/**************************************************************************/ /* renderer_scene_cull.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef RENDERER_SCENE_CULL_H #define RENDERER_SCENE_CULL_H #include "core/math/dynamic_bvh.h" #include "core/templates/bin_sorted_array.h" #include "core/templates/local_vector.h" #include "core/templates/paged_allocator.h" #include "core/templates/paged_array.h" #include "core/templates/pass_func.h" #include "core/templates/rid_owner.h" #include "core/templates/self_list.h" #include "servers/rendering/renderer_scene_occlusion_cull.h" #include "servers/rendering/renderer_scene_render.h" #include "servers/rendering/rendering_method.h" #include "servers/rendering/rendering_server_globals.h" #include "servers/rendering/storage/utilities.h" #include "servers/xr/xr_interface.h" class RendererSceneCull : public RenderingMethod { public: RendererSceneRender *scene_render = nullptr; enum { SDFGI_MAX_CASCADES = 8, SDFGI_MAX_REGIONS_PER_CASCADE = 3, MAX_INSTANCE_PAIRS = 32, MAX_UPDATE_SHADOWS = 512 }; uint64_t render_pass; static RendererSceneCull *singleton; /* CAMERA API */ struct Camera { enum Type { PERSPECTIVE, ORTHOGONAL, FRUSTUM }; Type type; float fov; float znear, zfar; float size; Vector2 offset; uint32_t visible_layers; bool vaspect; RID env; RID attributes; Transform3D transform; Camera() { visible_layers = 0xFFFFFFFF; fov = 75; type = PERSPECTIVE; znear = 0.05; zfar = 4000; size = 1.0; offset = Vector2(); vaspect = false; } }; mutable RID_Owner<Camera, true> camera_owner; virtual RID camera_allocate(); virtual void camera_initialize(RID p_rid); virtual void camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far); virtual void camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far); virtual void camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far); virtual void camera_set_transform(RID p_camera, const Transform3D &p_transform); virtual void camera_set_cull_mask(RID p_camera, uint32_t p_layers); virtual void camera_set_environment(RID p_camera, RID p_env); virtual void camera_set_camera_attributes(RID p_camera, RID p_attributes); virtual void camera_set_use_vertical_aspect(RID p_camera, bool p_enable); virtual bool is_camera(RID p_camera) const; /* OCCLUDER API */ virtual RID occluder_allocate(); virtual void occluder_initialize(RID p_occluder); virtual void occluder_set_mesh(RID p_occluder, const PackedVector3Array &p_vertices, const PackedInt32Array &p_indices); /* VISIBILITY NOTIFIER API */ RendererSceneOcclusionCull *dummy_occlusion_culling = nullptr; /* SCENARIO API */ struct Instance; struct PlaneSign { _ALWAYS_INLINE_ PlaneSign() {} _ALWAYS_INLINE_ PlaneSign(const Plane &p_plane) { if (p_plane.normal.x > 0) { signs[0] = 0; } else { signs[0] = 3; } if (p_plane.normal.y > 0) { signs[1] = 1; } else { signs[1] = 4; } if (p_plane.normal.z > 0) { signs[2] = 2; } else { signs[2] = 5; } } uint32_t signs[3]; }; struct Frustum { Vector<Plane> planes; Vector<PlaneSign> plane_signs; const Plane *planes_ptr; const PlaneSign *plane_signs_ptr; uint32_t plane_count; _ALWAYS_INLINE_ Frustum() {} _ALWAYS_INLINE_ Frustum(const Frustum &p_frustum) { planes = p_frustum.planes; plane_signs = p_frustum.plane_signs; planes_ptr = planes.ptr(); plane_signs_ptr = plane_signs.ptr(); plane_count = p_frustum.plane_count; } _ALWAYS_INLINE_ void operator=(const Frustum &p_frustum) { planes = p_frustum.planes; plane_signs = p_frustum.plane_signs; planes_ptr = planes.ptr(); plane_signs_ptr = plane_signs.ptr(); plane_count = p_frustum.plane_count; } _ALWAYS_INLINE_ Frustum(const Vector<Plane> &p_planes) { planes = p_planes; planes_ptr = planes.ptrw(); plane_count = planes.size(); for (int i = 0; i < planes.size(); i++) { PlaneSign ps(p_planes[i]); plane_signs.push_back(ps); } plane_signs_ptr = plane_signs.ptr(); } }; struct InstanceBounds { // Efficiently store instance bounds. // Because bounds checking is performed first, // keep it separated from data. real_t bounds[6]; _ALWAYS_INLINE_ InstanceBounds() {} _ALWAYS_INLINE_ InstanceBounds(const AABB &p_aabb) { bounds[0] = p_aabb.position.x; bounds[1] = p_aabb.position.y; bounds[2] = p_aabb.position.z; bounds[3] = p_aabb.position.x + p_aabb.size.x; bounds[4] = p_aabb.position.y + p_aabb.size.y; bounds[5] = p_aabb.position.z + p_aabb.size.z; } _ALWAYS_INLINE_ bool in_frustum(const Frustum &p_frustum) const { // This is not a full SAT check and the possibility of false positives exist, // but the tradeoff vs performance is still very good. for (uint32_t i = 0; i < p_frustum.plane_count; i++) { Vector3 min( bounds[p_frustum.plane_signs_ptr[i].signs[0]], bounds[p_frustum.plane_signs_ptr[i].signs[1]], bounds[p_frustum.plane_signs_ptr[i].signs[2]]); if (p_frustum.planes_ptr[i].distance_to(min) >= 0.0) { return false; } } return true; } _ALWAYS_INLINE_ bool in_aabb(const AABB &p_aabb) const { Vector3 end = p_aabb.position + p_aabb.size; if (bounds[0] >= end.x) { return false; } if (bounds[3] <= p_aabb.position.x) { return false; } if (bounds[1] >= end.y) { return false; } if (bounds[4] <= p_aabb.position.y) { return false; } if (bounds[2] >= end.z) { return false; } if (bounds[5] <= p_aabb.position.z) { return false; } return true; } }; struct InstanceVisibilityNotifierData; struct InstanceData { // Store instance pointer as well as common instance processing information, // to make processing more cache friendly. enum Flags { FLAG_BASE_TYPE_MASK = 0xFF, FLAG_CAST_SHADOWS = (1 << 8), FLAG_CAST_SHADOWS_ONLY = (1 << 9), FLAG_REDRAW_IF_VISIBLE = (1 << 10), FLAG_GEOM_LIGHTING_DIRTY = (1 << 11), FLAG_GEOM_REFLECTION_DIRTY = (1 << 12), FLAG_GEOM_DECAL_DIRTY = (1 << 13), FLAG_GEOM_VOXEL_GI_DIRTY = (1 << 14), FLAG_LIGHTMAP_CAPTURE = (1 << 15), FLAG_USES_BAKED_LIGHT = (1 << 16), FLAG_USES_MESH_INSTANCE = (1 << 17), FLAG_REFLECTION_PROBE_DIRTY = (1 << 18), FLAG_IGNORE_OCCLUSION_CULLING = (1 << 19), FLAG_VISIBILITY_DEPENDENCY_NEEDS_CHECK = (3 << 20), // 2 bits, overlaps with the other vis. dependency flags FLAG_VISIBILITY_DEPENDENCY_HIDDEN_CLOSE_RANGE = (1 << 20), FLAG_VISIBILITY_DEPENDENCY_HIDDEN = (1 << 21), FLAG_VISIBILITY_DEPENDENCY_FADE_CHILDREN = (1 << 22), FLAG_GEOM_PROJECTOR_SOFTSHADOW_DIRTY = (1 << 23), FLAG_IGNORE_ALL_CULLING = (1 << 24), }; uint32_t flags = 0; uint32_t layer_mask = 0; //for fast layer-mask discard RID base_rid; union { uint64_t instance_data_rid; RenderGeometryInstance *instance_geometry; InstanceVisibilityNotifierData *visibility_notifier = nullptr; }; Instance *instance = nullptr; int32_t parent_array_index = -1; int32_t visibility_index = -1; }; struct InstanceVisibilityData { uint64_t viewport_state = 0; int32_t array_index = -1; RS::VisibilityRangeFadeMode fade_mode = RS::VISIBILITY_RANGE_FADE_DISABLED; Vector3 position; Instance *instance = nullptr; float range_begin = 0.0f; float range_end = 0.0f; float range_begin_margin = 0.0f; float range_end_margin = 0.0f; float children_fade_alpha = 1.0f; }; class VisibilityArray : public BinSortedArray<InstanceVisibilityData> { _FORCE_INLINE_ virtual void _update_idx(InstanceVisibilityData &r_element, uint64_t p_idx) { r_element.instance->visibility_index = p_idx; if (r_element.instance->scenario && r_element.instance->array_index != -1) { r_element.instance->scenario->instance_data[r_element.instance->array_index].visibility_index = p_idx; } } }; PagedArrayPool<InstanceBounds> instance_aabb_page_pool; PagedArrayPool<InstanceData> instance_data_page_pool; PagedArrayPool<InstanceVisibilityData> instance_visibility_data_page_pool; struct Scenario { enum IndexerType { INDEXER_GEOMETRY, //for geometry INDEXER_VOLUMES, //for everything else INDEXER_MAX }; DynamicBVH indexers[INDEXER_MAX]; RID self; List<Instance *> directional_lights; RID environment; RID fallback_environment; RID camera_attributes; RID reflection_probe_shadow_atlas; RID reflection_atlas; uint64_t used_viewport_visibility_bits; HashMap<RID, uint64_t> viewport_visibility_masks; SelfList<Instance>::List instances; LocalVector<RID> dynamic_lights; PagedArray<InstanceBounds> instance_aabbs; PagedArray<InstanceData> instance_data; VisibilityArray instance_visibility; Scenario() { indexers[INDEXER_GEOMETRY].set_index(INDEXER_GEOMETRY); indexers[INDEXER_VOLUMES].set_index(INDEXER_VOLUMES); used_viewport_visibility_bits = 0; } }; int indexer_update_iterations = 0; mutable RID_Owner<Scenario, true> scenario_owner; static void _instance_pair(Instance *p_A, Instance *p_B); static void _instance_unpair(Instance *p_A, Instance *p_B); void _instance_update_mesh_instance(Instance *p_instance); virtual RID scenario_allocate(); virtual void scenario_initialize(RID p_rid); virtual void scenario_set_environment(RID p_scenario, RID p_environment); virtual void scenario_set_camera_attributes(RID p_scenario, RID p_attributes); virtual void scenario_set_fallback_environment(RID p_scenario, RID p_environment); virtual void scenario_set_reflection_atlas_size(RID p_scenario, int p_reflection_size, int p_reflection_count); virtual bool is_scenario(RID p_scenario) const; virtual RID scenario_get_environment(RID p_scenario); virtual void scenario_add_viewport_visibility_mask(RID p_scenario, RID p_viewport); virtual void scenario_remove_viewport_visibility_mask(RID p_scenario, RID p_viewport); /* INSTANCING API */ struct InstancePair { Instance *a = nullptr; Instance *b = nullptr; SelfList<InstancePair> list_a; SelfList<InstancePair> list_b; InstancePair() : list_a(this), list_b(this) {} }; PagedAllocator<InstancePair> pair_allocator; struct InstanceBaseData { virtual ~InstanceBaseData() {} }; struct Instance { RS::InstanceType base_type; RID base; RID skeleton; RID material_override; RID material_overlay; RID mesh_instance; //only used for meshes and when skeleton/blendshapes exist Transform3D transform; float lod_bias; bool ignore_occlusion_culling; bool ignore_all_culling; Vector<RID> materials; RS::ShadowCastingSetting cast_shadows; uint32_t layer_mask; //fit in 32 bits bool mirror : 8; bool receive_shadows : 8; bool visible : 8; bool baked_light : 2; //this flag is only to know if it actually did use baked light bool dynamic_gi : 2; //same above for dynamic objects bool redraw_if_visible : 4; Instance *lightmap = nullptr; Rect2 