/*************************************************************************/ /* pool_allocator.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "pool_allocator.h" #include "error_macros.h" #include "core/os/os.h" #include "os/memory.h" #include "os/copymem.h" #include "print_string.h" #include <assert.h> #define COMPACT_CHUNK( m_entry , m_to_pos ) \ do { \ void *_dst=&((unsigned char*)pool)[m_to_pos]; \ void *_src=&((unsigned char*)pool)[(m_entry).pos]; \ movemem(_dst,_src,aligned((m_entry).len)); \ (m_entry).pos=m_to_pos; \ } while (0); void PoolAllocator::mt_lock() const { } void PoolAllocator::mt_unlock() const { } bool PoolAllocator::get_free_entry(EntryArrayPos* p_pos) { if (entry_count==entry_max) return false; for (int i=0;i<entry_max;i++) { if (entry_array[i].len==0) { *p_pos=i; return true; } } ERR_PRINT("Out of memory Chunks!"); return false; // } /** * Find a hole * @param p_pos The hole is behind the block pointed by this variable upon return. if pos==entry_count, then allocate at end * @param p_for_size hole size * @return false if hole found, true if no hole found */ bool PoolAllocator::find_hole(EntryArrayPos *p_pos, int p_for_size) { /* position where previous entry ends. Defaults to zero (begin of pool) */ int prev_entry_end_pos=0; for (int i=0;i<entry_count;i++) { Entry &entry=entry_array[ entry_indices[ i ] ]; /* determine hole size to previous entry */ int hole_size=entry.pos-prev_entry_end_pos; /* detemine if what we want fits in that hole */ if (hole_size>=p_for_size) { *p_pos=i; return true; } /* prepare for next one */ prev_entry_end_pos=entry_end(entry); } /* No holes between entrys, check at the end..*/ if ( (pool_size-prev_entry_end_pos)>=p_for_size ) { *p_pos=entry_count; return true; } return false; } void PoolAllocator::compact(int p_up_to) { uint32_t prev_entry_end_pos=0; if (p_up_to<0) p_up_to=entry_count; for (int i=0;i<p_up_to;i++) { Entry &entry=entry_array[ entry_indices[ i ] ]; /* determine hole size to previous entry */ int hole_size=entry.pos-prev_entry_end_pos; /* if we can compact, do it */ if (hole_size>0 && !entry.lock) { COMPACT_CHUNK(entry,prev_entry_end_pos); } /* prepare for next one */ prev_entry_end_pos=entry_end(entry); } } void PoolAllocator::compact_up(int p_from) { uint32_t next_entry_end_pos=pool_size; // - static_area_size; for (int i=entry_count-1;i>=p_from;i--) { Entry &entry=entry_array[ entry_indices[ i ] ]; /* determine hole size to nextious entry */ int hole_size=next_entry_end_pos-(entry.pos+aligned(entry.len)); /* if we can compact, do it */ if (hole_size>0 && !entry.lock) { COMPACT_CHUNK(entry,(next_entry_end_pos-aligned(entry.len))); } /* prepare for next one */ next_entry_end_pos=entry.pos; } } bool PoolAllocator::find_entry_index(EntryIndicesPos *p_map_pos,Entry *p_entry) { EntryArrayPos entry_pos=entry_max; for (int i=0;i<entry_count;i++) { if (&entry_array[ entry_indices[ i ] ]==p_entry) { entry_pos=i; break; } } if (entry_pos==entry_max) return false; *p_map_pos=entry_pos; return true; } PoolAllocator::ID PoolAllocator::alloc(int p_size) { ERR_FAIL_COND_V(p_size<1,POOL_ALLOCATOR_INVALID_ID); #ifdef DEBUG_ENABLED if (p_size > free_mem) OS::get_singleton()->debug_break(); #endif ERR_FAIL_COND_V(p_size>free_mem,POOL_ALLOCATOR_INVALID_ID); mt_lock(); if (entry_count==entry_max) { mt_unlock(); ERR_PRINT("entry_count==entry_max"); return POOL_ALLOCATOR_INVALID_ID; } int size_to_alloc=aligned(p_size); EntryIndicesPos new_entry_indices_pos; if (!find_hole(&new_entry_indices_pos, size_to_alloc)) { /* No hole could be found, try compacting mem */ compact(); /* Then search again */ if (!find_hole(&new_entry_indices_pos, size_to_alloc)) { mt_unlock(); ERR_PRINT("memory can't be compacted further"); return POOL_ALLOCATOR_INVALID_ID; } } EntryArrayPos new_entry_array_pos; bool