/*************************************************************************/ /* rasterizer_scene_rd.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef RASTERIZER_SCENE_RD_H #define RASTERIZER_SCENE_RD_H #include "core/local_vector.h" #include "core/rid_owner.h" #include "servers/rendering/rasterizer.h" #include "servers/rendering/rasterizer_rd/light_cluster_builder.h" #include "servers/rendering/rasterizer_rd/rasterizer_storage_rd.h" #include "servers/rendering/rasterizer_rd/shaders/gi.glsl.gen.h" #include "servers/rendering/rasterizer_rd/shaders/giprobe.glsl.gen.h" #include "servers/rendering/rasterizer_rd/shaders/giprobe_debug.glsl.gen.h" #include "servers/rendering/rasterizer_rd/shaders/sdfgi_debug.glsl.gen.h" #include "servers/rendering/rasterizer_rd/shaders/sdfgi_debug_probes.glsl.gen.h" #include "servers/rendering/rasterizer_rd/shaders/sdfgi_direct_light.glsl.gen.h" #include "servers/rendering/rasterizer_rd/shaders/sdfgi_integrate.glsl.gen.h" #include "servers/rendering/rasterizer_rd/shaders/sdfgi_preprocess.glsl.gen.h" #include "servers/rendering/rasterizer_rd/shaders/sky.glsl.gen.h" #include "servers/rendering/rasterizer_rd/shaders/volumetric_fog.glsl.gen.h" #include "servers/rendering/rendering_device.h" class RasterizerSceneRD : public RasterizerScene { protected: double time; // Skys need less info from Directional Lights than the normal shaders struct SkyDirectionalLightData { float direction[3]; float energy; float color[3]; float size; uint32_t enabled; uint32_t pad[3]; }; struct SkySceneState { struct UBO { uint32_t volumetric_fog_enabled; float volumetric_fog_inv_length; float volumetric_fog_detail_spread; float fog_aerial_perspective; float fog_light_color[3]; float fog_sun_scatter; uint32_t fog_enabled; float fog_density; float z_far; uint32_t directional_light_count; }; UBO ubo; SkyDirectionalLightData *directional_lights; SkyDirectionalLightData *last_frame_directional_lights; uint32_t max_directional_lights; uint32_t last_frame_directional_light_count; RID directional_light_buffer; RID uniform_set; RID uniform_buffer; RID fog_uniform_set; RID default_fog_uniform_set; RID fog_shader; RID fog_material; RID fog_only_texture_uniform_set; } sky_scene_state; struct RenderBufferData { virtual void configure(RID p_color_buffer, RID p_depth_buffer, int p_width, int p_height, RS::ViewportMSAA p_msaa) = 0; virtual ~RenderBufferData() {} }; virtual RenderBufferData *_create_render_buffer_data() = 0; void _setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count); void _setup_decals(const RID *p_decal_instances, int p_decal_count, const Transform &p_camera_inverse_xform); void _setup_reflections(RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, const Transform &p_camera_inverse_transform, RID p_environment); void _setup_giprobes(RID p_render_buffers, const Transform &p_transform, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, uint32_t &r_gi_probes_used); virtual void _render_scene(RID p_render_buffer, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, int p_directional_light_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, const Color &p_default_color) = 0; virtual void _render_shadow(RID p_framebuffer, InstanceBase **p_cull_result, int p_cull_count, const CameraMatrix &p_projection, const Transform &p_transform, float p_zfar, float p_bias, float p_normal_bias, bool p_use_dp, bool use_dp_flip, bool p_use_pancake) = 0; virtual void _render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) = 0; virtual void _render_uv2(InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) = 0; virtual void _render_sdfgi(RID p_render_buffers, const Vector3i &p_from, const Vector3i &p_size, const AABB &p_bounds, InstanceBase **p_cull_result, int p_cull_count, const RID &p_albedo_texture, const RID &p_emission_texture, const RID &p_emission_aniso_texture, const RID &p_geom_facing_texture) = 0; virtual void _render_particle_collider_heightfield(RID p_fb, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, InstanceBase **p_cull_result, int p_cull_count) = 0; virtual void _debug_giprobe(RID p_gi_probe, RenderingDevice::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha); void _debug_sdfgi_probes(RID p_render_buffers, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform); RenderBufferData *render_buffers_get_data(RID p_render_buffers); virtual void _base_uniforms_changed() = 0; virtual void _render_buffers_uniform_set_changed(RID p_render_buffers) = 0; virtual RID _render_buffers_get_normal_texture(RID p_render_buffers) = 0; virtual RID _render_buffers_get_ambient_texture(RID p_render_buffers) = 0; virtual RID _render_buffers_get_reflection_texture(RID p_render_buffers) = 0; void _process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection); void _process_ssr(RID p_render_buffers, RID p_dest_framebuffer, RID p_normal_buffer, RID p_specular_buffer, RID p_metallic, const Color &p_metallic_mask, RID p_environment, const CameraMatrix &p_projection, bool p_use_additive); void _process_sss(RID p_render_buffers, const CameraMatrix &p_camera); void _setup_sky(RID p_environment, RID p_render_buffers, const CameraMatrix &p_projection, const Transform &p_transform, const Size2i p_screen_size); void _update_sky(RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform); void _draw_sky(bool p_can_continue_color, bool p_can_continue_depth, RID p_fb, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform); void _process_gi(RID p_render_buffers, RID p_normal_roughness_buffer, RID p_ambient_buffer, RID p_reflection_buffer, RID p_gi_probe_buffer, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count); private: RS::ViewportDebugDraw debug_draw = RS::VIEWPORT_DEBUG_DRAW_DISABLED; double time_step = 0; static RasterizerSceneRD *singleton; int roughness_layers; RasterizerStorageRD *storage; struct ReflectionData { struct Layer { struct Mipmap { RID framebuffers[6]; RID views[6]; Size2i size; }; Vector mipmaps; //per-face view Vector views; // per-cubemap view }; struct DownsampleLayer { struct Mipmap { RID view; Size2i size; }; Vector mipmaps; }; RID radiance_base_cubemap; //cubemap for first layer, first cubemap RID downsampled_radiance_cubemap; DownsampleLayer downsampled_layer; RID coefficient_buffer; bool dirty = true; Vector layers; }; void _clear_reflection_data(ReflectionData &rd); void _update_reflection_data(ReflectionData &rd, int p_size, int p_mipmaps, bool p_use_array, RID p_base_cube, int p_base_layer, bool p_low_quality); void _create_reflection_fast_filter(ReflectionData &rd, bool p_use_arrays); void _create_reflection_importance_sample(ReflectionData &rd, bool p_use_arrays, int p_cube_side, int p_base_layer); void _update_reflection_mipmaps(ReflectionData &rd, int p_start, int p_end); /* Sky shader */ enum SkyVersion { SKY_VERSION_BACKGROUND, SKY_VERSION_HALF_RES, SKY_VERSION_QUARTER_RES, SKY_VERSION_CUBEMAP, SKY_VERSION_CUBEMAP_HALF_RES, SKY_VERSION_CUBEMAP_QUARTER_RES, SKY_VERSION_MAX }; struct SkyShader { SkyShaderRD shader; ShaderCompilerRD compiler; RID default_shader; RID default_material; RID default_shader_rd; } sky_shader; struct SkyShaderData : public RasterizerStorageRD::ShaderData { bool valid; RID version; RenderPipelineVertexFormatCacheRD pipelines[SKY_VERSION_MAX]; Map uniforms; Vector texture_uniforms; Vector ubo_offsets; uint32_t ubo_size; String path; String code; Map default_texture_params; bool uses_time; bool uses_position; bool uses_half_res; bool uses_quarter_res; bool uses_light; virtual void set_code(const String &p_Code); virtual void set_default_texture_param(const StringName &p_name, RID p_texture); virtual void get_param_list(List *p_param_list) const; virtual void get_instance_param_list(List *p_param_list) const; virtual bool is_param_texture(const StringName &p_param) const; virtual bool is_animated() const; virtual bool casts_shadows() const; virtual Variant get_default_parameter(const StringName &p_parameter) const; SkyShaderData(); virtual ~SkyShaderData(); }; RasterizerStorageRD::ShaderData *_create_sky_shader_func(); static RasterizerStorageRD::ShaderData *_create_sky_shader_funcs() { return static_cast(singleton)->_create_sky_shader_func(); }; struct SkyMaterialData : public RasterizerStorageRD::MaterialData { uint64_t last_frame; SkyShaderData *shader_data; RID uniform_buffer; RID uniform_set; Vector texture_cache; Vector ubo_data; bool uniform_set_updated; virtual void set_render_priority(int p_priority) {} virtual void set_next_pass(RID p_pass) {} virtual void update_parameters(const Map &p_parameters, bool p_uniform_dirty, bool p_textures_dirty); virtual ~SkyMaterialData(); }; RasterizerStorageRD::MaterialData *_create_sky_material_func(SkyShaderData *p_shader); static RasterizerStorageRD::MaterialData *_create_sky_material_funcs(RasterizerStorageRD::ShaderData *p_shader) { return static_cast(singleton)->_create_sky_material_func(static_cast(p_shader)); }; enum SkyTextureSetVersion { SKY_TEXTURE_SET_BACKGROUND, SKY_TEXTURE_SET_HALF_RES, SKY_TEXTURE_SET_QUARTER_RES, SKY_TEXTURE_SET_CUBEMAP, SKY_TEXTURE_SET_CUBEMAP_HALF_RES, SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES, SKY_TEXTURE_SET_MAX }; enum SkySet { SKY_SET_UNIFORMS, SKY_SET_MATERIAL, SKY_SET_TEXTURES, SKY_SET_FOG, SKY_SET_MAX }; /* SKY */ struct Sky { RID radiance; RID half_res_pass; RID half_res_framebuffer; RID quarter_res_pass; RID quarter_res_framebuffer; Size2i screen_size; RID texture_uniform_sets[SKY_TEXTURE_SET_MAX]; RID uniform_set; RID material; RID uniform_buffer; int radiance_size = 256; RS::SkyMode mode = RS::SKY_MODE_AUTOMATIC; ReflectionData reflection; bool dirty = false; int processing_layer = 0; Sky *dirty_list = nullptr; //State to track when radiance cubemap needs updating SkyMaterialData *prev_material; Vector3 prev_position; float prev_time; RID sdfgi_integrate_sky_uniform_set; }; Sky *dirty_sky_list = nullptr; void _sky_invalidate(Sky *p_sky); void _update_dirty_skys(); RID _get_sky_textures(Sky *p_sky, SkyTextureSetVersion p_version); uint32_t sky_ggx_samples_quality; bool sky_use_cubemap_array; mutable RID_Owner sky_owner; /* REFLECTION ATLAS */ struct ReflectionAtlas { int count = 0; int size = 0; RID reflection; RID depth_buffer; RID depth_fb; struct Reflection { RID owner; ReflectionData data; RID fbs[6]; }; Vector reflections; }; RID_Owner reflection_atlas_owner; /* REFLECTION PROBE INSTANCE */ struct ReflectionProbeInstance { RID probe; int atlas_index = -1; RID atlas; bool dirty = true; bool rendering = false; int processing_layer = 1; int processing_side = 0; uint32_t render_step = 0; uint64_t last_pass = 0; uint32_t render_index = 0; Transform transform; }; mutable RID_Owner reflection_probe_instance_owner; /* DECAL INSTANCE */ struct DecalInstance { RID decal; Transform transform; }; mutable RID_Owner decal_instance_owner; /* GIPROBE INSTANCE */ struct GIProbeLight { uint32_t type; float energy; float radius; float attenuation; float color[3]; float spot_angle_radians; float position[3]; float spot_attenuation; float direction[3]; uint32_t has_shadow; }; struct GIProbePushConstant { int32_t limits[3]; uint32_t stack_size; float emission_scale; float propagation; float dynamic_range; uint32_t light_count; uint32_t cell_offset; uint32_t cell_count; float aniso_strength; uint32_t pad; }; struct GIProbeDynamicPushConstant { int32_t limits[3]; uint32_t light_count; int32_t x_dir[3]; float z_base; int32_t y_dir[3]; float z_sign; int32_t z_dir[3]; float pos_multiplier; uint32_t rect_pos[2]; uint32_t rect_size[2]; uint32_t prev_rect_ofs[2]; uint32_t prev_rect_size[2]; uint32_t flip_x; uint32_t flip_y; float dynamic_range; uint32_t on_mipmap; float propagation; float pad[3]; }; struct GIProbeInstance { RID probe; RID texture; RID write_buffer; struct Mipmap { RID texture; RID uniform_set; RID second_bounce_uniform_set; RID write_uniform_set; uint32_t level; uint32_t cell_offset; uint32_t cell_count; }; Vector mipmaps; struct DynamicMap { RID texture; //color normally, or emission on first pass RID fb_depth; //actual depth buffer for the first pass, float depth for later passes RID depth; //actual depth buffer for the first pass, float depth for later passes RID normal; //normal buffer for the first pass RID albedo; //emission buffer for the first pass RID orm; //orm buffer for the first pass RID fb; //used for rendering, only valid on first map RID uniform_set; uint32_t size; int mipmap; // mipmap to write to, -1 if no mipmap assigned }; Vector dynamic_maps; int slot = -1; uint32_t last_probe_version = 0; uint32_t last_probe_data_version = 0; //uint64_t last_pass = 0; uint32_t render_index = 0; bool has_dynamic_object_data = false; Transform transform; }; GIProbeLight *gi_probe_lights; uint32_t gi_probe_max_lights; RID gi_probe_lights_uniform; enum { GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT, GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE, GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP, GI_PROBE_SHADER_VERSION_WRITE_TEXTURE, GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING, GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE, GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT, GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT, GI_PROBE_SHADER_VERSION_MAX }; GiprobeShaderRD giprobe_shader; RID giprobe_lighting_shader_version; RID giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_MAX]; RID giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_MAX]; mutable RID_Owner gi_probe_instance_owner; RS::GIProbeQuality gi_probe_quality = RS::GI_PROBE_QUALITY_HIGH; enum { GI_PROBE_DEBUG_COLOR, GI_PROBE_DEBUG_LIGHT, GI_PROBE_DEBUG_EMISSION, GI_PROBE_DEBUG_LIGHT_FULL, GI_PROBE_DEBUG_MAX }; struct