#[compute] #version 450 #VERSION_DEFINES layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; #define M_PI 3.141592 /* Specialization Constants (Toggles) */ layout(constant_id = 0) const bool sc_half_res = false; layout(constant_id = 1) const bool sc_use_full_projection_matrix = false; layout(constant_id = 2) const bool sc_use_vrs = false; #define SDFGI_MAX_CASCADES 8 //set 0 for SDFGI and render buffers layout(set = 0, binding = 1) uniform texture3D sdf_cascades[SDFGI_MAX_CASCADES]; layout(set = 0, binding = 2) uniform texture3D light_cascades[SDFGI_MAX_CASCADES]; layout(set = 0, binding = 3) uniform texture3D aniso0_cascades[SDFGI_MAX_CASCADES]; layout(set = 0, binding = 4) uniform texture3D aniso1_cascades[SDFGI_MAX_CASCADES]; layout(set = 0, binding = 5) uniform texture3D occlusion_texture; layout(set = 0, binding = 6) uniform sampler linear_sampler; layout(set = 0, binding = 7) uniform sampler linear_sampler_with_mipmaps; struct ProbeCascadeData { vec3 position; float to_probe; ivec3 probe_world_offset; float to_cell; // 1/bounds * grid_size vec3 pad; float exposure_normalization; }; layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image2D ambient_buffer; layout(rgba16f, set = 0, binding = 10) uniform restrict writeonly image2D reflection_buffer; layout(set = 0, binding = 11) uniform texture2DArray lightprobe_texture; layout(set = 0, binding = 12) uniform texture2D depth_buffer; layout(set = 0, binding = 13) uniform texture2D normal_roughness_buffer; layout(set = 0, binding = 14) uniform utexture2D voxel_gi_buffer; layout(set = 0, binding = 15, std140) uniform SDFGI { vec3 grid_size; uint max_cascades; bool use_occlusion; int probe_axis_size; float probe_to_uvw; float normal_bias; vec3 lightprobe_tex_pixel_size; float energy; vec3 lightprobe_uv_offset; float y_mult; vec3 occlusion_clamp; uint pad3; vec3 occlusion_renormalize; uint pad4; vec3 cascade_probe_size; uint pad5; ProbeCascadeData cascades[SDFGI_MAX_CASCADES]; } sdfgi; #define MAX_VOXEL_GI_INSTANCES 8 struct VoxelGIData { mat4 xform; // 64 - 64 vec3 bounds; // 12 - 76 float dynamic_range; // 4 - 80 float bias; // 4 - 84 float normal_bias; // 4 - 88 bool blend_ambient; // 4 - 92 uint mipmaps; // 4 - 96 vec3 pad; // 12 - 108 float exposure_normalization; // 4 - 112 }; layout(set = 0, binding = 16, std140) uniform VoxelGIs { VoxelGIData data[MAX_VOXEL_GI_INSTANCES]; } voxel_gi_instances; layout(set = 0, binding = 17) uniform texture3D voxel_gi_textures[MAX_VOXEL_GI_INSTANCES]; layout(set = 0, binding = 18, std140) uniform SceneData { mat4x4 inv_projection[2]; mat4x4 cam_transform; vec4 eye_offset[2]; ivec2 screen_size; float pad1; float pad2; } scene_data; layout(r8ui, set = 0, binding = 19) uniform restrict readonly uimage2D vrs_buffer; layout(push_constant, std430) uniform Params { uint max_voxel_gi_instances; bool high_quality_vct; bool orthogonal; uint view_index; vec4 proj_info; float z_near; float z_far; float pad2; float pad3; } params; vec2 octahedron_wrap(vec2 v) { vec2 signVal; signVal.x = v.x >= 0.0 ? 1.0 : -1.0; signVal.y = v.y >= 0.0 ? 1.0 : -1.0; return (1.0 - abs(v.yx)) * signVal; } vec2 octahedron_encode(vec3 n) { // https://twitter.com/Stubbesaurus/status/937994790553227264 n /= (abs(n.x) + abs(n.y) + abs(n.z)); n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy); n.xy = n.xy * 0.5 + 0.5; return n.xy; } vec4 blend_color(vec4 src, vec4 dst) { vec4 res; float sa = 1.0 - src.a; res.a = dst.a * sa + src.a; if (res.a == 0.0) { res.rgb = vec3(0); } else { res.rgb = (dst.rgb * dst.a * sa + src.rgb * src.a) / res.a; } return res; } vec3 reconstruct_position(ivec2 screen_pos) { if (sc_use_full_projection_matrix) { vec4 pos; pos.xy = (2.0 * vec2(screen_pos) / vec2(scene_data.screen_size)) - 