found_free_entry=get_free_entry(&new_entry_array_pos); if (!found_free_entry) { mt_unlock(); ERR_FAIL_COND_V( !found_free_entry , POOL_ALLOCATOR_INVALID_ID ); } /* move all entry indices up, make room for this one */ for (int i=entry_count;i>new_entry_indices_pos;i-- ) { entry_indices[i]=entry_indices[i-1]; } entry_indices[new_entry_indices_pos]=new_entry_array_pos; entry_count++; Entry &entry=entry_array[ entry_indices[ new_entry_indices_pos ] ]; entry.len=p_size; entry.pos=(new_entry_indices_pos==0)?0:entry_end(entry_array[ entry_indices[ new_entry_indices_pos-1 ] ]); //alloc either at begining or end of previous entry.lock=0; entry.check=(check_count++)&CHECK_MASK; free_mem-=size_to_alloc; if (free_mem<free_mem_peak) free_mem_peak=free_mem; ID retval = (entry_indices[ new_entry_indices_pos ]<<CHECK_BITS)|entry.check; mt_unlock(); //ERR_FAIL_COND_V( (uintptr_t)get(retval)%align != 0, retval ); return retval; } PoolAllocator::Entry * PoolAllocator::get_entry(ID p_mem) { unsigned int check=p_mem&CHECK_MASK; int entry=p_mem>>CHECK_BITS; ERR_FAIL_INDEX_V(entry,entry_max,NULL); ERR_FAIL_COND_V(entry_array[entry].check!=check,NULL); ERR_FAIL_COND_V(entry_array[entry].len==0,NULL); return &entry_array[entry]; } const PoolAllocator::Entry * PoolAllocator::get_entry(ID p_mem) const { unsigned int check=p_mem&CHECK_MASK; int entry=p_mem>>CHECK_BITS; ERR_FAIL_INDEX_V(entry,entry_max,NULL); ERR_FAIL_COND_V(entry_array[entry].check!=check,NULL); ERR_FAIL_COND_V(entry_array[entry].len==0,NULL); return &entry_array[entry]; } void PoolAllocator::free(ID p_mem) { mt_lock(); Entry *e=get_entry(p_mem); if (!e) { mt_unlock(); ERR_PRINT("!e"); return; } if (e->lock) { mt_unlock(); ERR_PRINT("e->lock"); return; } EntryIndicesPos entry_indices_pos; bool index_found = find_entry_index(&entry_indices_pos,e); if (!index_found) { mt_unlock(); ERR_FAIL_COND(!index_found); } for (int i=entry_indices_pos;i<(entry_count-1);i++) { entry_indices[ i ] = entry_indices[ i+1 ]; } entry_count--; free_mem+=aligned(e->len); e->clear(); mt_unlock(); } int PoolAllocator::get_size(ID p_mem) const { int size; mt_lock(); const Entry *e=get_entry(p_mem); if (!e) { mt_unlock(); ERR_PRINT("!e"); return 0; } size=e->len; mt_unlock(); return size; } Error PoolAllocator::resize(ID p_mem,int p_new_size) { mt_lock(); Entry *e=get_entry(p_mem); if (!e) { mt_unlock(); ERR_FAIL_COND_V(!e,ERR_INVALID_PARAMETER); } if (needs_locking && e->lock) { mt_unlock(); ERR_FAIL_COND_V(e->lock,ERR_ALREADY_IN_USE); } int alloc_size = aligned(p_new_size); if (aligned(e->len)==alloc_size) { e->len=p_new_size; mt_unlock(); return OK; } else if (e->len>(uint32_t)p_new_size) { free_mem += aligned(e->len); free_mem -= alloc_size; e->len=p_new_size; mt_unlock(); return OK; } //p_new_size = align(p_new_size) int _total = pool_size; // - static_area_size; int _free = free_mem; // - static_area_size; if ((_free + aligned(e->len)) - alloc_size < 0) { mt_unlock(); ERR_FAIL_V( ERR_OUT_OF_MEMORY ); }; EntryIndicesPos entry_indices_pos; bool index_found = find_entry_index(&entry_indices_pos,e); if (!index_found) { mt_unlock(); ERR_FAIL_COND_V(!index_found,ERR_BUG); } //no need to move stuff around, it fits before the next block int next_pos; if (entry_indices_pos+1 == entry_count) { next_pos = pool_size; // - static_area_size; } else { next_pos = entry_array[entry_indices[entry_indices_pos+1]].pos; }; if ((next_pos - e->pos) > alloc_size) { free_mem+=aligned(e->len); e->len=p_new_size; free_mem-=alloc_size; mt_unlock(); return OK; } //it doesn't fit, compact around BEFORE current index (make room behind) compact(entry_indices_pos+1); if ((next_pos - e->pos) > alloc_size) { //now fits! hooray! free_mem+=aligned(e->len); e->len=p_new_size; free_mem-=alloc_size; mt_unlock(); if (free_mem<free_mem_peak) free_mem_peak=free_mem; return