lightmap_uv_scale; int lightmap_slice_index; uint32_t lightmap_cull_index; Vector<Color> lightmap_sh; //spherical harmonic AABB aabb; AABB transformed_aabb; AABB prev_transformed_aabb; struct InstanceShaderParameter { int32_t index = -1; Variant value; Variant default_value; PropertyInfo info; }; HashMap<StringName, InstanceShaderParameter> instance_shader_uniforms; bool instance_allocated_shader_uniforms = false; int32_t instance_allocated_shader_uniforms_offset = -1; // RID self; //scenario stuff DynamicBVH::ID indexer_id; int32_t array_index = -1; int32_t visibility_index = -1; float visibility_range_begin = 0.0f; float visibility_range_end = 0.0f; float visibility_range_begin_margin = 0.0f; float visibility_range_end_margin = 0.0f; RS::VisibilityRangeFadeMode visibility_range_fade_mode = RS::VISIBILITY_RANGE_FADE_DISABLED; Instance *visibility_parent = nullptr; HashSet<Instance *> visibility_dependencies; uint32_t visibility_dependencies_depth = 0; float transparency = 0.0f; Scenario *scenario = nullptr; SelfList<Instance> scenario_item; //aabb stuff bool update_aabb; bool update_dependencies; SelfList<Instance> update_item; AABB *custom_aabb = nullptr; // <Zylann> would using aabb directly with a bool be better? float extra_margin; ObjectID object_id; // sorting float sorting_offset = 0.0; bool use_aabb_center = true; Vector<Color> lightmap_target_sh; //target is used for incrementally changing the SH over time, this avoids pops in some corner cases and when going interior <-> exterior uint64_t last_frame_pass; uint64_t version; // changes to this, and changes to base increase version InstanceBaseData *base_data = nullptr; SelfList<InstancePair>::List pairs; uint64_t pair_check; DependencyTracker dependency_tracker; static void dependency_changed(Dependency::DependencyChangedNotification p_notification, DependencyTracker *tracker) { Instance *instance = (Instance *)tracker->userdata; switch (p_notification) { case Dependency::DEPENDENCY_CHANGED_SKELETON_DATA: case Dependency::DEPENDENCY_CHANGED_SKELETON_BONES: case Dependency::DEPENDENCY_CHANGED_AABB: { singleton->_instance_queue_update(instance, true, false); } break; case Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES: case Dependency::DEPENDENCY_CHANGED_MATERIAL: { singleton->_instance_queue_update(instance, false, true); } break; case Dependency::DEPENDENCY_CHANGED_MESH: case Dependency::DEPENDENCY_CHANGED_PARTICLES: case Dependency::DEPENDENCY_CHANGED_MULTIMESH: case Dependency::DEPENDENCY_CHANGED_DECAL: case Dependency::DEPENDENCY_CHANGED_LIGHT: case Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE: { singleton->_instance_queue_update(instance, true, true); } break; case Dependency::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR: { //requires repairing if (instance->indexer_id.is_valid()) { singleton->_unpair_instance(instance); singleton->_instance_queue_update(instance, true, true); } } break; default: { // Ignored notifications. } break; } } static void dependency_deleted(const RID &p_dependency, DependencyTracker *tracker) { Instance *instance = (Instance *)tracker->userdata; if (p_dependency == instance->base) { singleton->instance_set_base(instance->self, RID()); } else if (p_dependency == instance->skeleton) { singleton->instance_attach_skeleton(instance->self, RID()); } else { // It's possible the same material is used in multiple slots, // so we check whether we need to clear them all. if (p_dependency == instance->material_override) { singleton->instance_geometry_set_material_override(instance->self, RID()); } if (p_dependency == instance->material_overlay) { singleton->instance_geometry_set_material_overlay(instance->self, RID()); } for (int i = 0; i < instance->materials.size(); i++) { if (p_dependency == instance->materials[i]) { singleton->instance_set_surface_override_material(instance->self, i, RID()); } } if (instance->base_type == RS::INSTANCE_PARTICLES) { RID particle_material = RSG::particles_storage->particles_get_process_material(instance->base); if (p_dependency == particle_material) { RSG::particles_storage->particles_set_process_material(instance->base, RID()); } } // Even if no change is made we still need to call `_instance_queue_update`. // This dependency could also be a result of the freed material being used // by the mesh this mesh instance uses. singleton->_instance_queue_update(instance, false, true); } } Instance() : scenario_item(this), update_item(this) { base_type = RS::INSTANCE_NONE; cast_shadows = RS::SHADOW_CASTING_SETTING_ON; receive_shadows = true; visible = true; layer_mask = 1; baked_light = true; dynamic_gi = false; redraw_if_visible = false; lightmap_slice_index = 0; lightmap = nullptr; lightmap_cull_index = 0; lod_bias = 1.0; ignore_occlusion_culling = false; ignore_all_culling = false; scenario = nullptr; update_aabb = false; update_dependencies = false; extra_margin = 0; visible = true; visibility_range_begin = 0; visibility_range_end = 0; visibility_range_begin_margin = 0; visibility_range_end_margin = 0; last_frame_pass = 0; version = 1; base_data = nullptr; custom_aabb = nullptr; pair_check = 0; array_index = -1; dependency_tracker.userdata = this; dependency_tracker.changed_callback = dependency_changed; dependency_tracker.deleted_callback = dependency_deleted; } ~Instance() { if (base_data) { memdelete(base_data); } if (custom_aabb) { memdelete(custom_aabb); } } }; SelfList<Instance>::List _instance_update_list; void _instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_dependencies = false); struct InstanceGeometryData : public InstanceBaseData { RenderGeometryInstance *geometry_instance = nullptr; HashSet<Instance *> lights; bool can_cast_shadows; bool material_is_animated; uint32_t projector_count = 0; uint32_t softshadow_count = 0; HashSet<Instance *> decals; HashSet<Instance *> reflection_probes; HashSet<Instance *> voxel_gi_instances; HashSet<Instance *> lightmap_captures; InstanceGeometryData() { can_cast_shadows = true; material_is_animated = true; } }; struct InstanceReflectionProbeData : public InstanceBaseData { Instance *owner = nullptr; HashSet<Instance *> geometries; RID instance; SelfList<InstanceReflectionProbeData> update_list; int render_step; InstanceReflectionProbeData() : update_list(this) { render_step = -1; } }; struct InstanceDecalData : public InstanceBaseData { Instance *owner = nullptr; RID instance; HashSet<Instance *> geometries; InstanceDecalData() { } }; SelfList<InstanceReflectionProbeData>::List reflection_probe_render_list; struct InstanceParticlesCollisionData : public InstanceBaseData { RID instance; }; struct InstanceFogVolumeData : public InstanceBaseData { RID instance; bool is_global; }; struct InstanceVisibilityNotifierData : public InstanceBaseData { bool just_visible = false; uint64_t visible_in_frame = 0; RID base; SelfList<InstanceVisibilityNotifierData> list_element; InstanceVisibilityNotifierData() : list_element(this) {} }; SpinLock visible_notifier_list_lock; SelfList<InstanceVisibilityNotifierData>::List visible_notifier_list; struct InstanceLightData : public InstanceBaseData { RID instance; uint64_t last_version; List<Instance *>::Element *D; // directional light in scenario bool shadow_dirty; bool uses_projector = false; bool uses_softshadow = false; HashSet<Instance *> geometries; Instance *baked_light = nullptr; RS::LightBakeMode bake_mode; uint32_t max_sdfgi_cascade = 2; InstanceLightData() { bake_mode = RS::LIGHT_BAKE_DISABLED; shadow_dirty = true; D = nullptr; last_version = 0; baked_light = nullptr; } }; struct InstanceVoxelGIData : public InstanceBaseData { Instance *owner = nullptr; HashSet<Instance *> geometries; HashSet<Instance *> dynamic_geometries; HashSet<Instance *> lights; struct LightCache { RS::LightType type; Transform3D transform; Color color; float energy; float intensity; float bake_energy; float radius; float attenuation; float spot_angle; float spot_attenuation; bool has_shadow; RS::LightDirectionalSkyMode sky_mode; }; Vector<LightCache> light_cache; Vector<RID> light_instances; RID probe_instance; bool invalid; uint32_t base_version; SelfList<InstanceVoxelGIData> update_element; InstanceVoxelGIData() : update_element(this) { invalid = true; base_version = 0; } }; SelfList<InstanceVoxelGIData>::List voxel_gi_update_list; struct InstanceLightmapData : public InstanceBaseData { RID instance; HashSet<Instance *> geometries; HashSet<Instance *> users; InstanceLightmapData() { } }; uint64_t pair_pass = 1; struct PairInstances { Instance *instance = nullptr; PagedAllocator<InstancePair> *pair_allocator = nullptr; SelfList<InstancePair>::List pairs_found; DynamicBVH *bvh = nullptr; DynamicBVH *bvh2 = nullptr; //some may need to cull in two uint32_t pair_mask; uint64_t pair_pass; uint32_t cull_mask = 0xFFFFFFFF; // Needed for decals and lights in the mobile and compatibility renderers. _FORCE_INLINE_ bool operator()(void *p_data) { Instance *p_instance = (Instance *)p_data; if (instance != p_instance && instance->transformed_aabb.intersects(p_instance->transformed_aabb) && (pair_mask & (1 << p_instance->base_type)) && (cull_mask & p_instance->layer_mask)) { //test is more coarse in indexer p_instance->pair_check = pair_pass; InstancePair *pair = pair_allocator->alloc(); pair->a = instance; pair->b = p_instance; pairs_found.add(&pair->list_a); } return false; } void pair() { if (bvh) { bvh->aabb_query(instance->transformed_aabb, *this); } if (bvh2) { bvh2->aabb_query(instance->transformed_aabb, *this); } while (instance->pairs.first()) { InstancePair *pair = instance->pairs.first()->self(); Instance *other_instance = instance == pair->a ? pair->b : pair->a; if (other_instance->pair_check != pair_pass) { //unpaired _instance_unpair(instance, other_instance); } else { //kept other_instance->pair_check = 0; // if kept, then put pair check to zero, so we can distinguish with the newly added ones } pair_allocator->free(pair); } while (pairs_found.first()) { InstancePair *pair = pairs_found.first()->self(); pairs_found.remove(pairs_found.first()); if (pair->b->pair_check == pair_pass) { //paired _instance_pair(instance, pair->b); } pair->a->pairs.add(&pair->list_a); pair->b->pairs.add(&pair->list_b); } } }; HashSet<Instance *> heightfield_particle_colliders_update_list; PagedArrayPool<Instance *> instance_cull_page_pool; PagedArrayPool<RenderGeometryInstance *> geometry_instance_cull_page_pool; PagedArrayPool<RID> rid_cull_page_pool; PagedArray<Instance *> instance_cull_result; PagedArray<Instance *> instance_shadow_cull_result; struct InstanceCullResult { PagedArray<RenderGeometryInstance *> geometry_instances; PagedArray<Instance *> lights; PagedArray<RID> light_instances; PagedArray<RID> lightmaps; PagedArray<RID> reflections; PagedArray<RID> decals; PagedArray<RID> voxel_gi_instances; PagedArray<RID> mesh_instances; PagedArray<RID> fog_volumes; struct DirectionalShadow { PagedArray<RenderGeometryInstance *> cascade_geometry_instances[RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES]; } directional_shadows[RendererSceneRender::MAX_DIRECTIONAL_LIGHTS]; PagedArray<RenderGeometryInstance *> sdfgi_region_geometry_instances[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE]; PagedArray<RID> sdfgi_cascade_lights[SDFGI_MAX_CASCADES]; void clear() { geometry_instances.clear(); lights.clear(); light_instances.clear(); lightmaps.clear(); reflections.clear(); decals.clear(); voxel_gi_instances.clear(); mesh_instances.clear(); fog_volumes.clear(); for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) { for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) { directional_shadows[i].cascade_geometry_instances[j].clear(); } } for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) { sdfgi_region_geometry_instances[i].clear(); } for (int i = 0; i < SDFGI_MAX_CASCADES; i++) { sdfgi_cascade_lights[i].clear(); } } void reset() { geometry_instances.reset(); lights.reset(); light_instances.reset(); lightmaps.reset(); reflections.reset(); decals.reset(); voxel_gi_instances.reset(); mesh_instances.reset(); fog_volumes.reset(); for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) { for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) { directional_shadows[i].cascade_geometry_instances[j].reset(); } } for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) { sdfgi_region_geometry_instances[i].reset(); } for (int i = 0; i < SDFGI_MAX_CASCADES; i++) { sdfgi_cascade_lights[i].reset(); } } void append_from(InstanceCullResult &p_cull_result) { geometry_instances.merge_unordered(p_cull_result.geometry_instances); lights.merge_unordered(p_cull_result.lights); light_instances.merge_unordered(p_cull_result.light_instances); lightmaps.merge_unordered(p_cull_result.lightmaps); reflections.merge_unordered(p_cull_result.reflections); decals.merge_unordered(p_cull_result.decals); voxel_gi_instances.merge_unordered(p_cull_result.voxel_gi_instances); mesh_instances.merge_unordered(p_cull_result.mesh_instances); fog_volumes.merge_unordered(p_cull_result.fog_volumes); for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) { for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) { directional_shadows[i].cascade_geometry_instances[j].merge_unordered(p_cull_result.directional_shadows[i].cascade_geometry_instances[j]); } } for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) { sdfgi_region_geometry_instances[i].merge_unordered(p_cull_result.sdfgi_region_geometry_instances[i]); } for (int i = 0; i < SDFGI_MAX_CASCADES; i++) { sdfgi_cascade_lights[i].merge_unordered(p_cull_result.sdfgi_cascade_lights[i]); } } void init(PagedArrayPool<RID> *p_rid_pool, PagedArrayPool<RenderGeometryInstance *> *p_geometry_instance_pool, PagedArrayPool<Instance *> *p_instance_pool) { geometry_instances.set_page_pool(p_geometry_instance_pool); light_instances.set_page_pool(p_rid_pool); lights.set_page_pool(p_instance_pool); lightmaps.set_page_pool(p_rid_pool); reflections.set_page_pool(p_rid_pool); decals.set_page_pool(p_rid_pool); voxel_gi_instances.set_page_pool(p_rid_pool); mesh_instances.set_page_pool(p_rid_pool); fog_volumes.set_page_pool(p_rid_pool); for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) { for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) { directional_shadows[i].cascade_geometry_instances[j].set_page_pool(p_geometry_instance_pool); } } for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) { sdfgi_region_geometry_instances[i].set_page_pool(p_geometry_instance_pool); } for (int i = 0; i < SDFGI_MAX_CASCADES; i++) { sdfgi_cascade_lights[i].set_page_pool(p_rid_pool); } } }; InstanceCullResult scene_cull_result; LocalVector<InstanceCullResult> scene_cull_result_threads; RendererSceneRender::RenderShadowData render_shadow_data[MAX_UPDATE_SHADOWS]; uint32_t max_shadows_used = 0; RendererSceneRender::RenderSDFGIData render_sdfgi_data[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE]; RendererSceneRender::RenderSDFGIUpdateData sdfgi_update_data; uint32_t thread_cull_threshold = 200; RID_Owner<Instance, true> instance_owner; uint32_t geometry_instance_pair_mask = 0; // used in traditional forward, unnecessary on clustered const int TAA_JITTER_COUNT = 16; LocalVector<Vector2> taa_jitter_array; virtual RID instance_allocate(); virtual void instance_initialize(RID p_rid); virtual void instance_set_base(RID p_instance, RID