GIProbeDebugPushConstant { float projection[16]; uint32_t cell_offset; float dynamic_range; float alpha; uint32_t level; int32_t bounds[3]; uint32_t pad; }; GiprobeDebugShaderRD giprobe_debug_shader; RID giprobe_debug_shader_version; RID giprobe_debug_shader_version_shaders[GI_PROBE_DEBUG_MAX]; RenderPipelineVertexFormatCacheRD giprobe_debug_shader_version_pipelines[GI_PROBE_DEBUG_MAX]; RID giprobe_debug_uniform_set; /* SHADOW ATLAS */ struct ShadowShrinkStage { RID texture; RID filter_texture; uint32_t size; }; struct ShadowAtlas { enum { QUADRANT_SHIFT = 27, SHADOW_INDEX_MASK = (1 << QUADRANT_SHIFT) - 1, SHADOW_INVALID = 0xFFFFFFFF }; struct Quadrant { uint32_t subdivision; struct Shadow { RID owner; uint64_t version; uint64_t fog_version; // used for fog uint64_t alloc_tick; Shadow() { version = 0; fog_version = 0; alloc_tick = 0; } }; Vector shadows; Quadrant() { subdivision = 0; //not in use } } quadrants[4]; int size_order[4] = { 0, 1, 2, 3 }; uint32_t smallest_subdiv = 0; int size = 0; RID depth; RID fb; //for copying Map shadow_owners; Vector shrink_stages; }; RID_Owner shadow_atlas_owner; bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow); RS::ShadowQuality shadows_quality = RS::SHADOW_QUALITY_MAX; //So it always updates when first set RS::ShadowQuality directional_shadow_quality = RS::SHADOW_QUALITY_MAX; float shadows_quality_radius = 1.0; float directional_shadow_quality_radius = 1.0; float *directional_penumbra_shadow_kernel; float *directional_soft_shadow_kernel; float *penumbra_shadow_kernel; float *soft_shadow_kernel; int directional_penumbra_shadow_samples = 0; int directional_soft_shadow_samples = 0; int penumbra_shadow_samples = 0; int soft_shadow_samples = 0; /* DIRECTIONAL SHADOW */ struct DirectionalShadow { RID depth; int light_count = 0; int size = 0; int current_light = 0; Vector shrink_stages; } directional_shadow; void _allocate_shadow_shrink_stages(RID p_base, int p_base_size, Vector &shrink_stages, uint32_t p_target_size); void _clear_shadow_shrink_stages(Vector &shrink_stages); /* SHADOW CUBEMAPS */ struct ShadowCubemap { RID cubemap; RID side_fb[6]; }; Map shadow_cubemaps; ShadowCubemap *_get_shadow_cubemap(int p_size); struct ShadowMap { RID depth; RID fb; }; Map shadow_maps; ShadowMap *_get_shadow_map(const Size2i &p_size); void _create_shadow_cubemaps(); /* LIGHT INSTANCE */ struct LightInstance { struct ShadowTransform { CameraMatrix camera; Transform transform; float farplane; float split; float bias_scale; float shadow_texel_size; float range_begin; Rect2 atlas_rect; Vector2 uv_scale; }; RS::LightType light_type = RS::LIGHT_DIRECTIONAL; ShadowTransform shadow_transform[4]; AABB aabb; RID self; RID light; Transform transform; Vector3 light_vector; Vector3 spot_vector; float linear_att = 0.0; uint64_t shadow_pass = 0; uint64_t last_scene_pass = 0; uint64_t last_scene_shadow_pass = 0; uint64_t last_pass = 0; uint32_t light_index = 0; uint32_t light_directional_index = 0; uint32_t current_shadow_atlas_key = 0; Vector2 dp; Rect2 directional_rect; Set shadow_atlases; //shadow atlases where this light is registered LightInstance() {} }; mutable RID_Owner light_instance_owner; /* ENVIRONMENT */ struct Environment { // BG RS::EnvironmentBG background = RS::ENV_BG_CLEAR_COLOR; RID sky; float sky_custom_fov = 0.0; Basis sky_orientation; Color bg_color; float bg_energy = 1.0; int canvas_max_layer = 0; RS::EnvironmentAmbientSource ambient_source = RS::ENV_AMBIENT_SOURCE_BG; Color ambient_light; float ambient_light_energy = 1.0; float ambient_sky_contribution = 1.0; RS::EnvironmentReflectionSource reflection_source = RS::ENV_REFLECTION_SOURCE_BG; Color ao_color; /// Tonemap RS::EnvironmentToneMapper tone_mapper; float exposure = 1.0; float white = 1.0; bool auto_exposure = false; float min_luminance = 0.2; float max_luminance = 8.0; float auto_exp_speed = 0.2; float auto_exp_scale = 0.5; uint64_t auto_exposure_version = 0; // Fog bool fog_enabled = false; Color fog_light_color = Color(0.5, 0.6, 0.7); float fog_light_energy = 1.0; float fog_sun_scatter = 0.0; float fog_density = 0.001; float fog_height = 0.0; float fog_height_density = 0.0; //can be negative to invert effect float fog_aerial_perspective = 0.0; /// Volumetric Fog /// bool volumetric_fog_enabled = false; float volumetric_fog_density = 0.01; Color volumetric_fog_light = Color(0, 0, 0); float volumetric_fog_light_energy = 0.0; float volumetric_fog_length = 64.0; float volumetric_fog_detail_spread = 2.0; RS::EnvVolumetricFogShadowFilter volumetric_fog_shadow_filter = RS::ENV_VOLUMETRIC_FOG_SHADOW_FILTER_LOW; float volumetric_fog_gi_inject = 0.0; /// Glow bool glow_enabled = false; Vector glow_levels; float glow_intensity = 0.8; float glow_strength = 1.0; float glow_bloom = 0.0; float glow_mix = 0.01; RS::EnvironmentGlowBlendMode glow_blend_mode = RS::ENV_GLOW_BLEND_MODE_SOFTLIGHT; float glow_hdr_bleed_threshold = 1.0; float glow_hdr_luminance_cap = 12.0; float glow_hdr_bleed_scale = 2.0; /// SSAO bool ssao_enabled = false; float ssao_rejection_radius = 2.5; float ssao_intensity = 1.0; int ssao_levels = 3; float ssao_direct_light_affect = 0.0; float ssao_ao_channel_affect = 0.0; /// SSR /// bool ssr_enabled = false; int ssr_max_steps = 64; float ssr_fade_in = 0.15; float ssr_fade_out = 2.0; float ssr_depth_tolerance = 0.2; /// SDFGI bool sdfgi_enabled = false; RS::EnvironmentSDFGICascades sdfgi_cascades; float sdfgi_min_cell_size = 0.2; bool sdfgi_use_occlusion = false; bool sdfgi_use_multibounce = false; bool sdfgi_read_sky_light = false; float sdfgi_energy = 1.0; float sdfgi_normal_bias = 1.1; float sdfgi_probe_bias = 1.1; RS::EnvironmentSDFGIYScale sdfgi_y_scale = RS::ENV_SDFGI_Y_SCALE_DISABLED; }; RS::EnvironmentSSAOQuality ssao_quality = RS::ENV_SSAO_QUALITY_MEDIUM; bool ssao_full_samples = false; float ssao_noise_tolerance = -3.0; float ssao_blur_tolerance = -5.0; float ssao_upsample_tolerance = -7.0; bool glow_bicubic_upscale = false; bool glow_high_quality = false; RS::EnvironmentSSRRoughnessQuality ssr_roughness_quality = RS::ENV_SSR_ROUGNESS_QUALITY_LOW; static uint64_t auto_exposure_counter; mutable RID_Owner environment_owner; /* CAMERA EFFECTS */ struct CameraEffects { bool dof_blur_far_enabled = false; float dof_blur_far_distance = 10; float dof_blur_far_transition = 5; bool dof_blur_near_enabled = false; float dof_blur_near_distance = 2; float dof_blur_near_transition = 1; float dof_blur_amount = 0.1; bool override_exposure_enabled = false; float override_exposure = 1; }; RS::DOFBlurQuality dof_blur_quality = RS::DOF_BLUR_QUALITY_MEDIUM; RS::DOFBokehShape dof_blur_bokeh_shape = RS::DOF_BOKEH_HEXAGON; bool dof_blur_use_jitter = false; RS::SubSurfaceScatteringQuality sss_quality = RS::SUB_SURFACE_SCATTERING_QUALITY_MEDIUM; float sss_scale = 0.05; float sss_depth_scale = 0.01; mutable RID_Owner