/*************************************************************************/ /* body_pair_sw.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "body_pair_sw.h" #include "collision_solver_sw.h" #include "core/os/os.h" #include "space_sw.h" /* #define NO_ACCUMULATE_IMPULSES #define NO_SPLIT_IMPULSES #define NO_FRICTION */ #define NO_TANGENTIALS /* BODY PAIR */ //#define ALLOWED_PENETRATION 0.01 #define RELAXATION_TIMESTEPS 3 #define MIN_VELOCITY 0.0001 #define MAX_BIAS_ROTATION (Math_PI / 8) void BodyPairSW::_contact_added_callback(const Vector3 &p_point_A, const Vector3 &p_point_B, void *p_userdata) { BodyPairSW *pair = (BodyPairSW *)p_userdata; pair->contact_added_callback(p_point_A, p_point_B); } void BodyPairSW::contact_added_callback(const Vector3 &p_point_A, const Vector3 &p_point_B) { // check if we already have the contact //Vector3 local_A = A->get_inv_transform().xform(p_point_A); //Vector3 local_B = B->get_inv_transform().xform(p_point_B); Vector3 local_A = A->get_inv_transform().basis.xform(p_point_A); Vector3 local_B = B->get_inv_transform().basis.xform(p_point_B - offset_B); int new_index = contact_count; ERR_FAIL_COND(new_index >= (MAX_CONTACTS + 1)); Contact contact; contact.acc_normal_impulse = 0; contact.acc_bias_impulse = 0; contact.acc_bias_impulse_center_of_mass = 0; contact.acc_tangent_impulse = Vector3(); contact.local_A = local_A; contact.local_B = local_B; contact.normal = (p_point_A - p_point_B).normalized(); contact.mass_normal = 0; // will be computed in setup() // attempt to determine if the contact will be reused real_t contact_recycle_radius = space->get_contact_recycle_radius(); for (int i = 0; i < contact_count; i++) { Contact &c = contacts[i]; if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) && c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) { contact.acc_normal_impulse = c.acc_normal_impulse; contact.acc_bias_impulse = c.acc_bias_impulse; contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass; contact.acc_tangent_impulse = c.acc_tangent_impulse; new_index = i; break; } } // figure out if the contact amount must be reduced to fit the new contact if (new_index == MAX_CONTACTS) { // remove the contact with the minimum depth int least_deep = -1; real_t min_depth = 1e10; for (int i = 0; i <= contact_count; i++) { Contact &c = (i == contact_count) ? contact : contacts[i]; Vector3 global_A = A->get_transform().basis.xform(c.local_A); Vector3 global_B = B->get_transform().basis.xform(c.local_B) + offset_B; Vector3 axis = global_A - global_B; real_t depth = axis.dot(c.normal); if (depth < min_depth) { min_depth = depth; least_deep = i; } } ERR_FAIL_COND(least_deep == -1); if (least_deep < contact_count) { //replace the last deep contact by the new one contacts[least_deep] = contact; } return; } contacts[new_index] = contact; if (new_index == contact_count) { contact_count++; } } void BodyPairSW::validate_contacts() { //make sure to erase contacts that are no longer valid real_t contact_max_separation = space->get_contact_max_separation(); for (int i = 0; i < contact_count; i++) { Contact &c = contacts[i]; Vector3 global_A = A->get_transform().basis.xform(c.local_A); Vector3 global_B = B->get_transform().basis.xform(c.local_B) + offset_B; Vector3 axis = global_A - global_B; real_t depth = axis.dot(c.normal); if (depth < -contact_max_separation || (global_B + c.normal * depth - global_A).length() > contact_max_separation) { // contact no longer needed, remove if ((i + 1) < contact_count) { // swap with the last one SWAP(contacts[i], contacts[contact_count - 1]); } i--; contact_count--; } } } bool BodyPairSW::_test_ccd(real_t p_step, BodySW *p_A, int p_shape_A, const Transform &p_xform_A, BodySW *p_B, int p_shape_B, const Transform &p_xform_B) { Vector3 motion = p_A->get_linear_velocity() * p_step; real_t mlen = motion.length(); if (mlen < CMP_EPSILON) { return false; } Vector3 mnormal = motion / mlen; real_t min, max; p_A->get_shape(p_shape_A)->project_range(mnormal, p_xform_A, min, max); bool fast_object = mlen > (max - min) * 0.3; //going too fast in that direction if (!fast_object) { //did it move enough in this direction to even attempt raycast? let's say it should move more than 1/3 the size of the object in that axis return false; } //cast a segment from support in motion normal, in the same direction of motion by motion length //support is the worst case collision point, so real collision happened before Vector3 s = p_A->get_shape(p_shape_A)->get_support(p_xform_A.basis.xform(mnormal).normalized()); Vector3 from = p_xform_A.xform(s); Vector3 to = from + motion; Transform from_inv = p_xform_B.affine_inverse(); Vector3 local_from = from_inv.xform(from - mnormal * mlen * 0.1); //start from a little inside the bounding box Vector3 local_to = from_inv.xform(to); Vector3 rpos, rnorm; if (!p_B->get_shape(p_shape_B)->intersect_segment(local_from, local_to, rpos, rnorm)) { return false; } //shorten the linear velocity so it does not hit, but gets close enough, next frame will hit softly or soft enough Vector3 hitpos = p_xform_B.xform(rpos); real_t newlen = hitpos.distance_to(from) - (max - min) * 0.01; p_A->set_linear_velocity((mnormal * newlen) / p_step); return true; } real_t combine_bounce(BodySW *A, BodySW *B) { return CLAMP(A->get_bounce() + B->get_bounce(), 0, 1); } real_t combine_friction(BodySW *A, BodySW *B) { return ABS(MIN(A->get_friction(), B->get_friction())); } bool BodyPairSW::setup(real_t p_step) { //cannot collide if (!A->test_collision_mask(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self())) { collided = false; return false; } bool report_contacts_only = false; if ((A->get_mode() <= PhysicsServer::BODY_MODE_KINEMATIC) && (B->get_mode() <= PhysicsServer::BODY_MODE_KINEMATIC)) { if ((A->get_max_contacts_reported() > 0) || (B->get_max_contacts_reported() > 0)) { report_contacts_only = true; } else { collided = false; return false; } } offset_B = B->get_transform().get_origin() - A->get_transform().get_origin(); validate_contacts(); Vector3 offset_A = A->get_transform().get_origin(); Transform xform_Au = Transform(A->get_transform().basis, Vector3()); Transform xform_A = xform_Au * A->get_shape_transform(shape_A); Transform xform_Bu = B->get_transform(); xform_Bu.origin -= offset_A; Transform xform_B = xform_Bu * B->get_shape_transform(shape_B); ShapeSW *shape_A_ptr = A->get_shape(shape_A); ShapeSW *shape_B_ptr = B->get_shape(shape_B); bool collided = CollisionSolverSW::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis); this->collided = collided; if (!collided) { //test ccd (currently just a raycast) if (A->is_continuous_collision_detection_enabled() && A->get_mode() > PhysicsServer::BODY_MODE_KINEMATIC && B->get_mode() <= PhysicsServer::BODY_MODE_KINEMATIC) { _test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B); } if (B->is_continuous_collision_detection_enabled() && B->get_mode() > PhysicsServer::BODY_MODE_KINEMATIC && A->get_mode() <= PhysicsServer::BODY_MODE_KINEMATIC) { _test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A); } return false; } real_t max_penetration = space->get_contact_max_allowed_penetration(); real_t bias = (real_t)0.3; if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) { if (shape_A_ptr->get_custom_bias() == 0) { bias = shape_B_ptr->get_custom_bias(); } else if (shape_B_ptr->get_custom_bias() == 0) { bias = shape_A_ptr->get_custom_bias(); } else { bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5; } } real_t inv_dt = 1.0 / p_step; for (int i = 0; i < contact_count; i++) { Contact &c = contacts[i]; c.active = false; Vector3 global_A = xform_Au.xform(c.local_A); Vector3 global_B = xform_Bu.xform(c.local_B); real_t depth = c.normal.dot(global_A - global_B); if (depth <= 0) { continue; } #ifdef DEBUG_ENABLED if (space->is_debugging_contacts()) { space->add_debug_contact(global_A + offset_A); space->add_debug_contact(global_B + offset_A); } #endif c.rA = global_A - A->get_center_of_mass(); c.rB = global_B - B->get_center_of_mass() - offset_B; // contact query reporting... if (A->can_report_contacts()) { Vector3 crA = A->get_angular_velocity().cross(c.rA) + A->get_linear_velocity(); A->add_contact(global_A, -c.normal, depth, shape_A, global_B, shape_B, B->get_instance_id(), B->get_self(), crA); } if (B->can_report_contacts()) { Vector3 crB = B->get_angular_velocity().cross(c.rB) + B->get_linear_velocity(); B->add_contact(global_B, c.normal, depth, shape_B, global_A, shape_A, A->get_instance_id(), A->get_self(), crB); } if (report_contacts_only) { collided = false; continue; } c.active = true; // Precompute normal mass, tangent mass, and bias. Vector3 inertia_A = A->get_inv_inertia_tensor().xform(c.rA.cross(c.normal)); Vector3 inertia_B = B->get_inv_inertia_tensor().xform(c.rB.cross(c.normal)); real_t kNormal = A->get_inv_mass() + B->get_inv_mass(); kNormal += c.normal.dot(inertia_A.cross(c.rA)) + c.normal.dot(inertia_B.cross(c.rB)); c.mass_normal = 1.0f / kNormal; c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration); c.depth = depth; Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse; A->apply_impulse(c.rA + A->get_center_of_mass(), -j_vec); B->apply_impulse(c.rB + B->get_center_of_mass(), j_vec); c.acc_bias_impulse = 0; c.acc_bias_impulse_center_of_mass = 0; c.bounce = combine_bounce(A, B); if (c.bounce) { Vector3 crA = A->get_angular_velocity().cross(c.rA); Vector3 crB = B->get_angular_velocity().cross(c.rB); Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA; //normal impule c.bounce = c.bounce * dv.dot(c.normal); } } return true; } void BodyPairSW::solve(real_t p_step) { if (!collided) { return; } for (int i = 0; i < contact_count; i++) { Contact &c = contacts[i]; if (!c.active) { continue; } c.active = false; //try to deactivate, will activate itself if still needed //bias impulse Vector3 crbA = A->get_biased_angular_velocity().cross(c.rA); Vector3 crbB = B->get_biased_angular_velocity().cross(c.rB); Vector3 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA; real_t vbn = dbv.dot(c.normal); if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { real_t jbn = (-vbn + c.bias) * c.mass_normal; real_t jbnOld = c.acc_bias_impulse; c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f); Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld); A->apply_bias_impulse(c.rA + A->get_center_of_mass(), -jb, MAX_BIAS_ROTATION / p_step); B->apply_bias_impulse(c.rB + B->get_center_of_mass(), jb, MAX_BIAS_ROTATION / p_step); crbA = A->get_biased_angular_velocity().cross(c.rA); crbB = B->get_biased_angular_velocity().cross(c.rB); dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA; vbn = dbv.dot(c.normal); if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { real_t jbn_com = (-vbn + c.bias) / (A->get_inv_mass() + B->get_inv_mass()); real_t jbnOld_com = c.acc_bias_impulse_center_of_mass; c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f); Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com); A->apply_bias_impulse(A->get_center_of_mass(), -jb_com, 0.0f); B->apply_bias_impulse(B->get_center_of_mass(), jb_com, 0.0f); } c.active = true; } Vector3 crA = A->get_angular_velocity().cross(c.rA); Vector3 crB = B->get_angular_velocity().cross(c.rB); Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA; //normal impulse real_t vn = dv.dot(c.normal); if (Math::abs(vn) > MIN_VELOCITY) { real_t jn = -(c.bounce + vn) * c.mass_normal; real_t jnOld = c.acc_normal_impulse; c.acc_normal_impulse = MAX(jnOld + jn, 0.0f); Vector3 j = c.normal * (c.acc_normal_impulse - jnOld); A->apply_impulse(c.rA + A->get_center_of_mass(), -j); B->apply_impulse(c.rB + B->get_center_of_mass(), j); c.active = true; } //friction impulse real_t friction = combine_friction(A, B); Vector3 lvA = A->get_linear_velocity() + A->get_angular_velocity().cross(c.rA); Vector3 lvB = B->get_linear_velocity() + B->get_angular_velocity().cross(c.rB); Vector3 dtv = lvB - lvA; real_t tn = c.normal.dot(dtv); // tangential velocity Vector3 tv = dtv - c.normal * tn; real_t tvl = tv.length(); if (tvl > MIN_VELOCITY) { tv /= tvl; Vector3 temp1 = A->get_inv_inertia_tensor().xform(c.rA.cross(tv)); Vector3 temp2 = B->get_inv_inertia_tensor().xform(c.rB.cross(tv)); real_t t = -tvl / (A->get_inv_mass() + B->get_inv_mass() + tv.dot(temp1.cross(c.rA) + temp2.cross(c.rB))); Vector3 jt = t * tv; Vector3 jtOld = c.acc_tangent_impulse; c.acc_tangent_impulse += jt; real_t fi_len = c.acc_tangent_impulse.length(); real_t jtMax = c.acc_normal_impulse * friction; if (fi_len > CMP_EPSILON && fi_len > jtMax) { c.acc_tangent_impulse *= jtMax / fi_len; } jt = c.acc_tangent_impulse - jtOld; A->apply_impulse(c.rA + A->get_center_of_mass(), -jt); B->apply_impulse(c.rB + B->get_center_of_mass(), jt); c.active = true; } } } BodyPairSW::BodyPairSW(BodySW *p_A, int p_shape_A, BodySW *p_B, int p_shape_B) : ConstraintSW(_arr, 2) { A = p_A; B = p_B; shape_A = p_shape_A; shape_B = p_shape_B; space = A->get_space(); A->add_constraint(this, 0); B->add_constraint(this, 1); contact_count = 0; collided = false; } BodyPairSW::~BodyPairSW() { A->remove_constraint(this); B->remove_constraint(this); }