/* clang-format off */
[vertex]

layout(location = 0) in highp vec4 vertex_attrib;
/* clang-format on */

void main() {

	gl_Position = vertex_attrib;
	gl_Position.z = 1.0;
}

/* clang-format off */
[fragment]

#define TWO_PI 6.283185307179586476925286766559

#ifdef SSAO_QUALITY_HIGH
#define NUM_SAMPLES (16)
#endif

#ifdef SSAO_QUALITY_LOW
#define NUM_SAMPLES (8)
#endif

#if !defined(SSAO_QUALITY_LOW) && !defined(SSAO_QUALITY_HIGH)
#define NUM_SAMPLES (12)
#endif

// If using depth mip levels, the log of the maximum pixel offset before we need to switch to a lower
// miplevel to maintain reasonable spatial locality in the cache
// If this number is too small (< 3), too many taps will land in the same pixel, and we'll get bad variance that manifests as flashing.
// If it is too high (> 5), we'll get bad performance because we're not using the MIP levels effectively
#define LOG_MAX_OFFSET (3)

// This must be less than or equal to the MAX_MIP_LEVEL defined in SSAO.cpp
#define MAX_MIP_LEVEL (4)

// This is the number of turns around the circle that the spiral pattern makes.  This should be prime to prevent
// taps from lining up.  This particular choice was tuned for NUM_SAMPLES == 9

const int ROTATIONS[] = int[](
		1, 1, 2, 3, 2, 5, 2, 3, 2,
		3, 3, 5, 5, 3, 4, 7, 5, 5, 7,
		9, 8, 5, 5, 7, 7, 7, 8, 5, 8,
		11, 12, 7, 10, 13, 8, 11, 8, 7, 14,
		11, 11, 13, 12, 13, 19, 17, 13, 11, 18,
		19, 11, 11, 14, 17, 21, 15, 16, 17, 18,
		13, 17, 11, 17, 19, 18, 25, 18, 19, 19,
		29, 21, 19, 27, 31, 29, 21, 18, 17, 29,
		31, 31, 23, 18, 25, 26, 25, 23, 19, 34,
		19, 27, 21, 25, 39, 29, 17, 21, 27);
/* clang-format on */

//#define NUM_SPIRAL_TURNS (7)
const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES - 1];

uniform sampler2D source_depth; //texunit:0
uniform highp usampler2D source_depth_mipmaps; //texunit:1
uniform sampler2D source_normal; //texunit:2

uniform ivec2 screen_size;
uniform float camera_z_far;
uniform float camera_z_near;

uniform float intensity_div_r6;
uniform float radius;

#ifdef ENABLE_RADIUS2
uniform float intensity_div_r62;
uniform float radius2;
#endif

uniform float bias;
uniform float proj_scale;

layout(location = 0) out float visibility;

uniform vec4 proj_info;

vec3 reconstructCSPosition(vec2 S, float z) {
#ifdef USE_ORTHOGONAL_PROJECTION
	return vec3((S.xy * proj_info.xy + proj_info.zw), z);
#else
	return vec3((S.xy * proj_info.xy + proj_info.zw) * z, z);

#endif
}

vec3 getPosition(ivec2 ssP) {
	vec3 P;
	P.z = texelFetch(source_depth, ssP, 0).r;

	P.z = P.z * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
	P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
	P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
#endif
	P.z = -P.z;

	// Offset to pixel center
	P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
	return P;
}

/** Reconstructs screen-space unit normal from screen-space position */
vec3 reconstructCSFaceNormal(vec3 C) {
	return normalize(cross(dFdy(C), dFdx(C)));
}

/** Returns a unit vector and a screen-space radius for the tap on a unit disk (the caller should scale by the actual disk radius) */
vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR) {
	// Radius relative to ssR
	float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES));
	float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle;

	ssR = alpha;
	return vec2(cos(angle), sin(angle));
}

/** Read the camera-space position of the point at screen-space pixel ssP + unitOffset * ssR.  Assumes length(unitOffset) == 1 */
vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
	// Derivation:
	//  mipLevel = floor(log(ssR / MAX_OFFSET));
	int mipLevel = clamp(int(floor(log2(ssR))) - LOG_MAX_OFFSET, 0, MAX_MIP_LEVEL);

	ivec2 ssP = ivec2(ssR * unitOffset) + ssC;

	vec3 P;