p_base); virtual void instance_set_scenario(RID p_instance, RID p_scenario); virtual void instance_set_layer_mask(RID p_instance, uint32_t p_mask); virtual void instance_set_pivot_data(RID p_instance, float p_sorting_offset, bool p_use_aabb_center); virtual void instance_set_transform(RID p_instance, const Transform3D &p_transform); virtual void instance_attach_object_instance_id(RID p_instance, ObjectID p_id); virtual void instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight); virtual void instance_set_surface_override_material(RID p_instance, int p_surface, RID p_material); virtual void instance_set_visible(RID p_instance, bool p_visible); virtual void instance_geometry_set_transparency(RID p_instance, float p_transparency); virtual void instance_set_custom_aabb(RID p_instance, AABB p_aabb); virtual void instance_attach_skeleton(RID p_instance, RID p_skeleton); virtual void instance_set_extra_visibility_margin(RID p_instance, real_t p_margin); virtual void instance_set_visibility_parent(RID p_instance, RID p_parent_instance); virtual void instance_set_ignore_culling(RID p_instance, bool p_enabled); bool _update_instance_visibility_depth(Instance *p_instance); void _update_instance_visibility_dependencies(Instance *p_instance); // don't use these in a game! virtual Vector<ObjectID> instances_cull_aabb(const AABB &p_aabb, RID p_scenario = RID()) const; virtual Vector<ObjectID> instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario = RID()) const; virtual Vector<ObjectID> instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario = RID()) const; virtual void instance_geometry_set_flag(RID p_instance, RS::InstanceFlags p_flags, bool p_enabled); virtual void instance_geometry_set_cast_shadows_setting(RID p_instance, RS::ShadowCastingSetting p_shadow_casting_setting); virtual void instance_geometry_set_material_override(RID p_instance, RID p_material); virtual void instance_geometry_set_material_overlay(RID p_instance, RID p_material); virtual void instance_geometry_set_visibility_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin, RS::VisibilityRangeFadeMode p_fade_mode); virtual void instance_geometry_set_lightmap(RID p_instance, RID p_lightmap, const Rect2 &p_lightmap_uv_scale, int p_slice_index); virtual void instance_geometry_set_lod_bias(RID p_instance, float p_lod_bias); void _update_instance_shader_uniforms_from_material(HashMap<StringName, Instance::InstanceShaderParameter> &isparams, const HashMap<StringName, Instance::InstanceShaderParameter> &existing_isparams, RID p_material); virtual void instance_geometry_set_shader_parameter(RID p_instance, const StringName &p_parameter, const Variant &p_value); virtual void instance_geometry_get_shader_parameter_list(RID p_instance, List<PropertyInfo> *p_parameters) const; virtual Variant instance_geometry_get_shader_parameter(RID p_instance, const StringName &p_parameter) const; virtual Variant instance_geometry_get_shader_parameter_default_value(RID p_instance, const StringName &p_parameter) const; _FORCE_INLINE_ void _update_instance(Instance *p_instance); _FORCE_INLINE_ void _update_instance_aabb(Instance *p_instance); _FORCE_INLINE_ void _update_dirty_instance(Instance *p_instance); _FORCE_INLINE_ void _update_instance_lightmap_captures(Instance *p_instance); void _unpair_instance(Instance *p_instance); void _light_instance_setup_directional_shadow(int p_shadow_index, Instance *p_instance, const Transform3D p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect); _FORCE_INLINE_ bool _light_instance_update_shadow(Instance *p_instance, const Transform3D p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_shadow_atlas, Scenario *p_scenario, float p_scren_mesh_lod_threshold, uint32_t p_visible_layers = 0xFFFFFF); RID _render_get_environment(RID p_camera, RID p_scenario); struct Cull { struct Shadow { RID light_instance; struct Cascade { Frustum frustum; Projection projection; Transform3D transform; real_t zfar; real_t split; real_t shadow_texel_size; real_t bias_scale; real_t range_begin; Vector2 uv_scale; } cascades[RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES]; //max 4 cascades uint32_t cascade_count; } shadows[RendererSceneRender::MAX_DIRECTIONAL_LIGHTS]; uint32_t shadow_count; struct SDFGI { //have arrays here because SDFGI functions expects this, plus regions can have areas AABB region_aabb[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE]; //max 3 regions per cascade uint32_t region_cascade[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE]; //max 3 regions per cascade uint32_t region_count = 0; uint32_t cascade_light_index[SDFGI_MAX_CASCADES]; uint32_t cascade_light_count = 0; } sdfgi; SpinLock lock; Frustum frustum; } cull; struct VisibilityCullData { uint64_t viewport_mask; Scenario *scenario = nullptr; Vector3 camera_position; uint32_t cull_offset; uint32_t cull_count; }; void _visibility_cull_threaded(uint32_t p_thread, VisibilityCullData *cull_data); void _visibility_cull(const VisibilityCullData &cull_data, uint64_t p_from, uint64_t p_to); template <bool p_fade_check> _FORCE_INLINE_ int _visibility_range_check(InstanceVisibilityData &r_vis_data, const Vector3 &p_camera_pos, uint64_t p_viewport_mask); struct CullData { Cull *cull = nullptr; Scenario *scenario = nullptr; RID shadow_atlas; Transform3D cam_transform; uint32_t visible_layers; Instance *render_reflection_probe = nullptr; const RendererSceneOcclusionCull::HZBuffer *occlusion_buffer; const Projection *camera_matrix; uint64_t visibility_viewport_mask; }; void _scene_cull_threaded(uint32_t p_thread, CullData *cull_data); void _scene_cull(CullData &cull_data, InstanceCullResult &cull_result, uint64_t p_from, uint64_t p_to); _FORCE_INLINE_ bool _visibility_parent_check(const CullData &p_cull_data, const InstanceData &p_instance_data); bool _render_reflection_probe_step(Instance *p_instance, int p_step); void _render_scene(const RendererSceneRender::CameraData *p_camera_data, const Ref<RenderSceneBuffers> &p_render_buffers, RID p_environment, RID p_force_camera_attributes, uint32_t p_visible_layers, RID p_scenario, RID p_viewport, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, bool p_using_shadows = true, RenderInfo *r_render_info = nullptr); void render_empty_scene(const Ref<RenderSceneBuffers> &p_render_buffers, RID p_scenario, RID p_shadow_atlas); void render_camera(const Ref<RenderSceneBuffers> &p_render_buffers, RID p_camera, RID p_scenario, RID p_viewport, Size2 p_viewport_size, bool p_use_taa, float p_screen_mesh_lod_threshold, RID p_shadow_atlas, Ref<XRInterface> &p_xr_interface, RenderingMethod::RenderInfo *r_render_info = nullptr); void update_dirty_instances(); void render_particle_colliders(); virtual void render_probes(); TypedArray<Image> bake_render_uv2(RID p_base, const TypedArray<RID> &p_material_overrides, const Size2i &p_image_size); //pass to scene render /* ENVIRONMENT API */ #ifdef PASSBASE #undef PASSBASE #endif #define PASSBASE scene_render PASS1(voxel_gi_set_quality, RS::VoxelGIQuality) /* SKY API */ PASS0R(RID, sky_allocate) PASS1(sky_initialize, RID) PASS2(sky_set_radiance_size, RID, int) PASS2(sky_set_mode, RID, RS::SkyMode) PASS2(sky_set_material, RID, RID) PASS4R(Ref<Image>, sky_bake_panorama, RID, float, bool, const Size2i &) PASS0R(RID, environment_allocate) PASS1(environment_initialize, RID) PASS1RC(bool, is_environment, RID) // Background PASS2(environment_set_background, RID, RS::EnvironmentBG) PASS2(environment_set_sky, RID, RID) PASS2(environment_set_sky_custom_fov, RID, float) PASS2(environment_set_sky_orientation, RID, const Basis &) PASS2(environment_set_bg_color, RID, const Color &) PASS3(environment_set_bg_energy, RID, float, float) PASS2(environment_set_canvas_max_layer, RID, int) PASS6(environment_set_ambient_light, RID, const Color &, RS::EnvironmentAmbientSource, float, float, RS::EnvironmentReflectionSource) PASS1RC(RS::EnvironmentBG, environment_get_background, RID) PASS1RC(RID, environment_get_sky, RID) PASS1RC(float, environment_get_sky_custom_fov, RID) PASS1RC(Basis, environment_get_sky_orientation, RID) PASS1RC(Color, environment_get_bg_color, RID) PASS1RC(float, environment_get_bg_energy_multiplier, RID) PASS1RC(float, environment_get_bg_intensity, RID) PASS1RC(int, environment_get_canvas_max_layer, RID) PASS1RC(RS::EnvironmentAmbientSource, environment_get_ambient_source, RID) PASS1RC(Color, environment_get_ambient_light, RID) PASS1RC(float, environment_get_ambient_light_energy, RID) PASS1RC(float, environment_get_ambient_sky_contribution, RID) PASS1RC(RS::EnvironmentReflectionSource, environment_get_reflection_source, RID) // Tonemap PASS4(environment_set_tonemap, RID, RS::EnvironmentToneMapper, float, float) PASS1RC(RS::EnvironmentToneMapper, environment_get_tone_mapper, RID) PASS1RC(float, environment_get_exposure, RID) PASS1RC(float, environment_get_white, RID) // Fog PASS10(environment_set_fog, RID, bool, const Color &, float, float, float, float, float, float, float) PASS1RC(bool, environment_get_fog_enabled, RID) PASS1RC(Color, environment_get_fog_light_color, RID) PASS1RC(float, environment_get_fog_light_energy, RID) PASS1RC(float, environment_get_fog_sun_scatter, RID) PASS1RC(float, environment_get_fog_density, RID) PASS1RC(float, environment_get_fog_sky_affect, RID) PASS1RC(float, environment_get_fog_height, RID) PASS1RC(float, environment_get_fog_height_density, RID) PASS1RC(float, environment_get_fog_aerial_perspective, RID) PASS2(environment_set_volumetric_fog_volume_size, int, int) PASS1(environment_set_volumetric_fog_filter_active, bool) // Volumentric Fog PASS14(environment_set_volumetric_fog, RID, bool, float, const Color &, const Color &, float, float, float, float, float, bool, float, float, float) PASS1RC(bool, environment_get_volumetric_fog_enabled, RID) PASS1RC(float, environment_get_volumetric_fog_density, RID) PASS1RC(Color, environment_get_volumetric_fog_scattering, RID) PASS1RC(Color, environment_get_volumetric_fog_emission, RID) PASS1RC(float, environment_get_volumetric_fog_emission_energy, RID) PASS1RC(float, environment_get_volumetric_fog_anisotropy, RID) PASS1RC(float, environment_get_volumetric_fog_length, RID) PASS1RC(float, environment_get_volumetric_fog_detail_spread, RID) PASS1RC(float, environment_get_volumetric_fog_gi_inject, RID) PASS1RC(float, environment_get_volumetric_fog_sky_affect, RID) PASS1RC(bool, environment_get_volumetric_fog_temporal_reprojection, RID) PASS1RC(float, environment_get_volumetric_fog_temporal_reprojection_amount, RID) PASS1RC(float, environment_get_volumetric_fog_ambient_inject, RID) // Glow