<?xml version="1.0" encoding="UTF-8" ?> <class name="Quaternion" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd"> <brief_description> A unit quaternion used for representing 3D rotations. </brief_description> <description> Quaternions are similar to [Basis], which implements the matrix representation of rotations. Unlike [Basis], which stores rotation, scale, and shearing, quaternions only store rotation. Quaternions can be parametrized using both an axis-angle pair or Euler angles. Due to their compactness and the way they are stored in memory, certain operations (obtaining axis-angle and performing SLERP, in particular) are more efficient and robust against floating-point errors. [b]Note:[/b] Quaternions need to be normalized before being used for rotation. </description> <tutorials> <link title="Using 3D transforms">$DOCS_URL/tutorials/3d/using_transforms.html#interpolating-with-quaternions</link> <link title="Third Person Shooter Demo">https://godotengine.org/asset-library/asset/678</link> </tutorials> <constructors> <constructor name="Quaternion"> <return type="Quaternion" /> <description> Constructs a default-initialized quaternion with all components set to [code]0[/code]. </description> </constructor> <constructor name="Quaternion"> <return type="Quaternion" /> <param index="0" name="from" type="Quaternion" /> <description> Constructs a [Quaternion] as a copy of the given [Quaternion]. </description> </constructor> <constructor name="Quaternion"> <return type="Quaternion" /> <param index="0" name="arc_from" type="Vector3" /> <param index="1" name="arc_to" type="Vector3" /> <description> Constructs a quaternion representing the shortest arc between two points on the surface of a sphere with a radius of [code]1.0[/code]. </description> </constructor> <constructor name="Quaternion"> <return type="Quaternion" /> <param index="0" name="axis" type="Vector3" /> <param index="1" name="angle" type="float" /> <description> Constructs a quaternion that will rotate around the given axis by the specified angle. The axis must be a normalized vector. </description> </constructor> <constructor name="Quaternion"> <return type="Quaternion" /> <param index="0" name="from" type="Basis" /> <description> Constructs a quaternion from the given [Basis]. </description> </constructor> <constructor name="Quaternion"> <return type="Quaternion" /> <param index="0" name="x" type="float" /> <param index="1" name="y" type="float" /> <param index="2" name="z" type="float" /> <param index="3" name="w" type="float" /> <description> Constructs a quaternion defined by the given values. </description> </constructor> </constructors> <methods> <method name="angle_to" qualifiers="const"> <return type="float" /> <param index="0" name="to" type="Quaternion" /> <description> Returns the angle between this quaternion and [param to]. This is the magnitude of the angle you would need to rotate by to get from one to the other. [b]Note:[/b] The magnitude of the floating-point error for this method is abnormally high, so methods such as [code]is_zero_approx[/code] will not work reliably. </description> </method> <method name="dot" qualifiers="const"> <return type="float" /> <param index="0" name="with" type="Quaternion" /> <description> Returns the dot product of two quaternions. </description> </method> <method name="exp" qualifiers="const"> <return type="Quaternion" /> <description> </description> </method> <method name="from_euler" qualifiers="static"> <return type="Quaternion" /> <param index="0" name="euler" type="Vector3" /> <description> Constructs a Quaternion from Euler angles in YXZ rotation order. </description> </method> <method name="get_angle" qualifiers="const"> <return type="float" /> <description> </description> </method> <method name="get_axis" qualifiers="const"> <return type="Vector3" /> <description> </description> </method> <method name="get_euler" qualifiers="const"> <return type="Vector3" /> <param index="0" name="order" type="int" default="2" /> <description> Returns the quaternion's rotation in the form of Euler angles. The Euler order depends on the [param order] parameter, for example using the YXZ convention: since this method decomposes, first Z, then X, and Y last. See the [enum EulerOrder] enum for possible values. The returned vector contains the rotation angles in the format (X angle, Y angle, Z angle). </description> </method> <method name="inverse" qualifiers="const"> <return type="Quaternion" /> <description> Returns the inverse of the quaternion. </description> </method> <method name="is_equal_approx" qualifiers="const"> <return type="bool" /> <param index="0" name="to" type="Quaternion" /> <description> Returns [code]true[/code] if this quaternion and [param to] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component. </description> </method> <method name="is_finite" qualifiers="const"> <return type="bool" /> <description> Returns [code]true[/code] if this quaternion is finite, by calling [method @GlobalScope.is_finite] on each component. </description> </method> <method name="is_normalized" qualifiers="const"> <return type="bool" /> <description> Returns whether the quaternion is normalized or not. </description> </method> <method name="length" qualifiers="const"> <return type="float" /> <description> Returns the length of the quaternion. </description> </method> <method name="length_squared" qualifiers="const"> <return type="float" /> <description> Returns the length of the quaternion, squared. </description> </method> <method name="log" qualifiers="const"> <return type="Quaternion" /> <description> </description> </method> <method name="normalized" qualifiers="const"> <return type="Quaternion" /> <description> Returns a copy of the quaternion, normalized to unit length. </description> </method> <method name="slerp" qualifiers="const"> <return type="Quaternion" /> <param index="0" name="to" type="Quaternion" /> <param index="1" name="weight" type="float" /> <description> Returns the result of the spherical linear interpolation between this quaternion and [param to] by amount [param weight]. [b]Note:[/b] Both quaternions must be normalized. </description> </method> <method name="slerpni" qualifiers="const"> <return type="Quaternion" /> <param index="0" name="to" type="Quaternion" /> <param index="1" name="weight" type="float" /> <description> Returns the result of the