camera_effects_owner; /* RENDER BUFFERS */ struct SDFGI; struct VolumetricFog; struct RenderBuffers { enum { MAX_GIPROBES = 8 }; RenderBufferData *data = nullptr; int width = 0, height = 0; RS::ViewportMSAA msaa = RS::VIEWPORT_MSAA_DISABLED; RS::ViewportScreenSpaceAA screen_space_aa = RS::VIEWPORT_SCREEN_SPACE_AA_DISABLED; RID render_target; uint64_t auto_exposure_version = 1; RID texture; //main texture for rendering to, must be filled after done rendering RID depth_texture; //main depth texture RID gi_uniform_set; SDFGI *sdfgi = nullptr; VolumetricFog *volumetric_fog = nullptr; //built-in textures used for ping pong image processing and blurring struct Blur { RID texture; struct Mipmap { RID texture; int width; int height; }; Vector mipmaps; }; Blur blur[2]; //the second one starts from the first mipmap struct Luminance { Vector reduce; RID current; } luminance; struct SSAO { Vector depth_slices; Vector depth_tiled_slices; Vector filtered_ao_slices; Vector ao_slices; Vector high_quality_ao_slices; RID linear_depth; RID ao_full; } ssao; struct SSR { RID normal_scaled; RID depth_scaled; RID blur_radius[2]; } ssr; RID giprobe_textures[MAX_GIPROBES]; RID giprobe_buffer; }; RID default_giprobe_buffer; /* SDFGI */ struct SDFGI { enum { MAX_CASCADES = 8, CASCADE_SIZE = 128, PROBE_DIVISOR = 16, ANISOTROPY_SIZE = 6, MAX_DYNAMIC_LIGHTS = 128, MAX_STATIC_LIGHTS = 1024, LIGHTPROBE_OCT_SIZE = 6, SH_SIZE = 16 }; struct Cascade { struct UBO { float offset[3]; float to_cell; int32_t probe_offset[3]; uint32_t pad; }; //cascade blocks are full-size for volume (128^3), half size for albedo/emission RID sdf_tex; RID light_tex; RID light_aniso_0_tex; RID light_aniso_1_tex; RID light_data; RID light_aniso_0_data; RID light_aniso_1_data; struct SolidCell { // this struct is unused, but remains as reference for size uint32_t position; uint32_t albedo; uint32_t static_light; uint32_t static_light_aniso; }; RID solid_cell_dispatch_buffer; //buffer for indirect compute dispatch RID solid_cell_buffer; RID lightprobe_history_tex; RID lightprobe_average_tex; float cell_size; Vector3i position; static const Vector3i DIRTY_ALL; Vector3i dirty_regions; //(0,0,0 is not dirty, negative is refresh from the end, DIRTY_ALL is refresh all. RID sdf_store_uniform_set; RID sdf_direct_light_uniform_set; RID scroll_uniform_set; RID scroll_occlusion_uniform_set; RID integrate_uniform_set; RID lights_buffer; }; //used for rendering (voxelization) RID render_albedo; RID render_emission; RID render_emission_aniso; RID render_occlusion[8]; RID render_geom_facing; RID render_sdf[2]; RID render_sdf_half[2]; //used for ping pong processing in cascades RID sdf_initialize_uniform_set; RID sdf_initialize_half_uniform_set; RID jump_flood_uniform_set[2]; RID jump_flood_half_uniform_set[2]; RID sdf_upscale_uniform_set; int upscale_jfa_uniform_set_index; RID occlusion_uniform_set; uint32_t cascade_size = 128; LocalVector cascades; RID lightprobe_texture; RID lightprobe_data; RID occlusion_texture; RID occlusion_data; RID ambient_texture; //integrates with volumetric fog RID lightprobe_history_scroll; //used for scrolling lightprobes RID lightprobe_average_scroll; //used for scrolling lightprobes uint32_t history_size = 0; float solid_cell_ratio = 0; uint32_t solid_cell_count = 0; RS::EnvironmentSDFGICascades cascade_mode; float min_cell_size = 0; uint32_t probe_axis_count = 0; //amount of probes per axis, this is an odd number because it encloses endpoints RID debug_uniform_set; RID debug_probes_uniform_set; RID cascades_ubo; bool uses_occlusion = false; bool uses_multibounce = false; bool reads_sky = false; float energy = 1.0; float normal_bias = 1.1; float probe_bias = 1.1; RS::EnvironmentSDFGIYScale y_scale_mode = RS::ENV_SDFGI_Y_SCALE_DISABLED; float y_mult = 1.0; uint32_t render_pass = 0; }; RS::EnvironmentSDFGIRayCount sdfgi_ray_count = RS::ENV_SDFGI_RAY_COUNT_16; RS::EnvironmentSDFGIFramesToConverge sdfgi_frames_to_converge = RS::ENV_SDFGI_CONVERGE_IN_10_FRAMES; float sdfgi_solid_cell_ratio = 0.25; Vector3 sdfgi_debug_probe_pos; Vector3 sdfgi_debug_probe_dir; bool sdfgi_debug_probe_enabled = false; Vector3i sdfgi_debug_probe_index; struct SDGIShader { enum SDFGIPreprocessShaderVersion { PRE_PROCESS_SCROLL, PRE_PROCESS_SCROLL_OCCLUSION, PRE_PROCESS_JUMP_FLOOD_INITIALIZE, PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF, PRE_PROCESS_JUMP_FLOOD, PRE_PROCESS_JUMP_FLOOD_OPTIMIZED, PRE_PROCESS_JUMP_FLOOD_UPSCALE, PRE_PROCESS_OCCLUSION, PRE_PROCESS_STORE, PRE_PROCESS_MAX }; struct PreprocessPushConstant { int32_t scroll[3]; int32_t grid_size; int32_t probe_offset[3]; int32_t step_size; int32_t half_size; uint32_t occlusion_index; int32_t cascade; uint32_t pad; }; SdfgiPreprocessShaderRD preprocess; RID preprocess_shader; RID preprocess_pipeline[PRE_PROCESS_MAX]; struct DebugPushConstant { float grid_size[3]; uint32_t max_cascades; int32_t screen_size[2]; uint32_t use_occlusion; float y_mult; float cam_extent[3]; uint32_t probe_axis_size; float cam_transform[16]; }; SdfgiDebugShaderRD debug; RID debug_shader; RID debug_shader_version; RID debug_pipeline; enum ProbeDebugMode { PROBE_DEBUG_PROBES, PROBE_DEBUG_VISIBILITY, PROBE_DEBUG_MAX }; struct DebugProbesPushConstant { float projection[16]; uint32_t band_power; uint32_t sections_in_band; uint32_t band_mask; float section_arc; float grid_size[3]; uint32_t cascade; uint32_t pad; float y_mult; int32_t probe_debug_index; int32_t probe_axis_size; }; SdfgiDebugProbesShaderRD debug_probes; RID debug_probes_shader; RID debug_probes_shader_version; RenderPipelineVertexFormatCacheRD debug_probes_pipeline[PROBE_DEBUG_MAX]; struct Light { float color[3]; float energy; float direction[3]; uint32_t has_shadow; float position[3]; float attenuation; uint32_t type; float spot_angle; float spot_attenuation; float radius; float shadow_color[4]; }; struct DirectLightPushConstant { float grid_size[3]; uint32_t max_cascades; uint32_t cascade; uint32_t light_count; uint32_t process_offset; uint32_t process_increment; int32_t probe_axis_size; uint32_t multibounce; float y_mult; uint32_t pad; }; enum { DIRECT_LIGHT_MODE_STATIC, DIRECT_LIGHT_MODE_DYNAMIC, DIRECT_LIGHT_MODE_MAX }; SdfgiDirectLightShaderRD direct_light; RID direct_light_shader; RID direct_light_pipeline[DIRECT_LIGHT_MODE_MAX]; enum { INTEGRATE_MODE_PROCESS, INTEGRATE_MODE_STORE, INTEGRATE_MODE_SCROLL, INTEGRATE_MODE_SCROLL_STORE, INTEGRATE_MODE_MAX }; struct IntegratePushConstant { enum { SKY_MODE_DISABLED, SKY_MODE_COLOR, SKY_MODE_SKY, }; float grid_size[3]; uint32_t max_cascades; uint32_t probe_axis_size; uint32_t cascade; uint32_t history_index; uint32_t history_size; uint32_t ray_count; float ray_bias; int32_t image_size[2]; int32_t world_offset[3]; uint32_t sky_mode; int32_t scroll[3]; float sky_energy; float sky_color[3]; float y_mult; uint32_t store_ambient_texture; uint32_t