OK; } //STILL doesn't fit, compact around AFTER current index (make room after) compact_up(entry_indices_pos+1); if ((entry_array[entry_indices[entry_indices_pos+1]].pos - e->pos) > alloc_size) { //now fits! hooray! free_mem+=aligned(e->len); e->len=p_new_size; free_mem-=alloc_size; mt_unlock(); if (free_mem<free_mem_peak) free_mem_peak=free_mem; return OK; } mt_unlock(); ERR_FAIL_V(ERR_OUT_OF_MEMORY); } Error PoolAllocator::lock(ID p_mem) { if (!needs_locking) return OK; mt_lock(); Entry *e=get_entry(p_mem); if (!e) { mt_unlock(); ERR_PRINT("!e"); return ERR_INVALID_PARAMETER; } e->lock++; mt_unlock(); return OK; } bool PoolAllocator::is_locked(ID p_mem) const { if (!needs_locking) return false; mt_lock(); const Entry *e=((PoolAllocator*)(this))->get_entry(p_mem); if (!e) { mt_unlock(); ERR_PRINT("!e"); return false; } bool locked = e->lock; mt_unlock(); return locked; } const void *PoolAllocator::get(ID p_mem) const { if (!needs_locking) { const Entry *e=get_entry(p_mem); ERR_FAIL_COND_V(!e,NULL); return &pool[e->pos]; } mt_lock(); const Entry *e=get_entry(p_mem); if (!e) { mt_unlock(); ERR_FAIL_COND_V(!e,NULL); } if (e->lock==0) { mt_unlock(); ERR_PRINT( "e->lock == 0" ); return NULL; } if (e->pos<0 || (int)e->pos>=pool_size) { mt_unlock(); ERR_PRINT("e->pos<0 || e->pos>=pool_size"); return NULL; } const void *ptr=&pool[e->pos]; mt_unlock(); return ptr; } void *PoolAllocator::get(ID p_mem) { if (!needs_locking) { Entry *e=get_entry(p_mem); if (!e) { ERR_FAIL_COND_V(!e,NULL); }; return &pool[e->pos]; } mt_lock(); Entry *e=get_entry(p_mem); if (!e) { mt_unlock(); ERR_FAIL_COND_V(!e,NULL); } if (e->lock==0) { //assert(0); mt_unlock(); ERR_PRINT( "e->lock == 0" ); return NULL; } if (e->pos<0 || (int)e->pos>=pool_size) { mt_unlock(); ERR_PRINT("e->pos<0 || e->pos>=pool_size"); return NULL; } void *ptr=&pool[e->pos]; mt_unlock(); return ptr; } void PoolAllocator::unlock(ID p_mem) { if (!needs_locking) return; mt_lock(); Entry *e=get_entry(p_mem); if (e->lock == 0 ) { mt_unlock(); ERR_PRINT( "e->lock == 0" ); return; } e->lock--; mt_unlock(); } int PoolAllocator::get_used_mem() const { return pool_size-free_mem; } int PoolAllocator::get_free_peak() { return free_mem_peak; } int PoolAllocator::get_free_mem() { return free_mem; } void PoolAllocator::create_pool(void * p_mem,int p_size,int p_max_entries) { pool=(uint8_t*)p_mem; pool_size=p_size; entry_array = memnew_arr( Entry, p_max_entries ); entry_indices = memnew_arr( int, p_max_entries ); entry_max = p_max_entries; entry_count=0; free_mem=p_size; free_mem_peak=p_size; check_count=0; } PoolAllocator::PoolAllocator(int p_size,bool p_needs_locking,int p_max_entries) { mem_ptr=Memory::alloc_static( p_size,"PoolAllocator()"); ERR_FAIL_COND(!mem_ptr); align=1; create_pool(mem_ptr,p_size,p_max_entries); needs_locking=p_needs_locking; } PoolAllocator::PoolAllocator(void * p_mem,int p_size, int p_align ,bool p_needs_locking,int p_max_entries) { if (p_align > 1) { uint8_t *mem8=(uint8_t*)p_mem; uint64_t ofs = (uint64_t)mem8; if (ofs%p_align) { int dif = p_align-(ofs%p_align); mem8+=p_align-(ofs%p_align); p_size -= dif; p_mem = (void*)mem8; }; }; create_pool( p_mem,p_size,p_max_entries); needs_locking=p_needs_locking; align=p_align; mem_ptr=NULL; } PoolAllocator::PoolAllocator(int p_align,int p_size,bool p_needs_locking,int p_max_entries) { ERR_FAIL_COND(p_align<1); mem_ptr=Memory::alloc_static( p_size+p_align,"PoolAllocator()"); uint8_t *mem8=(uint8_t*)mem_ptr; uint64_t ofs = (uint64_t)mem8; if (ofs%p_align) mem8+=p_align-(ofs%p_align); create_pool( mem8 ,p_size,p_max_entries); needs_locking=p_needs_locking; align=p_align; } PoolAllocator::~PoolAllocator() { if (mem_ptr) Memory::free_static( mem_ptr ); memdelete_arr( entry_array ); memdelete_arr( entry_indices ); }