int mask = (1 << bitcount) - 1; ptr += bitoffset >> 3; bitoffset &= 7; int value = ptr[0] | (ptr[1] << 8); value >>= bitoffset; value &= mask; return value; } #if !defined(ASTCENC_DECOMPRESS_ONLY) /** * @brief Write up to 8 bits at an arbitrary bit offset. * * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so * may span two separate bytes in memory. * * @param value The value to write. * @param bitcount The number of bits to write, starting from LSB. * @param bitoffset The bit offset to store at, between 0 and 7. * @param[in,out] ptr The data pointer to write to. */ static inline void write_bits( int value, int bitcount, int bitoffset, uint8_t* ptr ) { int mask = (1 << bitcount) - 1; value &= mask; ptr += bitoffset >> 3; bitoffset &= 7; value <<= bitoffset; mask <<= bitoffset; mask = ~mask; ptr[0] &= mask; ptr[0] |= value; ptr[1] &= mask >> 8; ptr[1] |= value >> 8; } /* See header for documentation. */ void symbolic_to_physical( const block_size_descriptor& bsd, const symbolic_compressed_block& scb, uint8_t pcb[16] ) { assert(scb.block_type != SYM_BTYPE_ERROR); // Constant color block using UNORM16 colors if (scb.block_type == SYM_BTYPE_CONST_U16) { // There is currently no attempt to coalesce larger void-extents static const uint8_t cbytes[8] { 0xFC, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; for (unsigned int i = 0; i < 8; i++) { pcb[i] = cbytes[i]; } for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++) { pcb[2 * i + 8] = scb.constant_color[i] & 0xFF; pcb[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF; } return; } // Constant color block using FP16 colors if (scb.block_type == SYM_BTYPE_CONST_F16) { // There is currently no attempt to coalesce larger void-extents static const uint8_t cbytes[8] { 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; for (unsigned int i = 0; i < 8; i++) { pcb[i] = cbytes[i]; } for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++) { pcb[2 * i + 8] = scb.constant_color[i] & 0xFF; pcb[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF; } return; } unsigned int partition_count = scb.partition_count; // Compress the weights. // They are encoded as an ordinary integer-sequence, then bit-reversed uint8_t weightbuf[16] { 0 }; const auto& bm = bsd.get_block_mode(scb.block_mode); const auto& di = bsd.get_decimation_info(bm.decimation_mode); int weight_count = di.weight_count; quant_method weight_quant_method = bm.get_weight_quant_mode(); float weight_quant_levels = static_cast(get_quant_level(weight_quant_method)); int is_dual_plane = bm.is_dual_plane; const auto& qat = quant_and_xfer_tables[weight_quant_method]; int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count; int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method); uint8_t weights[64]; if (is_dual_plane) { for (int i = 0; i < weight_count; i++) { float uqw = static_cast(scb.weights[i]); float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); int qwi = static_cast(qw + 0.5f); weights[2 * i] = qat.scramble_map[qwi]; uqw = static_cast(scb.weights[i + WEIGHTS_PLANE2_OFFSET]); qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); qwi = static_cast(qw + 0.5f); weights[2 * i + 1] = qat.scramble_map[qwi]; } } else { for (int i = 0; i < weight_count; i++) { float uqw = static_cast(scb.weights[i]); float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); int qwi = static_cast(qw + 0.5f); weights[i] = qat.scramble_map[qwi]; } } encode_ise(weight_quant_method, real_weight_count, weights, weightbuf, 0); for (int i = 0; i < 16; i++) { pcb[i] = static_cast(bitrev8(weightbuf[15 - i])); } write_bits(scb.block_mode, 11, 0, pcb); write_bits(partition_count - 1, 2, 11, pcb); int below_weights_pos = 128 - bits_for_weights; // Encode partition index and color endpoint types for blocks with 2+ partitions if (partition_count > 1) { write_bits(scb.partition_index, 6, 13, pcb); write_bits(scb.partition_index >> 6, PARTITION_INDEX_BITS - 6, 19, pcb); if (scb.color_formats_matched) { write_bits(scb.color_formats[0] << 2, 6, 13 + PARTITION_INDEX_BITS, pcb); } else { // Check endpoint