1.0; pos.z = texelFetch(sampler2D(depth_buffer, linear_sampler), screen_pos, 0).r * 2.0 - 1.0; pos.w = 1.0; pos = scene_data.inv_projection[params.view_index] * pos; return pos.xyz / pos.w; } else { vec3 pos; pos.z = texelFetch(sampler2D(depth_buffer, linear_sampler), screen_pos, 0).r; pos.z = pos.z * 2.0 - 1.0; if (params.orthogonal) { pos.z = ((pos.z + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0; } else { pos.z = 2.0 * params.z_near * params.z_far / (params.z_far + params.z_near - pos.z * (params.z_far - params.z_near)); } pos.z = -pos.z; pos.xy = vec2(screen_pos) * params.proj_info.xy + params.proj_info.zw; if (!params.orthogonal) { pos.xy *= pos.z; } return pos; } } void sdfvoxel_gi_process(uint cascade, vec3 cascade_pos, vec3 cam_pos, vec3 cam_normal, vec3 cam_specular_normal, float roughness, out vec3 diffuse_light, out vec3 specular_light) { cascade_pos += cam_normal * sdfgi.normal_bias; vec3 base_pos = floor(cascade_pos); //cascade_pos += mix(vec3(0.0),vec3(0.01),lessThan(abs(cascade_pos-base_pos),vec3(0.01))) * cam_normal; ivec3 probe_base_pos = ivec3(base_pos); vec4 diffuse_accum = vec4(0.0); vec3 specular_accum; ivec3 tex_pos = ivec3(probe_base_pos.xy, int(cascade)); tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size; tex_pos.xy = tex_pos.xy * (SDFGI_OCT_SIZE + 2) + ivec2(1); vec3 diffuse_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size; vec3 specular_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_specular_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size; specular_accum = vec3(0.0); vec4 light_accum = vec4(0.0); float weight_accum = 0.0; for (uint j = 0; j < 8; j++) { ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1); ivec3 probe_posi = probe_base_pos; probe_posi += offset; // Compute weight vec3 probe_pos = vec3(probe_posi); vec3 probe_to_pos = cascade_pos - probe_pos; vec3 probe_dir = normalize(-probe_to_pos); vec3 trilinear = vec3(1.0) - abs(probe_to_pos); float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(cam_normal, probe_dir)); // Compute lightprobe occlusion if (sdfgi.use_occlusion) { ivec3 occ_indexv = abs((sdfgi.cascades[cascade].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4); vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3))); vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw; occ_pos.z += float(cascade); if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures occ_pos.x += 1.0; } occ_pos *= sdfgi.occlusion_renormalize; float occlusion = dot(textureLod(sampler3D(occlusion_texture, linear_sampler), occ_pos, 0.0), occ_mask); weight *= max(occlusion, 0.01); } // Compute lightprobe texture position vec3 diffuse; vec3 pos_uvw = diffuse_posf; pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy; pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z; diffuse = textureLod(sampler2DArray(lightprobe_texture, linear_sampler), pos_uvw, 0.0).rgb; diffuse_accum += vec4(diffuse * weight * sdfgi.cascades[cascade].exposure_normalization, weight); { vec3 specular = vec3(0.0); vec3 pos_uvw = specular_posf; pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy; pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z; if (roughness < 0.99) { specular = textureLod(sampler2DArray(lightprobe_texture, linear_sampler), pos_uvw + vec3(0, 0, float(sdfgi.max_cascades)), 0.0).rgb; } if (roughness > 0.2) { specular = mix(specular, textureLod(sampler2DArray(lightprobe_texture, linear_sampler), pos_uvw, 0.0).rgb, (roughness - 0.2) * 1.25); } specular_accum += specular * weight * sdfgi.cascades[cascade].exposure_normalization; } } if (diffuse_accum.a > 0.0) { diffuse_accum.rgb /= diffuse_accum.a; } diffuse_light = diffuse_accum.rgb; if (diffuse_accum.a > 