PASS13(environment_set_glow, RID, bool, Vector<float>, float, float, float, float, RS::EnvironmentGlowBlendMode, float, float, float, float, RID) PASS1RC(bool, environment_get_glow_enabled, RID) PASS1RC(Vector<float>, environment_get_glow_levels, RID) PASS1RC(float, environment_get_glow_intensity, RID) PASS1RC(float, environment_get_glow_strength, RID) PASS1RC(float, environment_get_glow_bloom, RID) PASS1RC(float, environment_get_glow_mix, RID) PASS1RC(RS::EnvironmentGlowBlendMode, environment_get_glow_blend_mode, RID) PASS1RC(float, environment_get_glow_hdr_bleed_threshold, RID) PASS1RC(float, environment_get_glow_hdr_luminance_cap, RID) PASS1RC(float, environment_get_glow_hdr_bleed_scale, RID) PASS1RC(float, environment_get_glow_map_strength, RID) PASS1RC(RID, environment_get_glow_map, RID) PASS1(environment_glow_set_use_bicubic_upscale, bool) // SSR PASS6(environment_set_ssr, RID, bool, int, float, float, float) PASS1RC(bool, environment_get_ssr_enabled, RID) PASS1RC(int, environment_get_ssr_max_steps, RID) PASS1RC(float, environment_get_ssr_fade_in, RID) PASS1RC(float, environment_get_ssr_fade_out, RID) PASS1RC(float, environment_get_ssr_depth_tolerance, RID) PASS1(environment_set_ssr_roughness_quality, RS::EnvironmentSSRRoughnessQuality) // SSAO PASS10(environment_set_ssao, RID, bool, float, float, float, float, float, float, float, float) PASS1RC(bool, environment_get_ssao_enabled, RID) PASS1RC(float, environment_get_ssao_radius, RID) PASS1RC(float, environment_get_ssao_intensity, RID) PASS1RC(float, environment_get_ssao_power, RID) PASS1RC(float, environment_get_ssao_detail, RID) PASS1RC(float, environment_get_ssao_horizon, RID) PASS1RC(float, environment_get_ssao_sharpness, RID) PASS1RC(float, environment_get_ssao_direct_light_affect, RID) PASS1RC(float, environment_get_ssao_ao_channel_affect, RID) PASS6(environment_set_ssao_quality, RS::EnvironmentSSAOQuality, bool, float, int, float, float) // SSIL PASS6(environment_set_ssil, RID, bool, float, float, float, float) PASS1RC(bool, environment_get_ssil_enabled, RID) PASS1RC(float, environment_get_ssil_radius, RID) PASS1RC(float, environment_get_ssil_intensity, RID) PASS1RC(float, environment_get_ssil_sharpness, RID) PASS1RC(float, environment_get_ssil_normal_rejection, RID) PASS6(environment_set_ssil_quality, RS::EnvironmentSSILQuality, bool, float, int, float, float) // SDFGI PASS11(environment_set_sdfgi, RID, bool, int, float, RS::EnvironmentSDFGIYScale, bool, float, bool, float, float, float) PASS1RC(bool, environment_get_sdfgi_enabled, RID) PASS1RC(int, environment_get_sdfgi_cascades, RID) PASS1RC(float, environment_get_sdfgi_min_cell_size, RID) PASS1RC(bool, environment_get_sdfgi_use_occlusion, RID) PASS1RC(float, environment_get_sdfgi_bounce_feedback, RID) PASS1RC(bool, environment_get_sdfgi_read_sky_light, RID) PASS1RC(float, environment_get_sdfgi_energy, RID) PASS1RC(float, environment_get_sdfgi_normal_bias, RID) PASS1RC(float, environment_get_sdfgi_probe_bias, RID) PASS1RC(RS::EnvironmentSDFGIYScale, environment_get_sdfgi_y_scale, RID) PASS1(environment_set_sdfgi_ray_count, RS::EnvironmentSDFGIRayCount) PASS1(environment_set_sdfgi_frames_to_converge, RS::EnvironmentSDFGIFramesToConverge) PASS1(environment_set_sdfgi_frames_to_update_light, RS::EnvironmentSDFGIFramesToUpdateLight) // Adjustment PASS7(environment_set_adjustment, RID, bool, float, float, float, bool, RID) PASS1RC(bool, environment_get_adjustments_enabled, RID) PASS1RC(float, environment_get_adjustments_brightness, RID) PASS1RC(float, environment_get_adjustments_contrast, RID) PASS1RC(float, environment_get_adjustments_saturation, RID) PASS1RC(bool, environment_get_use_1d_color_correction, RID) PASS1RC(RID, environment_get_color_correction, RID) PASS3R(Ref<Image>, environment_bake_panorama, RID, bool, const Size2i &) PASS3(screen_space_roughness_limiter_set_active, bool, float, float) PASS1(sub_surface_scattering_set_quality, RS::SubSurfaceScatteringQuality) PASS2(sub_surface_scattering_set_scale, float, float) PASS1(positional_soft_shadow_filter_set_quality, RS::ShadowQuality) PASS1(directional_soft_shadow_filter_set_quality, RS::ShadowQuality) PASS2(sdfgi_set_debug_probe_select, const Vector3 &, const Vector3 &) /* Render Buffers */ PASS0R(Ref<RenderSceneBuffers>, render_buffers_create) PASS1(gi_set_use_half_resolution, bool) /* Misc */ PASS1(set_debug_draw_mode, RS::ViewportDebugDraw) PASS1(decals_set_filter, RS::DecalFilter) PASS1(light_projectors_set_filter, RS::LightProjectorFilter) virtual void update(); bool free(RID p_rid); void set_scene_render(RendererSceneRender *p_scene_render); virtual void update_visibility_notifiers(); RendererSceneCull(); virtual ~RendererSceneCull(); }; #endif // RENDERER_SCENE_CULL_H