spherical linear interpolation between this quaternion and [param to] by amount [param weight], but without checking if the rotation path is not bigger than 90 degrees. </description> </method> <method name="spherical_cubic_interpolate" qualifiers="const"> <return type="Quaternion" /> <param index="0" name="b" type="Quaternion" /> <param index="1" name="pre_a" type="Quaternion" /> <param index="2" name="post_b" type="Quaternion" /> <param index="3" name="weight" type="float" /> <description> Performs a spherical cubic interpolation between quaternions [param pre_a], this vector, [param b], and [param post_b], by the given amount [param weight]. </description> </method> <method name="spherical_cubic_interpolate_in_time" qualifiers="const"> <return type="Quaternion" /> <param index="0" name="b" type="Quaternion" /> <param index="1" name="pre_a" type="Quaternion" /> <param index="2" name="post_b" type="Quaternion" /> <param index="3" name="weight" type="float" /> <param index="4" name="b_t" type="float" /> <param index="5" name="pre_a_t" type="float" /> <param index="6" name="post_b_t" type="float" /> <description> Performs a spherical cubic interpolation between quaternions [param pre_a], this vector, [param b], and [param post_b], by the given amount [param weight]. It can perform smoother interpolation than [code]spherical_cubic_interpolate()[/code] by the time values. </description> </method> </methods> <members> <member name="w" type="float" setter="" getter="" default="1.0"> W component of the quaternion (real part). Quaternion components should usually not be manipulated directly. </member> <member name="x" type="float" setter="" getter="" default="0.0"> X component of the quaternion (imaginary [code]i[/code] axis part). Quaternion components should usually not be manipulated directly. </member> <member name="y" type="float" setter="" getter="" default="0.0"> Y component of the quaternion (imaginary [code]j[/code] axis part). Quaternion components should usually not be manipulated directly. </member> <member name="z" type="float" setter="" getter="" default="0.0"> Z component of the quaternion (imaginary [code]k[/code] axis part). Quaternion components should usually not be manipulated directly. </member> </members> <constants> <constant name="IDENTITY" value="Quaternion(0, 0, 0, 1)"> The identity quaternion, representing no rotation. Equivalent to an identity [Basis] matrix. If a vector is transformed by an identity quaternion, it will not change. </constant> </constants> <operators> <operator name="operator !="> <return type="bool" /> <param index="0" name="right" type="Quaternion" /> <description> Returns [code]true[/code] if the quaternions are not equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. </description> </operator> <operator name="operator *"> <return type="Quaternion" /> <param index="0" name="right" type="Quaternion" /> <description> Composes these two quaternions by multiplying them together. This has the effect of rotating the second quaternion (the child) by the first quaternion (the parent). </description> </operator> <operator name="operator *"> <return type="Vector3" /> <param index="0" name="right" type="Vector3" /> <description> Rotates (multiplies) the [Vector3] by the given [Quaternion]. </description> </operator> <operator name="operator *"> <return type="Quaternion" /> <param index="0" name="right" type="float" /> <description> Multiplies each component of the [Quaternion] by the given value. This operation is not meaningful on its own, but it can be used as a part of a larger expression. </description> </operator> <operator name="operator *"> <return type="Quaternion" /> <param index="0" name="right" type="int" /> <description> Multiplies each component of the [Quaternion] by the given value. This operation is not meaningful on its own, but it can be used as a part of a larger expression. </description> </operator> <operator name="operator +"> <return type="Quaternion" /> <param index="0" name="right" type="Quaternion" /> <description> Adds each component of the left [Quaternion] to the right [Quaternion]. This operation is not meaningful on its own, but it can be used as a part of a larger expression, such as approximating an intermediate rotation between two nearby rotations. </description> </operator> <operator name="operator -"> <return type="Quaternion" /> <param index="0" name="right" type="Quaternion" /> <description> Subtracts each component of the left [Quaternion] by the right [Quaternion]. This operation is not meaningful on its own, but it can be used as a part of a larger expression. </description> </operator> <operator name="operator /"> <return type="Quaternion" /> <param index="0" name="right" type="float" /> <description> Divides each component of the [Quaternion] by the given value. This operation is not meaningful on its own, but it can be used as a part of a larger expression. </description> </operator> <operator name="operator /"> <return type="Quaternion" /> <param index="0" name="right" type="int" /> <description> Divides each component of the [Quaternion] by the given value. This operation is not meaningful on its own, but it can be used as a part of a larger expression. </description> </operator> <operator name="operator =="> <return type="bool" /> <param index="0" name="right" type="Quaternion" /> <description> Returns [code]true[/code] if the quaternions are exactly equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. </description> </operator> <operator name="operator []"> <return type="float" /> <param index="0" name="index" type="int" /> <description> Access quaternion components using their index. [code]q[0][/code] is equivalent to [code]q.x[/code], [code]q[1][/code] is equivalent to [code]q.y[/code], [code]q[2][/code] is equivalent to [code]q.z[/code], and [code]q[3][/code] is equivalent to [code]q.w[/code]. </description> </operator> <operator name="operator unary+"> <return type="Quaternion" /> <description> Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable. </description> </operator> <operator name="operator unary-"> <return type="Quaternion" /> <description> Returns the negative value of the [Quaternion]. This is the same as writing [code]Quaternion(-q.x, -q.y, -q.z, -q.w)[/code]. This operation results in a quaternion that represents the same rotation. </description> </operator> </operators> </class>