0.0) { specular_accum /= diffuse_accum.a; } specular_light = specular_accum; } void sdfgi_process(vec3 vertex, vec3 normal, vec3 reflection, float roughness, out vec4 ambient_light, out vec4 reflection_light) { //make vertex orientation the world one, but still align to camera vertex.y *= sdfgi.y_mult; normal.y *= sdfgi.y_mult; reflection.y *= sdfgi.y_mult; //renormalize normal = normalize(normal); reflection = normalize(reflection); vec3 cam_pos = vertex; vec3 cam_normal = normal; vec4 light_accum = vec4(0.0); float weight_accum = 0.0; vec4 light_blend_accum = vec4(0.0); float weight_blend_accum = 0.0; float blend = -1.0; // helper constants, compute once uint cascade = 0xFFFFFFFF; vec3 cascade_pos; vec3 cascade_normal; for (uint i = 0; i < sdfgi.max_cascades; i++) { cascade_pos = (cam_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe; if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) { continue; //skip cascade } cascade = i; break; } if (cascade < SDFGI_MAX_CASCADES) { ambient_light = vec4(0, 0, 0, 1); reflection_light = vec4(0, 0, 0, 1); float blend; vec3 diffuse, specular; sdfvoxel_gi_process(cascade, cascade_pos, cam_pos, cam_normal, reflection, roughness, diffuse, specular); { //process blend float blend_from = (float(sdfgi.probe_axis_size - 1) / 2.0) - 2.5; float blend_to = blend_from + 2.0; vec3 inner_pos = cam_pos * sdfgi.cascades[cascade].to_probe; float len = length(inner_pos); inner_pos = abs(normalize(inner_pos)); len *= max(inner_pos.x, max(inner_pos.y, inner_pos.z)); if (len >= blend_from) { blend = smoothstep(blend_from, blend_to, len); } else { blend = 0.0; } } if (blend > 0.0) { //blend if (cascade == sdfgi.max_cascades - 1) { ambient_light.a = 1.0 - blend; reflection_light.a = 1.0 - blend; } else { vec3 diffuse2, specular2; cascade_pos = (cam_pos - sdfgi.cascades[cascade + 1].position) * sdfgi.cascades[cascade + 1].to_probe; sdfvoxel_gi_process(cascade + 1, cascade_pos, cam_pos, cam_normal, reflection, roughness, diffuse2, specular2); diffuse = mix(diffuse, diffuse2, blend); specular = mix(specular, specular2, blend); } } ambient_light.rgb = diffuse; if (roughness < 0.2) { vec3 pos_to_uvw = 1.0 / sdfgi.grid_size; vec4 light_accum = vec4(0.0); float blend_size = (sdfgi.grid_size.x / float(sdfgi.probe_axis_size - 1)) * 0.5; float radius_sizes[SDFGI_MAX_CASCADES]; cascade = 0xFFFF; float base_distance = length(cam_pos); for (uint i = 0; i < sdfgi.max_cascades; i++) { radius_sizes[i] = (1.0 / sdfgi.cascades[i].to_cell) * (sdfgi.grid_size.x * 0.5 - blend_size); if (cascade == 0xFFFF && base_distance < radius_sizes[i]) { cascade = i; } } cascade = min(cascade, sdfgi.max_cascades - 1); float max_distance = radius_sizes[sdfgi.max_cascades - 1]; vec3 ray_pos = cam_pos; vec3 ray_dir = reflection; { float prev_radius = cascade > 0 ? radius_sizes[cascade - 1] : 0.0; float base_blend = (base_distance - prev_radius) / (radius_sizes[cascade] - prev_radius); float bias = (1.0 + base_blend) * 1.1; vec3 abs_ray_dir = abs(ray_dir); //ray_pos += ray_dir * (bias / sdfgi.cascades[cascade].to_cell); //bias to avoid self occlusion ray_pos += (ray_dir * 1.0 / max(abs_ray_dir.x, max(abs_ray_dir.y, abs_ray_dir.z)) + cam_normal * 1.4) * bias / sdfgi.cascades[cascade].to_cell; } float softness = 0.2 + min(1.0, roughness * 5.0) * 4.0; //approximation to roughness so it does not seem like a hard fade uint i = 0; bool found = false; while (true) { if (length(ray_pos) >= max_distance || light_accum.a > 0.99) { break; } if (!found && i >= cascade && length(ray_pos) < radius_sizes[i]) { uint next_i = min(i + 1, sdfgi.max_cascades - 1); cascade = max(i, cascade); //never go down vec3 pos = ray_pos - sdfgi.cascades[i].position; pos *= sdfgi.cascades[i].to_cell * pos_to_uvw; float fdistance = textureLod(sampler3D(sdf_cascades[i], linear_sampler), pos, 0.0).r * 255.0 - 1.1; vec4 hit_light = vec4(0.0); if (fdistance < softness) { hit_light.rgb = textureLod(sampler3D(light_cascades[i], linear_sampler), pos, 0.0).rgb; hit_light.rgb *= 0.5; //approximation given value read is actually meant for anisotropy hit_light.a = clamp(1.0 - (fdistance / softness), 0.0, 1.0); hit_light.rgb *= hit_light.a; } fdistance /= sdfgi.cascades[i].to_cell; if (i < (sdfgi.max_cascades - 1)) { pos = ray_pos - sdfgi.cascades[next_i].position; pos *= sdfgi.cascades[next_i].to_cell * pos_to_uvw; float fdistance2 = textureLod(sampler3D(sdf_cascades[next_i], linear_sampler), pos, 0.0).r * 255.0 - 1.1; vec4 hit_light2 = vec4(0.0); if (fdistance2 < softness) { hit_light2.rgb = textureLod(sampler3D(light_cascades[next_i], linear_sampler), pos, 0.0).rgb; hit_light2.rgb *= 0.5; //approximation given value read is actually meant for anisotropy hit_light2.a = clamp(1.0 - (fdistance2 / softness), 0.0, 1.0); hit_light2.rgb *= hit_light2.a; } float prev_radius = i == 0 ? 0.0 : radius_sizes[max(0, i - 1)]; float blend = clamp((length(ray_pos) - prev_radius) / (radius_sizes[i] - prev_radius), 0.0, 1.0); fdistance2 /= sdfgi.cascades[next_i].to_cell; hit_light = mix(hit_light, hit_light2, blend); fdistance = mix(fdistance, fdistance2, blend); } light_accum += hit_light; ray_pos += ray_dir * fdistance; found = true; } i++; if (i == sdfgi.max_cascades) { i = 0; found = false; } } vec3 light = light_accum.rgb / max(light_accum.a, 0.00001); float alpha = min(1.0, light_accum.a); float b = min(1.0, roughness * 5.0); float sa = 1.0 - b; reflection_light.a = alpha * sa + b; if (reflection_light.a == 0) { specular = vec3(0.0); } else { specular = (light * alpha * sa + specular * b) / reflection_light.a; } } reflection_light.rgb = specular; ambient_light.rgb *= sdfgi.energy; reflection_light.rgb *= sdfgi.energy; } else { ambient_light = vec4(0); reflection_light = vec4(0); } } //standard voxel cone trace vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { float dist = p_bias; vec4 color = vec4(0.0); while (dist < max_distance && color.a < 0.95) { float diameter = max(1.0, 2.0 * tan_half_angle * dist); vec3 uvw_pos = (pos + dist * direction) * cell_size; float half_diameter = diameter * 0.5; //check if outside, then break if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) { break; } vec4 scolor = textureLod(sampler3D(probe, linear_sampler_with_mipmaps), uvw_pos, log2(diameter)); float a = (1.0 - color.a); color += a * scolor; dist += half_diameter; } return color; } vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float max_distance, float p_bias) { float dist = p_bias; vec4 color = vec4(0.0); float radius = max(0.5, dist); float lod_level = log2(radius * 2.0); while (dist < max_distance && color.a < 0.95) { vec3 uvw_pos = (pos + dist * direction) * cell_size; //check if outside, then break if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) { break; } vec4 scolor = textureLod(sampler3D(probe, linear_sampler_with_mipmaps), uvw_pos, lod_level); lod_level += 1.0; float a = (1.0 - color.a); scolor *= a; color += scolor; dist += radius; radius = max(0.5, dist); } return color; } void voxel_gi_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3 normal_xform, float roughness, inout vec4 out_spec, inout vec4 out_diff, inout float out_blend) { position = (voxel_gi_instances.data[index].xform * vec4(position, 1.0)).xyz; ref_vec = normalize((voxel_gi_instances.data[index].xform * vec4(ref_vec, 0.0)).xyz); normal = normalize((voxel_gi_instances.data[index].xform * vec4(normal, 0.0)).xyz); position += normal * voxel_gi_instances.data[index].normal_bias; //this