types for each partition to determine the lowest class present int low_class = 4; for (unsigned int i = 0; i < partition_count; i++) { int class_of_format = scb.color_formats[i] >> 2; low_class = astc::min(class_of_format, low_class); } if (low_class == 3) { low_class = 2; } int encoded_type = low_class + 1; int bitpos = 2; for (unsigned int i = 0; i < partition_count; i++) { int classbit_of_format = (scb.color_formats[i] >> 2) - low_class; encoded_type |= classbit_of_format << bitpos; bitpos++; } for (unsigned int i = 0; i < partition_count; i++) { int lowbits_of_format = scb.color_formats[i] & 3; encoded_type |= lowbits_of_format << bitpos; bitpos += 2; } int encoded_type_lowpart = encoded_type & 0x3F; int encoded_type_highpart = encoded_type >> 6; int encoded_type_highpart_size = (3 * partition_count) - 4; int encoded_type_highpart_pos = 128 - bits_for_weights - encoded_type_highpart_size; write_bits(encoded_type_lowpart, 6, 13 + PARTITION_INDEX_BITS, pcb); write_bits(encoded_type_highpart, encoded_type_highpart_size, encoded_type_highpart_pos, pcb); below_weights_pos -= encoded_type_highpart_size; } } else { write_bits(scb.color_formats[0], 4, 13, pcb); } // In dual-plane mode, encode the color component of the second plane of weights if (is_dual_plane) { write_bits(scb.plane2_component, 2, below_weights_pos - 2, pcb); } // Encode the color components uint8_t values_to_encode[32]; int valuecount_to_encode = 0; const uint8_t* pack_table = color_uquant_to_scrambled_pquant_tables[scb.quant_mode - QUANT_6]; for (unsigned int i = 0; i < scb.partition_count; i++) { int vals = 2 * (scb.color_formats[i] >> 2) + 2; assert(vals <= 8); for (int j = 0; j < vals; j++) { values_to_encode[j + valuecount_to_encode] = pack_table[scb.color_values[i][j]]; } valuecount_to_encode += vals; } encode_ise(scb.get_color_quant_mode(), valuecount_to_encode, values_to_encode, pcb, scb.partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS); } #endif /* See header for documentation. */ void physical_to_symbolic( const block_size_descriptor& bsd, const uint8_t pcb[16], symbolic_compressed_block& scb ) { uint8_t bswapped[16]; scb.block_type = SYM_BTYPE_NONCONST; // Extract header fields int block_mode = read_bits(11, 0, pcb); if ((block_mode & 0x1FF) == 0x1FC) { // Constant color block // Check what format the data has if (block_mode & 0x200) { scb.block_type = SYM_BTYPE_CONST_F16; } else { scb.block_type = SYM_BTYPE_CONST_U16; } scb.partition_count = 0; for (int i = 0; i < 4; i++) { scb.constant_color[i] = pcb[2 * i + 8] | (pcb[2 * i + 9] << 8); } // Additionally, check that the void-extent if (bsd.zdim == 1) { // 2D void-extent int rsvbits = read_bits(2, 10, pcb); if (rsvbits != 3) { scb.block_type = SYM_BTYPE_ERROR; return; } int vx_low_s = read_bits(8, 12, pcb) | (read_bits(5, 12 + 8, pcb) << 8); int vx_high_s = read_bits(8, 25, pcb) | (read_bits(5, 25 + 8, pcb) << 8); int vx_low_t = read_bits(8, 38, pcb) | (read_bits(5, 38 + 8, pcb) << 8); int vx_high_t = read_bits(8, 51, pcb) | (read_bits(5, 51 + 8, pcb) << 8); int all_ones = vx_low_s == 0x1FFF && vx_high_s == 0x1FFF && vx_low_t == 0x1FFF && vx_high_t == 0x1FFF; if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t) && !all_ones) { scb.block_type = SYM_BTYPE_ERROR; return; } } else { // 3D void-extent int vx_low_s = read_bits(9, 10, pcb); int vx_high_s = read_bits(9, 19, pcb); int vx_low_t = read_bits(9, 28, pcb); int vx_high_t = read_bits(9, 37, pcb); int vx_low_p = read_bits(9, 46, pcb); int vx_high_p = read_bits(9, 55, pcb); int all_ones = vx_low_s == 0x1FF && vx_high_s == 0x1FF && vx_low_t == 0x1FF && vx_high_t == 0x1FF && vx_low_p == 0x1FF && vx_high_p == 0x1FF; if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t || vx_low_p >= vx_high_p) && !all_ones) { scb.block_type = SYM_BTYPE_ERROR; return; } } return; } unsigned int packed_index = bsd.block_mode_packed_index[block_mode]; if (packed_index == BLOCK_BAD_BLOCK_MODE) { scb.block_type = SYM_BTYPE_ERROR; return; } const auto& bm = bsd.get_block_mode(block_mode); const auto& di = bsd.get_decimation_info(bm.decimation_mode); int