/**************************************************************************/ /* test_rect2.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef TEST_RECT2_H #define TEST_RECT2_H #include "core/math/rect2.h" #include "core/math/rect2i.h" #include "thirdparty/doctest/doctest.h" namespace TestRect2 { TEST_CASE("[Rect2] Constructor methods") { const Rect2 rect = Rect2(0, 100, 1280, 720); const Rect2 rect_vector = Rect2(Vector2(0, 100), Vector2(1280, 720)); const Rect2 rect_copy_rect = Rect2(rect); const Rect2 rect_copy_recti = Rect2(Rect2i(0, 100, 1280, 720)); CHECK_MESSAGE( rect == rect_vector, "Rect2s created with the same dimensions but by different methods should be equal."); CHECK_MESSAGE( rect == rect_copy_rect, "Rect2s created with the same dimensions but by different methods should be equal."); CHECK_MESSAGE( rect == rect_copy_recti, "Rect2s created with the same dimensions but by different methods should be equal."); } TEST_CASE("[Rect2] String conversion") { // Note: This also depends on the Vector2 string representation. CHECK_MESSAGE( String(Rect2(0, 100, 1280, 720)) == "[P: (0, 100), S: (1280, 720)]", "The string representation should match the expected value."); } TEST_CASE("[Rect2] Basic getters") { const Rect2 rect = Rect2(0, 100, 1280, 720); CHECK_MESSAGE( rect.get_position().is_equal_approx(Vector2(0, 100)), "get_position() should return the expected value."); CHECK_MESSAGE( rect.get_size().is_equal_approx(Vector2(1280, 720)), "get_size() should return the expected value."); CHECK_MESSAGE( rect.get_end().is_equal_approx(Vector2(1280, 820)), "get_end() should return the expected value."); CHECK_MESSAGE( rect.get_center().is_equal_approx(Vector2(640, 460)), "get_center() should return the expected value."); CHECK_MESSAGE( Rect2(0, 100, 1281, 721).get_center().is_equal_approx(Vector2(640.5, 460.5)), "get_center() should return the expected value."); } TEST_CASE("[Rect2] Basic setters") { Rect2 rect = Rect2(0, 100, 1280, 720); rect.set_end(Vector2(4000, 4000)); CHECK_MESSAGE( rect.is_equal_approx(Rect2(0, 100, 4000, 3900)), "set_end() should result in the expected Rect2."); rect = Rect2(0, 100, 1280, 720); rect.set_position(Vector2(4000, 4000)); CHECK_MESSAGE( rect.is_equal_approx(Rect2(4000, 4000, 1280, 720)), "set_position() should result in the expected Rect2."); rect = Rect2(0, 100, 1280, 720); rect.set_size(Vector2(4000, 4000)); CHECK_MESSAGE( rect.is_equal_approx(Rect2(0, 100, 4000, 4000)), "set_size() should result in the expected Rect2."); } TEST_CASE("[Rect2] Area getters") { CHECK_MESSAGE( Rect2(0, 100, 1280, 720).get_area() == doctest::Approx(921'600), "get_area() should return the expected value."); CHECK_MESSAGE( Rect2(0, 100, -1280, -720).get_area() == doctest::Approx(921'600), "get_area() should return the expected value."); CHECK_MESSAGE( Rect2(0, 100, 1280, -720).get_area() == doctest::Approx(-921'600), "get_area() should return the expected value."); CHECK_MESSAGE( Rect2(0, 100, -1280, 720).get_area() == doctest::Approx(-921'600), "get_area() should return the expected value."); CHECK_MESSAGE( Math::is_zero_approx(Rect2(0, 100, 0, 720).get_area()), "get_area() should return the expected value."); CHECK_MESSAGE( Rect2(0, 100, 1280, 720).has_area(), "has_area() should return the expected value on Rect2 with an area."); CHECK_MESSAGE( !Rect2(0, 100, 0, 500).has_area(), "has_area() should return the expected value on Rect2 with no area."); CHECK_MESSAGE( !Rect2(0, 100, 500, 0).has_area(), "has_area() should return the expected value on Rect2 with no area."); CHECK_MESSAGE( !Rect2(0, 100, 0, 0).has_area(), "has_area() should return the expected value on Rect2 with no area."); } TEST_CASE("[Rect2] Absolute coordinates") { CHECK_MESSAGE( Rect2(0, 100, 1280, 720).abs().is_equal_approx(Rect2(0, 100, 1280, 720)), "abs() should return the expected Rect2."); CHECK_MESSAGE( Rect2(0, -100, 1280, 720).abs().is_equal_approx(Rect2(0, -100, 1280, 720)), "abs() should return the expected Rect2."); CHECK_MESSAGE( Rect2(0, -100, -1280, -720).abs().is_equal_approx(Rect2(-1280, -820, 1280, 720)), "abs() should return the expected Rect2."); CHECK_MESSAGE( Rect2(0, 100, -1280, 720).abs().is_equal_approx(Rect2(-1280, 100, 1280, 720)), "abs() should