causes corrupted pixels, i have no idea why.. if (any(bvec2(any(lessThan(position, vec3(0.0))), any(greaterThan(position, voxel_gi_instances.data[index].bounds))))) { return; } mat3 dir_xform = mat3(voxel_gi_instances.data[index].xform) * normal_xform; vec3 blendv = abs(position / voxel_gi_instances.data[index].bounds * 2.0 - 1.0); float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0); //float blend=1.0; float max_distance = length(voxel_gi_instances.data[index].bounds); vec3 cell_size = 1.0 / voxel_gi_instances.data[index].bounds; //irradiance vec4 light = vec4(0.0); if (params.high_quality_vct) { const uint cone_dir_count = 6; vec3 cone_dirs[cone_dir_count] = vec3[]( vec3(0.0, 0.0, 1.0), vec3(0.866025, 0.0, 0.5), vec3(0.267617, 0.823639, 0.5), vec3(-0.700629, 0.509037, 0.5), vec3(-0.700629, -0.509037, 0.5), vec3(0.267617, -0.823639, 0.5)); float cone_weights[cone_dir_count] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15); float cone_angle_tan = 0.577; for (uint i = 0; i < cone_dir_count; i++) { vec3 dir = normalize(dir_xform * cone_dirs[i]); light += cone_weights[i] * voxel_cone_trace(voxel_gi_textures[index], cell_size, position, dir, cone_angle_tan, max_distance, voxel_gi_instances.data[index].bias); } } else { const uint cone_dir_count = 4; vec3 cone_dirs[cone_dir_count] = vec3[]( vec3(0.707107, 0.0, 0.707107), vec3(0.0, 0.707107, 0.707107), vec3(-0.707107, 0.0, 0.707107), vec3(0.0, -0.707107, 0.707107)); float cone_weights[cone_dir_count] = float[](0.25, 0.25, 0.25, 0.25); for (int i = 0; i < cone_dir_count; i++) { vec3 dir = normalize(dir_xform * cone_dirs[i]); light += cone_weights[i] * voxel_cone_trace_45_degrees(voxel_gi_textures[index], cell_size, position, dir, max_distance, voxel_gi_instances.data[index].bias); } } light.rgb *= voxel_gi_instances.data[index].dynamic_range * voxel_gi_instances.data[index].exposure_normalization; if (!voxel_gi_instances.data[index].blend_ambient) { light.a = 1.0; } out_diff += light * blend; //radiance vec4 irr_light = voxel_cone_trace(voxel_gi_textures[index], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, voxel_gi_instances.data[index].bias); irr_light.rgb *= voxel_gi_instances.data[index].dynamic_range * voxel_gi_instances.data[index].exposure_normalization; if (!voxel_gi_instances.data[index].blend_ambient) { irr_light.a = 1.0; } out_spec += irr_light * blend; out_blend += blend; } vec4 fetch_normal_and_roughness(ivec2 pos) { vec4 normal_roughness = texelFetch(sampler2D(normal_roughness_buffer, linear_sampler), pos, 0); normal_roughness.xyz = normalize(normal_roughness.xyz * 2.0 - 1.0); return normal_roughness; } void process_gi(ivec2 pos, vec3 vertex, inout vec4 ambient_light, inout vec4 reflection_light) { vec4 normal_roughness = fetch_normal_and_roughness(pos); vec3 normal = normal_roughness.xyz; if (normal.length() > 0.5) { //valid normal, can do GI float roughness = normal_roughness.w; vec3 view = -normalize(mat3(scene_data.cam_transform) * (vertex - scene_data.eye_offset[gl_GlobalInvocationID.z].xyz)); vertex = mat3(scene_data.cam_transform) * vertex; normal = normalize(mat3(scene_data.cam_transform) * normal); vec3 reflection = normalize(reflect(-view, normal)); #ifdef USE_SDFGI sdfgi_process(vertex, normal, reflection, roughness, ambient_light, reflection_light); #endif #ifdef USE_VOXEL_GI_INSTANCES { uvec2 voxel_gi_tex = texelFetch(usampler2D(voxel_gi_buffer, linear_sampler), pos, 0).rg; roughness *= roughness; //find arbitrary tangent and bitangent, then build a matrix vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); vec3 tangent = normalize(cross(v0, normal)); vec3 bitangent = normalize(cross(tangent, normal)); mat3 normal_mat = mat3(tangent, bitangent, normal); vec4 