	// We need to divide by 2^mipLevel to read the appropriately scaled coordinate from a MIP-map.
	// Manually clamp to the texture size because texelFetch bypasses the texture unit
	ivec2 mipP = clamp(ssP >> mipLevel, ivec2(0), (screen_size >> mipLevel) - ivec2(1));

	if (mipLevel < 1) {
		//read from depth buffer
		P.z = texelFetch(source_depth, mipP, 0).r;
		P.z = P.z * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
		P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
		P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
#endif
		P.z = -P.z;

	} else {
		//read from mipmaps
		uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel - 1).r;
		P.z = -(float(d) / 65535.0) * camera_z_far;
	}

	// Offset to pixel center
	P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);

	return P;
}

/** Compute the occlusion due to sample with index \a i about the pixel at \a ssC that corresponds
	to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius

	Note that units of H() in the HPG12 paper are meters, not
	unitless.  The whole falloff/sampling function is therefore
	unitless.  In this implementation, we factor out (9 / radius).

	Four versions of the falloff function are implemented below
*/
float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius, in float p_radius, in int tapIndex, in float randomPatternRotationAngle) {
	// Offset on the unit disk, spun for this pixel
	float ssR;
	vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR);
	ssR *= ssDiskRadius;

	// The occluding point in camera space
	vec3 Q = getOffsetPosition(ssC, unitOffset, ssR);

	vec3 v = Q - C;

	float vv = dot(v, v);
	float vn = dot(v, n_C);

	const float epsilon = 0.01;
	float radius2 = p_radius * p_radius;

	// A: From the HPG12 paper
	// Note large epsilon to avoid overdarkening within cracks
	//return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6;

	// B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended]
	float f = max(radius2 - vv, 0.0);
	return f * f * f * max((vn - bias) / (epsilon + vv), 0.0);

	// C: Medium contrast (which looks better at high radii), no division.  Note that the
	// contribution still falls off with radius^2, but we've adjusted the rate in a way that is
	// more computationally efficient and happens to be aesthetically pleasing.
	// return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0);

	// D: Low contrast, no division operation
	// return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0);
}

void main() {
	// Pixel being shaded
	ivec2 ssC = ivec2(gl_FragCoord.xy);

	// World space point being shaded
	vec3 C = getPosition(ssC);

	/*
	if (C.z <= -camera_z_far * 0.999) {
		// We're on the skybox
		visibility=1.0;
		return;
	}
	*/

	//visibility = -C.z / camera_z_far;
	//return;
#if 0
	vec3 n_C = texelFetch(source_normal, ssC, 0).rgb * 2.0 - 1.0;
#else
	vec3 n_C = reconstructCSFaceNormal(C);
	n_C = -n_C;
#endif

	// Hash function used in the HPG12 AlchemyAO paper
	float randomPatternRotationAngle = mod(float((3 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 10), TWO_PI);

	// Reconstruct normals from positions. These will lead to 1-pixel black lines
	// at depth discontinuities, however the blur will wipe those out so they are not visible
	// in the final image.

	// Choose the screen-space sample radius
	// proportional to the projected area of the sphere
#ifdef USE_ORTHOGONAL_PROJECTION
	float ssDiskRadius = -proj_scale * radius;
#else
	float ssDiskRadius = -proj_scale * radius / C.z;
#endif
	float sum = 0.0;
	for (int i = 0; i < NUM_SAMPLES; ++i) {
		sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius, i, randomPatternRotationAngle);
	}

	float A = max(0.0, 1.0 - sum * intensity_div_r6 * (5.0 / float(NUM_SAMPLES)));

#ifdef ENABLE_RADIUS2

	//go again for radius2
	randomPatternRotationAngle = mod(float((5 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 11), TWO_PI);

	// Reconstruct normals from positions. These will lead to 1-pixel black lines
	// at depth discontinuities, however the blur will wipe those out so they are not visible
	// in the final image.

	// Choose the screen-space sample radius
	// proportional to the projected area of the sphere
	ssDiskRadius = -proj_scale * radius2 / C.z;

	sum = 0.0;
	for (int i = 0; i < NUM_SAMPLES; ++i) {
		sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius2, i, randomPatternRotationAngle);
	}

	A = min(A, max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES))));
#endif
	// Bilateral box-filter over a quad for free, respecting depth edges
	// (the difference that this makes is subtle)
	if (abs(dFdx(C.z)) < 0.02) {
		A -= dFdx(A) * (float(ssC.x & 1) - 0.5);
	}
	if (abs(dFdy(C.z)) < 0.02) {
		A -= dFdy(A) * (float(ssC.y & 1) - 0.5);
	}

	visibility = A;
}