return the expected Rect2."); } TEST_CASE("[Rect2] Intersection") { CHECK_MESSAGE( Rect2(0, 100, 1280, 720).intersection(Rect2(0, 300, 100, 100)).is_equal_approx(Rect2(0, 300, 100, 100)), "intersection() with fully enclosed Rect2 should return the expected result."); // The resulting Rect2 is 100 pixels high because the first Rect2 is vertically offset by 100 pixels. CHECK_MESSAGE( Rect2(0, 100, 1280, 720).intersection(Rect2(1200, 700, 100, 100)).is_equal_approx(Rect2(1200, 700, 80, 100)), "intersection() with partially enclosed Rect2 should return the expected result."); CHECK_MESSAGE( Rect2(0, 100, 1280, 720).intersection(Rect2(-4000, -4000, 100, 100)).is_equal_approx(Rect2()), "intersection() with non-enclosed Rect2 should return the expected result."); } TEST_CASE("[Rect2] Enclosing") { CHECK_MESSAGE( Rect2(0, 100, 1280, 720).encloses(Rect2(0, 300, 100, 100)), "encloses() with fully contained Rect2 should return the expected result."); CHECK_MESSAGE( !Rect2(0, 100, 1280, 720).encloses(Rect2(1200, 700, 100, 100)), "encloses() with partially contained Rect2 should return the expected result."); CHECK_MESSAGE( !Rect2(0, 100, 1280, 720).encloses(Rect2(-4000, -4000, 100, 100)), "encloses() with non-contained Rect2 should return the expected result."); } TEST_CASE("[Rect2] Expanding") { CHECK_MESSAGE( Rect2(0, 100, 1280, 720).expand(Vector2(500, 600)).is_equal_approx(Rect2(0, 100, 1280, 720)), "expand() with contained Vector2 should return the expected result."); CHECK_MESSAGE( Rect2(0, 100, 1280, 720).expand(Vector2(0, 0)).is_equal_approx(Rect2(0, 0, 1280, 820)), "expand() with non-contained Vector2 should return the expected result."); } TEST_CASE("[Rect2] Get support") { const Rect2 rect = Rect2(Vector2(-1.5, 2), Vector2(4, 5)); CHECK_MESSAGE( rect.get_support(Vector2(1, 0)) == Vector2(2.5, 2), "get_support() should return the expected value."); CHECK_MESSAGE( rect.get_support(Vector2(0.5, 1)) == Vector2(2.5, 7), "get_support() should return the expected value."); CHECK_MESSAGE( rect.get_support(Vector2(0.5, 1)) == Vector2(2.5, 7), "get_support() should return the expected value."); CHECK_MESSAGE( rect.get_support(Vector2(0, -1)) == Vector2(-1.5, 2), "get_support() should return the expected value."); CHECK_MESSAGE( rect.get_support(Vector2(0, -0.1)) == Vector2(-1.5, 2), "get_support() should return the expected value."); CHECK_MESSAGE( rect.get_support(Vector2()) == Vector2(-1.5, 2), "get_support() should return the Rect2 position when given a zero vector."); } TEST_CASE("[Rect2] Growing") { CHECK_MESSAGE( Rect2(0, 100, 1280, 720).grow(100).is_equal_approx(Rect2(-100, 0, 1480, 920)), "grow() with positive value should return the expected Rect2."); CHECK_MESSAGE( Rect2(0, 100, 1280, 720).grow(-100).is_equal_approx(Rect2(100, 200, 1080, 520)), "grow() with negative value should return the expected Rect2."); CHECK_MESSAGE( Rect2(0, 100, 1280, 720).grow(-4000).is_equal_approx(Rect2(4000, 4100, -6720, -7280)), "grow() with large negative value should return the expected Rect2."); CHECK_MESSAGE( Rect2(0, 100, 1280, 720).grow_individual(100, 200, 300, 400).is_equal_approx(Rect2(-100, -100, 1680, 1320)), "grow_individual() with positive values should return the expected Rect2."); CHECK_MESSAGE( Rect2(0, 100, 1280, 720).grow_individual(-100, 200, 300, -400).is_equal_approx(Rect2(100, -100, 1480, 520)), "grow_individual() with positive and negative values should return the expected Rect2."); CHECK_MESSAGE( Rect2(0, 100, 1280, 720).grow_side(SIDE_TOP, 500).is_equal_approx(Rect2(0, -400, 1280, 1220)), "grow_side() with positive value should return the expected Rect2."); CHECK_MESSAGE( Rect2(0, 100, 1280, 720).grow_side(SIDE_TOP, -500).is_equal_approx(Rect2(0, 600, 1280, 220)), "grow_side() with negative value should return the expected Rect2."); } TEST_CASE("[Rect2] Has point") { Rect2 rect = Rect2(0, 100, 1280, 720); CHECK_MESSAGE( rect.has_point(Vector2(500, 600)), "has_point() with contained Vector2 should return the expected result."); CHECK_MESSAGE( !rect.has_point(Vector2(0, 0)), "has_point() with non-contained Vector2 should return the expected result."); CHECK_MESSAGE( rect.has_point(rect.position), "has_point() with positive size should include `position`."); CHECK_MESSAGE( rect.has_point(rect.position + Vector2(1, 1)), "has_point() with positive size should include `position + (1, 1)`."); CHECK_MESSAGE( !rect.has_point(rect.position + Vector2(1, -1)), "has_point() with positive size should not include `position + (1, -1)`."); CHECK_MESSAGE( !rect.has_point(rect.position + rect.size), "has_point() with positive size should not include `position + size`."); CHECK_MESSAGE( !rect.has_point(rect.position + rect.size + Vector2(1, 1)), "has_point() with positive size should not include `position + size + (1, 1)`."); CHECK_MESSAGE( rect.has_point(rect.position + rect.size + Vector2(-1, -1)), "has_point() with positive size should include `position + size + (-1, -1)`."); CHECK_MESSAGE( !rect.has_point(rect.position + rect.size + Vector2(-1, 1)), "has_point() with positive size should not include `position + size + (-1, 1)`."); CHECK_MESSAGE( rect.has_point(rect.position + Vector2(0, 10)), "has_point() with point located on left edge should return true."); CHECK_MESSAGE( !rect.has_point(rect.position + Vector2(rect.size.x, 10)), "has_point() with point located on right edge should return false."); CHECK_MESSAGE( rect.has_point(rect.position + Vector2(10, 0)), "has_point() with point located on top edge should return true."); CHECK_MESSAGE( !rect.has_point(rect.position + Vector2(10, rect.size.y)), "has_point() with point located on bottom edge should return false."); /* // FIXME: Disabled for now until GH-37617 is fixed one way or another. // More tests should then be written like for the positive size case. rect = Rect2(0, 100, -1280, -720); CHECK_MESSAGE( rect.has_point(rect.position), "has_point() with negative size should include `position`."); CHECK_MESSAGE( !rect.has_point(rect.position + rect.size), "has_point() with negative size should not include `position + size`."); */ rect = Rect2(-4000, -200, 1280, 720); CHECK_MESSAGE( rect.has_point(rect.position + Vector2(0, 10)), "has_point() with negative position and point located on left edge should return true."); CHECK_MESSAGE( !rect.has_point(rect.position + Vector2(rect.size.x, 10)), "has_point() with negative position and point located on right edge should return false."); CHECK_MESSAGE( rect.has_point(rect.position + Vector2(10, 0)), "has_point() with negative position and point located on top edge should return true."); CHECK_MESSAGE( !rect.has_point(rect.position + Vector2(10, rect.size.y)), "has_point() with negative position and point located on bottom edge should return false."); } TEST_CASE("[Rect2] Intersection") { CHECK_MESSAGE( Rect2(0, 100, 1280, 720).intersects(Rect2(0, 300, 100, 100)), "intersects() with fully enclosed Rect2 should return the expected result."); CHECK_MESSAGE( Rect2(0, 100, 1280, 720).intersects(Rect2(1200, 700, 100, 100)), "intersects() with partially enclosed Rect2 should return the expected result."); CHECK_MESSAGE( !Rect2(0, 100, 1280, 720).intersects(Rect2(-4000, -4000, 100, 100)), "intersects() with non-enclosed Rect2 should return the expected result."); } TEST_CASE("[Rect2] Merging") { CHECK_MESSAGE( Rect2(0, 100, 1280, 720).merge(Rect2(0, 300, 100, 100)).is_equal_approx(Rect2(0, 100, 1280, 720)), "merge() with fully enclosed Rect2 should return the expected result."); CHECK_MESSAGE( Rect2(0, 100, 1280, 720).merge(Rect2(1200, 700, 100, 100)).is_equal_approx(Rect2(0, 100, 1300, 720)), "merge() with partially enclosed Rect2 should return the expected result."); CHECK_MESSAGE( Rect2(0, 100, 1280, 720).merge(Rect2(-4000, -4000, 100, 100)).is_equal_approx(Rect2(-4000, -4000, 5280, 4820)), "merge() with non-enclosed Rect2 should return the expected result."); } TEST_CASE("[Rect2] Finite number checks") { const Vector2 x(0, 1); const Vector2 infinite(NAN, NAN); CHECK_MESSAGE( Rect2(x, x).is_finite(), "Rect2 with all components finite should be finite"); CHECK_FALSE_MESSAGE( Rect2(infinite, x).is_finite(), "Rect2 with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( Rect2(x, infinite).is_finite(), "Rect2 with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( Rect2(infinite, infinite).is_finite(), "Rect2 with two components infinite should not be finite."); } } // namespace TestRect2 #endif // TEST_RECT2_H