amb_accum = vec4(0.0); vec4 spec_accum = vec4(0.0); float blend_accum = 0.0; for (uint i = 0; i < params.max_voxel_gi_instances; i++) { if (any(equal(uvec2(i), voxel_gi_tex))) { voxel_gi_compute(i, vertex, normal, reflection, normal_mat, roughness, spec_accum, amb_accum, blend_accum); } } if (blend_accum > 0.0) { amb_accum /= blend_accum; spec_accum /= blend_accum; } #ifdef USE_SDFGI reflection_light = blend_color(spec_accum, reflection_light); ambient_light = blend_color(amb_accum, ambient_light); #else reflection_light = spec_accum; ambient_light = amb_accum; #endif } #endif } } void main() { ivec2 pos = ivec2(gl_GlobalInvocationID.xy); uint vrs_x, vrs_y; if (sc_use_vrs) { ivec2 vrs_pos; // Currently we use a 16x16 texel, possibly some day make this configurable. if (sc_half_res) { vrs_pos = pos >> 3; } else { vrs_pos = pos >> 4; } uint vrs_texel = imageLoad(vrs_buffer, vrs_pos).r; // note, valid values for vrs_x and vrs_y are 1, 2 and 4. vrs_x = 1 << ((vrs_texel >> 2) & 3); vrs_y = 1 << (vrs_texel & 3); if (mod(pos.x, vrs_x) != 0) { return; } if (mod(pos.y, vrs_y) != 0) { return; } } if (sc_half_res) { pos <<= 1; } if (any(greaterThanEqual(pos, scene_data.screen_size))) { //too large, do nothing return; } vec4 ambient_light = vec4(0.0); vec4 reflection_light = vec4(0.0); vec3 vertex = reconstruct_position(pos); vertex.y = -vertex.y; process_gi(pos, vertex, ambient_light, reflection_light); if (sc_half_res) { pos >>= 1; } imageStore(ambient_buffer, pos, ambient_light); imageStore(reflection_buffer, pos, reflection_light); if (sc_use_vrs) { if (vrs_x > 1) { imageStore(ambient_buffer, pos + ivec2(1, 0), ambient_light); imageStore(reflection_buffer, pos + ivec2(1, 0), reflection_light); } if (vrs_x > 2) { imageStore(ambient_buffer, pos + ivec2(2, 0), ambient_light); imageStore(reflection_buffer, pos + ivec2(2, 0), reflection_light); imageStore(ambient_buffer, pos + ivec2(3, 0), ambient_light); imageStore(reflection_buffer, pos + ivec2(3, 0), reflection_light); } if (vrs_y > 1) { imageStore(ambient_buffer, pos + ivec2(0, 1), ambient_light); imageStore(reflection_buffer, pos + ivec2(0, 1), reflection_light); } if (vrs_y > 1 && vrs_x > 1) { imageStore(ambient_buffer, pos + ivec2(1, 1), ambient_light); imageStore(reflection_buffer, pos + ivec2(1, 1), reflection_light); } if (vrs_y > 1 && vrs_x > 2) { imageStore(ambient_buffer, pos + ivec2(2, 1), ambient_light); imageStore(reflection_buffer, pos + ivec2(2, 1), reflection_light); imageStore(ambient_buffer, pos + ivec2(3, 1), ambient_light); imageStore(reflection_buffer, pos + ivec2(3, 1), reflection_light); } if (vrs_y > 2) { imageStore(ambient_buffer, pos + ivec2(0, 2), ambient_light); imageStore(reflection_buffer, pos + ivec2(0, 2), reflection_light); imageStore(ambient_buffer, pos + ivec2(0, 3), ambient_light); imageStore(reflection_buffer, pos + ivec2(0, 3), reflection_light); } if (vrs_y > 2 && vrs_x > 1) { imageStore(ambient_buffer, pos + ivec2(1, 2), ambient_light); imageStore(reflection_buffer, pos + ivec2(1, 2), reflection_light); imageStore(ambient_buffer, pos + ivec2(1, 3), ambient_light); imageStore(reflection_buffer, pos + ivec2(1, 3), reflection_light); } if (vrs_y > 2 && vrs_x > 2) { imageStore(ambient_buffer, pos + ivec2(2, 2), ambient_light); imageStore(reflection_buffer, pos + ivec2(2, 2), reflection_light); imageStore(ambient_buffer, pos + ivec2(2, 3), ambient_light); imageStore(reflection_buffer, pos + ivec2(2, 3), reflection_light); imageStore(ambient_buffer, pos + ivec2(3, 2), ambient_light); imageStore(reflection_buffer, pos + ivec2(3, 2), reflection_light); imageStore(ambient_buffer, pos + ivec2(3, 3), ambient_light); imageStore(reflection_buffer, pos + ivec2(3, 3), reflection_light); } } }