pad[3]; }; SdfgiIntegrateShaderRD integrate; RID integrate_shader; RID integrate_pipeline[INTEGRATE_MODE_MAX]; RID integrate_default_sky_uniform_set; } sdfgi_shader; void _sdfgi_erase(RenderBuffers *rb); int _sdfgi_get_pending_region_data(RID p_render_buffers, int p_region, Vector3i &r_local_offset, Vector3i &r_local_size, AABB &r_bounds) const; void _sdfgi_update_cascades(RID p_render_buffers); /* GI */ struct GI { struct SDFGIData { float grid_size[3]; uint32_t max_cascades; uint32_t use_occlusion; int32_t probe_axis_size; float probe_to_uvw; float normal_bias; float lightprobe_tex_pixel_size[3]; float energy; float lightprobe_uv_offset[3]; float y_mult; float occlusion_clamp[3]; uint32_t pad3; float occlusion_renormalize[3]; uint32_t pad4; float cascade_probe_size[3]; uint32_t pad5; struct ProbeCascadeData { float position[3]; //offset of (0,0,0) in world coordinates float to_probe; // 1/bounds * grid_size int32_t probe_world_offset[3]; float to_cell; // 1/bounds * grid_size }; ProbeCascadeData cascades[SDFGI::MAX_CASCADES]; }; struct GIProbeData { float xform[16]; float bounds[3]; float dynamic_range; float bias; float normal_bias; uint32_t blend_ambient; uint32_t texture_slot; float anisotropy_strength; float ao; float ao_size; uint32_t mipmaps; }; struct PushConstant { int32_t screen_size[2]; float z_near; float z_far; float proj_info[4]; uint32_t max_giprobes; uint32_t high_quality_vct; uint32_t use_sdfgi; uint32_t orthogonal; float ao_color[3]; uint32_t pad; float cam_rotation[12]; }; RID sdfgi_ubo; enum { MODE_MAX = 1 }; GiShaderRD shader; RID shader_version; RID pipelines[MODE_MAX]; } gi; bool screen_space_roughness_limiter = false; float screen_space_roughness_limiter_amount = 0.25; float screen_space_roughness_limiter_limit = 0.18; mutable RID_Owner render_buffers_owner; void _free_render_buffer_data(RenderBuffers *rb); void _allocate_blur_textures(RenderBuffers *rb); void _allocate_luminance_textures(RenderBuffers *rb); void _render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas); void _render_buffers_post_process_and_tonemap(RID p_render_buffers, RID p_environment, RID p_camera_effects, const CameraMatrix &p_projection); void _sdfgi_debug_draw(RID p_render_buffers, const CameraMatrix &p_projection, const Transform &p_transform); /* Cluster */ struct Cluster { /* Scene State UBO */ struct ReflectionData { //should always be 128 bytes float box_extents[3]; float index; float box_offset[3]; uint32_t mask; float params[4]; // intensity, 0, interior , boxproject float ambient[3]; // ambient color, uint32_t ambient_mode; float local_matrix[16]; // up to here for spot and omni, rest is for directional }; struct LightData { float position[3]; float inv_radius; float direction[3]; float size; uint16_t attenuation_energy[2]; //16 bits attenuation, then energy uint8_t color_specular[4]; //rgb color, a specular (8 bit unorm) uint16_t cone_attenuation_angle[2]; // attenuation and angle, (16bit float) uint8_t shadow_color_enabled[4]; //shadow rgb color, a>0.5 enabled (8bit unorm) float atlas_rect[4]; // in omni, used for atlas uv, in spot, used for projector uv float shadow_matrix[16]; float shadow_bias; float shadow_normal_bias; float transmittance_bias; float soft_shadow_size; float soft_shadow_scale; uint32_t mask; float shadow_volumetric_fog_fade; uint32_t pad; float projector_rect[4]; }; struct DirectionalLightData { float direction[3]; float energy; float color[3]; float size; float specular; uint32_t mask; float softshadow_angle; float soft_shadow_scale; uint32_t blend_splits; uint32_t shadow_enabled; float fade_from; float fade_to; uint32_t pad[3]; float shadow_volumetric_fog_fade; float shadow_bias[4]; float shadow_normal_bias[4]; float shadow_transmittance_bias[4]; float shadow_z_range[4]; float shadow_range_begin[4]; float shadow_split_offsets[4]; float shadow_matrices[4][16]; float shadow_color1[4]; float shadow_color2[4]; float shadow_color3[4]; float shadow_color4[4]; float uv_scale1[2]; float uv_scale2[2]; float uv_scale3[2]; float uv_scale4[2]; }; struct DecalData { float xform[16]; float inv_extents[3]; float albedo_mix; float albedo_rect[4]; float normal_rect[4]; float orm_rect[4]; float emission_rect[4]; float modulate[4]; float emission_energy; uint32_t mask; float upper_fade; float lower_fade; float normal_xform[12]; float normal[3]; float normal_fade; }; ReflectionData *reflections; uint32_t max_reflections; RID reflection_buffer; uint32_t max_reflection_probes_per_instance; DecalData *decals; uint32_t max_decals; RID decal_buffer; LightData *lights; uint32_t max_lights; RID light_buffer; RID *lights_instances; Rect2i *lights_shadow_rect_cache; uint32_t lights_shadow_rect_cache_count = 0; DirectionalLightData *directional_lights; uint32_t max_directional_lights; RID directional_light_buffer; LightClusterBuilder builder; } cluster; struct VolumetricFog { uint32_t width = 0; uint32_t height = 0; uint32_t depth = 0; float length; float spread; RID light_density_map; RID fog_map; RID uniform_set; RID uniform_set2; RID sdfgi_uniform_set; RID sky_uniform_set; int last_shadow_filter = -1; }; enum { VOLUMETRIC_FOG_SHADER_DENSITY, VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI, VOLUMETRIC_FOG_SHADER_FILTER, VOLUMETRIC_FOG_SHADER_FOG, VOLUMETRIC_FOG_SHADER_MAX, }; struct VolumetricFogShader { struct PushConstant { float fog_frustum_size_begin[2]; float fog_frustum_size_end[2]; float fog_frustum_end; float z_near; float z_far; uint32_t filter_axis; int32_t fog_volume_size[3]; uint32_t directional_light_count; float light_energy[3]; float base_density; float detail_spread; float gi_inject; uint32_t max_gi_probes; uint32_t pad; float cam_rotation[12]; }; VolumetricFogShaderRD shader; RID shader_version; RID pipelines[VOLUMETRIC_FOG_SHADER_MAX]; } volumetric_fog; uint32_t volumetric_fog_depth = 128; uint32_t volumetric_fog_size = 128; bool volumetric_fog_filter_active = false; uint32_t volumetric_fog_directional_shadow_shrink = 512; uint32_t volumetric_fog_positional_shadow_shrink = 512; void _volumetric_fog_erase(RenderBuffers *rb); void _update_volumetric_fog(RID p_render_buffers, RID p_environment, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_gi_probe_count); RID shadow_sampler; uint64_t scene_pass = 0; uint64_t shadow_atlas_realloc_tolerance_msec = 500; struct SDFGICosineNeighbour { uint32_t neighbour; float weight; }; public: /* SHADOW ATLAS API */ RID shadow_atlas_create(); void shadow_atlas_set_size(RID p_atlas, int p_size); void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision); bool shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version); _FORCE_INLINE_ bool shadow_atlas_owns_light_instance(RID p_atlas, RID p_light_intance) { ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!atlas, false); return atlas->shadow_owners.has(p_light_intance); } _FORCE_INLINE_ RID shadow_atlas_get_texture(RID p_atlas) { ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->depth; } _FORCE_INLINE_ Size2i shadow_atlas_get_size(RID p_atlas) { ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!atlas, Size2i()); return Size2(atlas->size, atlas->size); } void directional_shadow_atlas_set_size(int p_size); int get_directional_light_shadow_size(RID p_light_intance); void set_directional_shadow_count(int p_count); _FORCE_INLINE_ RID directional_shadow_get_texture() { return directional_shadow.depth; } _FORCE_INLINE_ Size2i directional_shadow_get_size() { return Size2i(directional_shadow.size, directional_shadow.size); } /* SDFGI UPDATE */ int sdfgi_get_lightprobe_octahedron_size() const { return SDFGI::LIGHTPROBE_OCT_SIZE; } virtual void sdfgi_update(RID p_render_buffers, RID p_environment, const Vector3 &p_world_position); virtual int sdfgi_get_pending_region_count(RID p_render_buffers) const; virtual AABB sdfgi_get_pending_region_bounds(RID p_render_buffers, int p_region) const; virtual uint32_t sdfgi_get_pending_region_cascade(RID p_render_buffers, int p_region) const; virtual void sdfgi_update_probes(RID p_render_buffers, RID p_environment, const RID *p_directional_light_instances, uint32_t p_directional_light_count, const RID *p_positional_light_instances, uint32_t p_positional_light_count); RID sdfgi_get_ubo() const { return gi.sdfgi_ubo; } /* SKY API */ RID sky_create(); void sky_set_radiance_size(RID p_sky, int p_radiance_size); void sky_set_mode(RID p_sky, RS::SkyMode p_mode); void sky_set_material(RID p_sky, RID p_material); Ref sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size); RID sky_get_radiance_texture_rd(RID p_sky) const; RID sky_get_radiance_uniform_set_rd(RID p_sky, RID p_shader, int p_set) const; RID sky_get_material(RID p_sky) const; /* ENVIRONMENT API */ RID environment_create(); void environment_set_background(RID p_env, RS::EnvironmentBG p_bg); void environment_set_sky(RID p_env, RID p_sky); void environment_set_sky_custom_fov(RID p_env, float p_scale); void environment_set_sky_orientation(RID p_env, const Basis &p_orientation); void environment_set_bg_color(RID p_env, const Color &p_color); void environment_set_bg_energy(RID p_env, float p_energy); void environment_set_canvas_max_layer(RID p_env, int p_max_layer); void environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient = RS::ENV_AMBIENT_SOURCE_BG, float p_energy = 1.0, float p_sky_contribution = 0.0, RS::EnvironmentReflectionSource p_reflection_source = RS::ENV_REFLECTION_SOURCE_BG, const Color &p_ao_color = Color()); RS::EnvironmentBG environment_get_background(RID p_env) const; RID environment_get_sky(RID p_env) const; float environment_get_sky_custom_fov(RID p_env) const; Basis environment_get_sky_orientation(RID p_env) const; Color environment_get_bg_color(RID p_env) const; float environment_get_bg_energy(RID p_env) const; int environment_get_canvas_max_layer(RID p_env) const; Color environment_get_ambient_light_color(RID p_env) const; RS::EnvironmentAmbientSource environment_get_ambient_source(RID p_env) const; float environment_get_ambient_light_energy(RID p_env) const; float environment_get_ambient_sky_contribution(RID p_env) const; RS::EnvironmentReflectionSource environment_get_reflection_source(RID p_env) const; Color environment_get_ao_color(RID p_env) const; bool is_environment(RID p_env) const; void environment_set_glow(RID p_env, bool p_enable, Vector p_levels, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap); void environment_glow_set_use_bicubic_upscale(bool p_enable); void environment_glow_set_use_high_quality(bool p_enable); void environment_set_fog(RID p_env, bool p_enable, const Color &p_light_color, float p_light_energy, float p_sun_scatter, float p_density, float p_height, float p_height_density, float p_aerial_perspective); bool environment_is_fog_enabled(RID p_env) const; Color environment_get_fog_light_color(RID p_env) const; float environment_get_fog_light_energy(RID p_env) const; float environment_get_fog_sun_scatter(RID p_env) const; float environment_get_fog_density(RID p_env) const; float environment_get_fog_height(RID p_env) const; float environment_get_fog_height_density(RID p_env) const; float environment_get_fog_aerial_perspective(RID p_env) const; void environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_light, float p_light_energy, float p_length, float p_detail_spread, float p_gi_inject, RS::EnvVolumetricFogShadowFilter p_shadow_filter); virtual void environment_set_volumetric_fog_volume_size(int p_size, int p_depth); virtual void environment_set_volumetric_fog_filter_active(bool p_enable); virtual void environment_set_volumetric_fog_directional_shadow_shrink_size(int p_shrink_size); virtual void environment_set_volumetric_fog_positional_shadow_shrink_size(int p_shrink_size); void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance); void environment_set_ssao(RID p_env, bool p_enable, float p_rejection_radius, float p_intensity, int p_levels, float p_light_affect, float p_ao_channel_affect); void environment_set_ssao_settings(RS::EnvironmentSSAOQuality p_quality, bool p_full_samples, float p_noise_tolerance, float p_blur_tolerance, float p_upsample_tolerance); bool environment_is_ssao_enabled(RID p_env) const; float environment_get_ssao_ao_affect(RID p_env) const; float environment_get_ssao_light_affect(RID p_env) const; bool environment_is_ssr_enabled(RID p_env) const; bool environment_is_sdfgi_enabled(RID p_env) const; virtual void environment_set_sdfgi(RID p_env, bool p_enable, RS::EnvironmentSDFGICascades p_cascades, float p_min_cell_size, RS::EnvironmentSDFGIYScale p_y_scale, bool p_use_occlusion, bool p_use_multibounce, bool p_read_sky, float p_energy, float p_normal_bias, float p_probe_bias); virtual void environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count); virtual void environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames); void environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality); RS::EnvironmentSSRRoughnessQuality environment_get_ssr_roughness_quality() const; void environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale); void environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) {} virtual Ref environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size); virtual RID camera_effects_create(); virtual void camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter); virtual void camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape); virtual void camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount); virtual void camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure); RID light_instance_create(RID p_light); void light_instance_set_transform(RID p_light_instance, const Transform &p_transform); void