weight_count = di.weight_count; promise(weight_count > 0); quant_method weight_quant_method = static_cast(bm.quant_mode); int is_dual_plane = bm.is_dual_plane; int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count; int partition_count = read_bits(2, 11, pcb) + 1; promise(partition_count > 0); scb.block_mode = static_cast(block_mode); scb.partition_count = static_cast(partition_count); for (int i = 0; i < 16; i++) { bswapped[i] = static_cast(bitrev8(pcb[15 - i])); } int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method); int below_weights_pos = 128 - bits_for_weights; uint8_t indices[64]; const auto& qat = quant_and_xfer_tables[weight_quant_method]; decode_ise(weight_quant_method, real_weight_count, bswapped, indices, 0); if (is_dual_plane) { for (int i = 0; i < weight_count; i++) { scb.weights[i] = qat.unscramble_and_unquant_map[indices[2 * i]]; scb.weights[i + WEIGHTS_PLANE2_OFFSET] = qat.unscramble_and_unquant_map[indices[2 * i + 1]]; } } else { for (int i = 0; i < weight_count; i++) { scb.weights[i] = qat.unscramble_and_unquant_map[indices[i]]; } } if (is_dual_plane && partition_count == 4) { scb.block_type = SYM_BTYPE_ERROR; return; } scb.color_formats_matched = 0; // Determine the format of each endpoint pair int color_formats[BLOCK_MAX_PARTITIONS]; int encoded_type_highpart_size = 0; if (partition_count == 1) { color_formats[0] = read_bits(4, 13, pcb); scb.partition_index = 0; } else { encoded_type_highpart_size = (3 * partition_count) - 4; below_weights_pos -= encoded_type_highpart_size; int encoded_type = read_bits(6, 13 + PARTITION_INDEX_BITS, pcb) | (read_bits(encoded_type_highpart_size, below_weights_pos, pcb) << 6); int baseclass = encoded_type & 0x3; if (baseclass == 0) { for (int i = 0; i < partition_count; i++) { color_formats[i] = (encoded_type >> 2) & 0xF; } below_weights_pos += encoded_type_highpart_size; scb.color_formats_matched = 1; encoded_type_highpart_size = 0; } else { int bitpos = 2; baseclass--; for (int i = 0; i < partition_count; i++) { color_formats[i] = (((encoded_type >> bitpos) & 1) + baseclass) << 2; bitpos++; } for (int i = 0; i < partition_count; i++) { color_formats[i] |= (encoded_type >> bitpos) & 3; bitpos += 2; } } scb.partition_index = static_cast(read_bits(6, 13, pcb) | (read_bits(PARTITION_INDEX_BITS - 6, 19, pcb) << 6)); } for (int i = 0; i < partition_count; i++) { scb.color_formats[i] = static_cast(color_formats[i]); } // Determine number of color endpoint integers int color_integer_count = 0; for (int i = 0; i < partition_count; i++) { int endpoint_class = color_formats[i] >> 2; color_integer_count += (endpoint_class + 1) * 2; } if (color_integer_count > 18) { scb.block_type = SYM_BTYPE_ERROR; return; } // Determine the color endpoint format to use static const int color_bits_arr[5] { -1, 115 - 4, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS }; int color_bits = color_bits_arr[partition_count] - bits_for_weights - encoded_type_highpart_size; if (is_dual_plane) { color_bits -= 2; } if (color_bits < 0) { color_bits = 0; } int color_quant_level = quant_mode_table[color_integer_count >> 1][color_bits]; if (color_quant_level < QUANT_6) { scb.block_type = SYM_BTYPE_ERROR; return; } // Unpack the integer color values and assign to endpoints scb.quant_mode = static_cast(color_quant_level); uint8_t values_to_decode[32]; decode_ise(static_cast(color_quant_level), color_integer_count, pcb, values_to_decode, (partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS)); int valuecount_to_decode = 0; const uint8_t* unpack_table = color_scrambled_pquant_to_uquant_tables[scb.quant_mode - QUANT_6]; for (int i = 0; i < partition_count; i++) { int vals = 2 * (color_formats[i] >> 2) + 2; for (int j = 0; j < vals; j++) { scb.color_values[i][j] = unpack_table[values_to_decode[j + valuecount_to_decode]]; } valuecount_to_decode += vals; } // Fetch component for second-plane in the case of dual plane of weights. scb.plane2_component = -1; if (is_dual_plane) { scb.plane2_component = static_cast(read_bits(2, below_weights_pos - 2, pcb)); } }