light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb); void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale = 1.0, float p_range_begin = 0, const Vector2 &p_uv_scale = Vector2()); void light_instance_mark_visible(RID p_light_instance); _FORCE_INLINE_ RID light_instance_get_base_light(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->light; } _FORCE_INLINE_ Transform light_instance_get_base_transform(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->transform; } _FORCE_INLINE_ Rect2 light_instance_get_shadow_atlas_rect(RID p_light_instance, RID p_shadow_atlas) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); LightInstance *li = light_instance_owner.getornull(p_light_instance); uint32_t key = shadow_atlas->shadow_owners[li->self]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_FAIL_COND_V(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size(), Rect2()); uint32_t atlas_size = shadow_atlas->size; uint32_t quadrant_size = atlas_size >> 1; uint32_t x = (quadrant & 1) * quadrant_size; uint32_t y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; uint32_t width = shadow_size; uint32_t height = shadow_size; return Rect2(x / float(shadow_atlas->size), y / float(shadow_atlas->size), width / float(shadow_atlas->size), height / float(shadow_atlas->size)); } _FORCE_INLINE_ CameraMatrix light_instance_get_shadow_camera(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].camera; } _FORCE_INLINE_ float light_instance_get_shadow_texel_size(RID p_light_instance, RID p_shadow_atlas) { #ifdef DEBUG_ENABLED LightInstance *li = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND_V(!li->shadow_atlases.has(p_shadow_atlas), 0); #endif ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); ERR_FAIL_COND_V(!shadow_atlas, 0); #ifdef DEBUG_ENABLED ERR_FAIL_COND_V(!shadow_atlas->shadow_owners.has(p_light_instance), 0); #endif uint32_t key = shadow_atlas->shadow_owners[p_light_instance]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t quadrant_size = shadow_atlas->size >> 1; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); return float(1.0) / shadow_size; } _FORCE_INLINE_ Transform light_instance_get_shadow_transform(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].transform; } _FORCE_INLINE_ float light_instance_get_shadow_bias_scale(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].bias_scale; } _FORCE_INLINE_ float light_instance_get_shadow_range(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].farplane; } _FORCE_INLINE_ float light_instance_get_shadow_range_begin(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].range_begin; } _FORCE_INLINE_ Vector2 light_instance_get_shadow_uv_scale(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].uv_scale; } _FORCE_INLINE_ Rect2 light_instance_get_directional_shadow_atlas_rect(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].atlas_rect; } _FORCE_INLINE_ float light_instance_get_directional_shadow_split(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].split; } _FORCE_INLINE_ float light_instance_get_directional_shadow_texel_size(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].shadow_texel_size; } _FORCE_INLINE_ void light_instance_set_render_pass(RID p_light_instance, uint64_t p_pass) { LightInstance *li = light_instance_owner.getornull(p_light_instance); li->last_pass = p_pass; } _FORCE_INLINE_ uint64_t light_instance_get_render_pass(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->last_pass; } _FORCE_INLINE_ void light_instance_set_index(RID p_light_instance, uint32_t p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); li->light_index = p_index; } _FORCE_INLINE_ uint32_t light_instance_get_index(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->light_index; } _FORCE_INLINE_ RS::LightType light_instance_get_type(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->light_type; } virtual RID reflection_atlas_create(); virtual void reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count); _FORCE_INLINE_ RID reflection_atlas_get_texture(RID p_ref_atlas) { ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_ref_atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->reflection; } virtual RID reflection_probe_instance_create(RID p_probe); virtual void reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform); virtual void reflection_probe_release_atlas_index(RID p_instance); virtual bool reflection_probe_instance_needs_redraw(RID p_instance); virtual bool reflection_probe_instance_has_reflection(RID p_instance); virtual bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas); virtual bool reflection_probe_instance_postprocess_step(RID p_instance); uint32_t reflection_probe_instance_get_resolution(RID p_instance); RID reflection_probe_instance_get_framebuffer(RID p_instance, int p_index); RID reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index); _FORCE_INLINE_ RID reflection_probe_instance_get_probe(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, RID()); return rpi->probe; } _FORCE_INLINE_ void reflection_probe_instance_set_render_index(RID p_instance, uint32_t p_render_index) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); rpi->render_index = p_render_index; } _FORCE_INLINE_ uint32_t reflection_probe_instance_get_render_index(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, 0); return rpi->render_index; } _FORCE_INLINE_ void reflection_probe_instance_set_render_pass(RID p_instance, uint32_t p_render_pass) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); rpi->last_pass = p_render_pass; } _FORCE_INLINE_ uint32_t reflection_probe_instance_get_render_pass(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, 0); return rpi->last_pass; } _FORCE_INLINE_ Transform reflection_probe_instance_get_transform(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, Transform()); return rpi->transform; } _FORCE_INLINE_ int reflection_probe_instance_get_atlas_index(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, -1); return rpi->atlas_index; } virtual RID decal_instance_create(RID p_decal); virtual void decal_instance_set_transform(RID p_decal, const Transform &p_transform); _FORCE_INLINE_ RID decal_instance_get_base(RID p_decal) const { DecalInstance *decal = decal_instance_owner.getornull(p_decal); return decal->decal; } _FORCE_INLINE_ Transform decal_instance_get_transform(RID p_decal) const { DecalInstance *decal = decal_instance_owner.getornull(p_decal); return decal->transform; } RID gi_probe_instance_create(RID p_base); void gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform); bool gi_probe_needs_update(RID p_probe) const; void gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector &p_light_instances, int p_dynamic_object_count, InstanceBase **p_dynamic_objects); void gi_probe_set_quality(RS::GIProbeQuality p_quality) { gi_probe_quality = p_quality; } _FORCE_INLINE_ uint32_t gi_probe_instance_get_slot(RID p_probe) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); return gi_probe->slot; } _FORCE_INLINE_ RID gi_probe_instance_get_base_probe(RID p_probe) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); return gi_probe->probe; } _FORCE_INLINE_ Transform gi_probe_instance_get_transform_to_cell(RID p_probe) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); return storage->gi_probe_get_to_cell_xform(gi_probe->probe) * gi_probe->transform.affine_inverse(); } _FORCE_INLINE_ RID gi_probe_instance_get_texture(RID p_probe) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); return gi_probe->texture; } _FORCE_INLINE_ void gi_probe_instance_set_render_index(RID p_instance, uint32_t p_render_index) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!gi_probe); gi_probe->render_index = p_render_index; } _FORCE_INLINE_ uint32_t gi_probe_instance_get_render_index(RID p_instance) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!gi_probe, 0); return gi_probe->render_index; } /* _FORCE_INLINE_ void gi_probe_instance_set_render_pass(RID p_instance, uint32_t p_render_pass) { GIProbeInstance *g_probe = gi_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!g_probe); g_probe->last_pass = p_render_pass; } _FORCE_INLINE_ uint32_t gi_probe_instance_get_render_pass(RID p_instance) { GIProbeInstance *g_probe = gi_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!g_probe, 0); return g_probe->last_pass; } */ RID render_buffers_create(); void render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa, RS::ViewportScreenSpaceAA p_screen_space_aa); RID render_buffers_get_ao_texture(RID p_render_buffers); RID render_buffers_get_back_buffer_texture(RID p_render_buffers); RID render_buffers_get_gi_probe_buffer(RID p_render_buffers); RID render_buffers_get_default_gi_probe_buffer(); uint32_t render_buffers_get_sdfgi_cascade_count(RID p_render_buffers) const; bool render_buffers_is_sdfgi_enabled(RID p_render_buffers) const; RID render_buffers_get_sdfgi_irradiance_probes(RID p_render_buffers) const; Vector3 render_buffers_get_sdfgi_cascade_offset(RID p_render_buffers, uint32_t p_cascade) const; Vector3i render_buffers_get_sdfgi_cascade_probe_offset(RID p_render_buffers, uint32_t p_cascade) const; float render_buffers_get_sdfgi_cascade_probe_size(RID p_render_buffers, uint32_t p_cascade) const; float render_buffers_get_sdfgi_normal_bias(RID p_render_buffers) const; uint32_t render_buffers_get_sdfgi_cascade_probe_count(RID p_render_buffers) const; uint32_t render_buffers_get_sdfgi_cascade_size(RID p_render_buffers) const; bool render_buffers_is_sdfgi_using_occlusion(RID p_render_buffers) const; float render_buffers_get_sdfgi_energy(RID p_render_buffers) const; RID render_buffers_get_sdfgi_occlusion_texture(RID p_render_buffers) const; bool render_buffers_has_volumetric_fog(RID p_render_buffers) const; RID render_buffers_get_volumetric_fog_texture(RID p_render_buffers); RID render_buffers_get_volumetric_fog_sky_uniform_set(RID p_render_buffers); float render_buffers_get_volumetric_fog_end(RID p_render_buffers); float render_buffers_get_volumetric_fog_detail_spread(RID p_render_buffers); void render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID *p_decal_cull_result, int p_decal_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_shadow_atlas, RID p_camera_effects, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass); void render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count); void render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region); void render_sdfgi(RID p_render_buffers, int p_region, InstanceBase **p_cull_result, int p_cull_count); void render_sdfgi_static_lights(RID p_render_buffers, uint32_t p_cascade_count, const uint32_t *p_cascade_indices, const RID **p_positional_light_cull_result, const uint32_t *p_positional_light_cull_count); void render_particle_collider_heightfield(RID p_collider, const Transform &p_transform, InstanceBase **p_cull_result, int p_cull_count); virtual void set_scene_pass(uint64_t p_pass) { scene_pass = p_pass; } _FORCE_INLINE_ uint64_t get_scene_pass() { return scene_pass; } virtual void screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit); virtual bool screen_space_roughness_limiter_is_active() const; virtual float screen_space_roughness_limiter_get_amount() const; virtual float screen_space_roughness_limiter_get_limit() const; virtual void sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality); RS::SubSurfaceScatteringQuality sub_surface_scattering_get_quality() const; virtual void sub_surface_scattering_set_scale(float p_scale, float p_depth_scale); virtual void shadows_quality_set(RS::ShadowQuality p_quality); virtual void directional_shadow_quality_set(RS::ShadowQuality p_quality); _FORCE_INLINE_ RS::ShadowQuality shadows_quality_get() const { return shadows_quality; } _FORCE_INLINE_ RS::ShadowQuality directional_shadow_quality_get() const { return directional_shadow_quality; } _FORCE_INLINE_ float shadows_quality_radius_get() const { return shadows_quality_radius; } _FORCE_INLINE_ float directional_shadow_quality_radius_get() const { return directional_shadow_quality_radius; } _FORCE_INLINE_ float *directional_penumbra_shadow_kernel_get() { return directional_penumbra_shadow_kernel; } _FORCE_INLINE_ float *directional_soft_shadow_kernel_get() { return directional_soft_shadow_kernel; } _FORCE_INLINE_ float *penumbra_shadow_kernel_get() { return penumbra_shadow_kernel; } _FORCE_INLINE_ float *soft_shadow_kernel_get() { return soft_shadow_kernel; } _FORCE_INLINE_ int directional_penumbra_shadow_samples_get() const { return directional_penumbra_shadow_samples; } _FORCE_INLINE_ int directional_soft_shadow_samples_get() const { return directional_soft_shadow_samples; } _FORCE_INLINE_ int penumbra_shadow_samples_get() const { return penumbra_shadow_samples; } _FORCE_INLINE_ int soft_shadow_samples_get() const { return soft_shadow_samples; } int get_roughness_layers() const; bool is_using_radiance_cubemap_array() const; virtual TypedArray bake_render_uv2(RID p_base, const Vector &p_material_overrides, const Size2i &p_image_size); virtual bool free(RID p_rid); virtual void update(); virtual void set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw); _FORCE_INLINE_ RS::ViewportDebugDraw get_debug_draw_mode() const { return debug_draw; } virtual void set_time(double p_time, double p_step); RID get_cluster_builder_texture(); RID get_cluster_builder_indices_buffer(); RID get_reflection_probe_buffer(); RID get_positional_light_buffer(); RID get_directional_light_buffer(); RID get_decal_buffer(); int get_max_directional_lights() const; void sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir); RasterizerSceneRD(RasterizerStorageRD *p_storage); ~RasterizerSceneRD(); }; #endif // RASTERIZER_SCENE_RD_H