/*************************************************************************/ /* image.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "image.h" #include "core/io/image_loader.h" #include "core/os/copymem.h" #include "hash_map.h" #include "print_string.h" #include "thirdparty/misc/hq2x.h" #include <stdio.h> const char *Image::format_names[Image::FORMAT_MAX] = { "Lum8", //luminance "LumAlpha8", //luminance-alpha "Red8", "RedGreen", "RGB8", "RGBA8", "RGBA4444", "RGBA5551", "RFloat", //float "RGFloat", "RGBFloat", "RGBAFloat", "RHalf", //half float "RGHalf", "RGBHalf", "RGBAHalf", "RGBE9995", "DXT1 RGB8", //s3tc "DXT3 RGBA8", "DXT5 RGBA8", "RGTC Red8", "RGTC RedGreen8", "BPTC_RGBA", "BPTC_RGBF", "BPTC_RGBFU", "PVRTC2", //pvrtc "PVRTC2A", "PVRTC4", "PVRTC4A", "ETC", //etc1 "ETC2_R11", //etc2 "ETC2_R11S", //signed", NOT srgb. "ETC2_RG11", "ETC2_RG11S", "ETC2_RGB8", "ETC2_RGBA8", "ETC2_RGB8A1", }; SavePNGFunc Image::save_png_func = NULL; void Image::_put_pixelb(int p_x, int p_y, uint32_t p_pixelsize, uint8_t *p_data, const uint8_t *p_pixel) { uint32_t ofs = (p_y * width + p_x) * p_pixelsize; for (uint32_t i = 0; i < p_pixelsize; i++) { p_data[ofs + i] = p_pixel[i]; } } void Image::_get_pixelb(int p_x, int p_y, uint32_t p_pixelsize, const uint8_t *p_data, uint8_t *p_pixel) { uint32_t ofs = (p_y * width + p_x) * p_pixelsize; for (uint32_t i = 0; i < p_pixelsize; i++) { p_pixel[i] = p_data[ofs + i]; } } int Image::get_format_pixel_size(Format p_format) { switch (p_format) { case FORMAT_L8: return 1; //luminance case FORMAT_LA8: return 2; //luminance-alpha case FORMAT_R8: return 1; case FORMAT_RG8: return 2; case FORMAT_RGB8: return 3; case FORMAT_RGBA8: return 4; case FORMAT_RGBA4444: return 2; case FORMAT_RGBA5551: return 2; case FORMAT_RF: return 4; //float case FORMAT_RGF: return 8; case FORMAT_RGBF: return 12; case FORMAT_RGBAF: return 16; case FORMAT_RH: return 2; //half float case FORMAT_RGH: return 4; case FORMAT_RGBH: return 6; case FORMAT_RGBAH: return 8; case FORMAT_RGBE9995: return 4; case FORMAT_DXT1: return 1; //s3tc bc1 case FORMAT_DXT3: return 1; //bc2 case FORMAT_DXT5: return 1; //bc3 case FORMAT_RGTC_R: return 1; //bc4 case FORMAT_RGTC_RG: return 1; //bc5 case FORMAT_BPTC_RGBA: return 1; //btpc bc6h case FORMAT_BPTC_RGBF: return 1; //float / case FORMAT_BPTC_RGBFU: return 1; //unsigned float case FORMAT_PVRTC2: return 1; //pvrtc case FORMAT_PVRTC2A: return 1; case FORMAT_PVRTC4: return 1; case FORMAT_PVRTC4A: return 1; case FORMAT_ETC: return 1; //etc1 case FORMAT_ETC2_R11: return 1; //etc2 case FORMAT_ETC2_R11S: return 1; //signed: return 1; NOT srgb. case FORMAT_ETC2_RG11: return 1; case FORMAT_ETC2_RG11S: return 1; case FORMAT_ETC2_RGB8: return 1; case FORMAT_ETC2_RGBA8: return 1; case FORMAT_ETC2_RGB8A1: return 1; case FORMAT_MAX: { } } return 0; } void Image::get_format_min_pixel_size(Format p_format, int &r_w, int &r_h) { switch (p_format) { case FORMAT_DXT1: //s3tc bc1 case FORMAT_DXT3: //bc2 case FORMAT_DXT5: //bc3 case FORMAT_RGTC_R: //bc4 case FORMAT_RGTC_RG: { //bc5 case case FORMAT_DXT1: r_w = 4; r_h = 4; } break; case FORMAT_PVRTC2: case FORMAT_PVRTC2A: { r_w = 16; r_h = 8; } break; case FORMAT_PVRTC4A: case FORMAT_PVRTC4: { r_w = 8; r_h = 8; } break; case FORMAT_ETC: { r_w = 4; r_h = 4; } break; case FORMAT_BPTC_RGBA: case FORMAT_BPTC_RGBF: case FORMAT_BPTC_RGBFU: { r_w = 4; r_h = 4; } break; case FORMAT_ETC2_R11: //etc2 case FORMAT_ETC2_R11S: //signed: NOT srgb. case FORMAT_ETC2_RG11: case FORMAT_ETC2_RG11S: case FORMAT_ETC2_RGB8: case FORMAT_ETC2_RGBA8: case FORMAT_ETC2_RGB8A1: { r_w = 4; r_h = 4; } break; default: { r_w = 1; r_h = 1; } break; } } int Image::get_format_pixel_rshift(Format p_format) { if (p_format == FORMAT_DXT1 || p_format == FORMAT_RGTC_R || p_format == FORMAT_PVRTC4 || p_format == FORMAT_PVRTC4A || p_format == FORMAT_ETC || p_format == FORMAT_ETC2_R11 || p_format == FORMAT_ETC2_R11S || p_format == FORMAT_ETC2_RGB8 || p_format == FORMAT_ETC2_RGB8A1) return 1; else if (p_format == FORMAT_PVRTC2 || p_format == FORMAT_PVRTC2A) return 2; else return 0; } int Image::get_format_block_size(Format p_format) { switch (p_format) { case FORMAT_DXT1: //s3tc bc1 case FORMAT_DXT3: //bc2 case FORMAT_DXT5: //bc3 case FORMAT_RGTC_R: //bc4 case FORMAT_RGTC_RG: { //bc5 case case FORMAT_DXT1: return 4; } break; case FORMAT_PVRTC2: case FORMAT_PVRTC2A: { return 4; } break; case FORMAT_PVRTC4A: case FORMAT_PVRTC4: { return 4; } break; case FORMAT_ETC: { return 4; } break; case FORMAT_BPTC_RGBA: case FORMAT_BPTC_RGBF: case FORMAT_BPTC_RGBFU: { return 4; } break; case FORMAT_ETC2_R11: //etc2 case FORMAT_ETC2_R11S: //signed: NOT srgb. case FORMAT_ETC2_RG11: case FORMAT_ETC2_RG11S: case FORMAT_ETC2_RGB8: case FORMAT_ETC2_RGBA8: case FORMAT_ETC2_RGB8A1: { return 4; } break; default: { } } return 1; } void Image::_get_mipmap_offset_and_size(int p_mipmap, int &r_offset, int &r_width, int &r_height) const { int w = width; int h = height; int ofs = 0; int pixel_size = get_format_pixel_size(format); int pixel_rshift = get_format_pixel_rshift(format); int block = get_format_block_size(format); int minw, minh; get_format_min_pixel_size(format, minw, minh); for (int i = 0; i < p_mipmap; i++) { int bw = w % block != 0 ? w + (block - w % block) : w; int bh = h % block != 0 ? h + (block - h % block) : h; int s = bw * bh; s *= pixel_size; s >>= pixel_rshift; ofs += s; w = MAX(minw, w >> 1); h = MAX(minh, h >> 1); } r_offset = ofs; r_width = w; r_height = h; } int Image::get_mipmap_offset(int p_mipmap) const { ERR_FAIL_INDEX_V(p_mipmap, get_mipmap_count() + 1, -1); int ofs, w, h; _get_mipmap_offset_and_size(p_mipmap, ofs, w, h); return ofs; } void Image::get_mipmap_offset_and_size(int p_mipmap, int &r_ofs, int &r_size) const { int ofs, w, h; _get_mipmap_offset_and_size(p_mipmap, ofs, w, h); int ofs2; _get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w, h); r_ofs = ofs; r_size = ofs2 - ofs; } void Image::get_mipmap_offset_size_and_dimensions(int p_mipmap, int &r_ofs, int &r_size, int &w, int &h) const { int ofs; _get_mipmap_offset_and_size(p_mipmap, ofs, w, h); int ofs2, w2, h2; _get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w2, h2); r_ofs = ofs; r_size = ofs2 - ofs; } int Image::get_width() const { return width; } int Image::get_height() const { return height; } Vector2 Image::get_size() const { return Vector2(width, height); } bool Image::has_mipmaps() const { return mipmaps; } int Image::get_mipmap_count() const { if (mipmaps) return get_image_required_mipmaps(width, height, format); else return 0; } //using template generates perfectly optimized code due to constant expression reduction and unused variable removal present in all compilers template <uint32_t read_bytes, bool read_alpha, uint32_t write_bytes, bool write_alpha, bool read_gray, bool write_gray> static void _convert(int p_width, int p_height, const uint8_t *p_src, uint8_t *p_dst) { for (int y = 0; y < p_height; y++) { for (int x = 0; x < p_width; x++) { const uint8_t *rofs = &p_src[((y * p_width) + x) * (read_bytes + (read_alpha ? 1 : 0))]; uint8_t *wofs = &p_dst[((y * p_width) + x) * (write_bytes + (write_alpha ? 1 : 0))]; uint8_t rgba[4]; if (read_gray) { rgba[0] = rofs[0]; rgba[1] = rofs[0]; rgba[2] = rofs[0]; } else { for (uint32_t i = 0; i < MAX(read_bytes, write_bytes); i++) { rgba[i] = (i < read_bytes) ? rofs[i] : 0; } } if (read_alpha || write_alpha) { rgba[3] = read_alpha ? rofs[read_bytes] : 255; } if (write_gray) { //TODO: not correct grayscale, should use fixed point version of actual weights wofs[0] = uint8_t((uint16_t(rofs[0]) + uint16_t(rofs[1]) + uint16_t(rofs[2])) / 3); } else { for (uint32_t i = 0; i < write_bytes; i++) { wofs[i] = rgba[i]; } } if (write_alpha) { wofs[write_bytes] = rgba[3]; } } } } void Image::convert(Format p_new_format) { if (data.size() == 0) return; if (p_new_format == format) return; if (format > FORMAT_RGBE9995 || p_new_format > FORMAT_RGBE9995) { ERR_EXPLAIN("Cannot convert to <-> from compressed formats. Use compress() and decompress() instead."); ERR_FAIL(); } else if (format > FORMAT_RGBA8 || p_new_format > FORMAT_RGBA8) { //use put/set pixel which is slower but works with non byte formats Image new_img(width, height, 0, p_new_format); lock(); new_img.lock(); for (int i = 0; i < width; i++) { for (int j = 0; j < height; j++) { new_img.set_pixel(i, j, get_pixel(i, j)); } } unlock(); new_img.unlock(); if (has_mipmaps()) { new_img.generate_mipmaps(); } _copy_internals_from(new_img); return; } Image new_img(width, height, 0, p_new_format); //int len=data.size(); PoolVector<uint8_t>::Read r = data.read(); PoolVector<uint8_t>::Write w = new_img.data.write(); const uint8_t *rptr = r.ptr(); uint8_t *wptr = w.ptr(); int conversion_type = format | p_new_format << 8; switch (conversion_type) { case FORMAT_L8 | (FORMAT_LA8 << 8): _convert<1, false, 1, true, true, true>(width, height, rptr, wptr); break; case FORMAT_L8 | (FORMAT_R8 << 8): _convert<1, false, 1, false, true, false>(width, height, rptr, wptr); break; case FORMAT_L8 | (FORMAT_RG8 << 8): _convert<1, false, 2, false, true, false>(width, height, rptr, wptr); break; case FORMAT_L8 | (FORMAT_RGB8 << 8): _convert<1, false, 3, false, true, false>(width, height, rptr, wptr); break; case FORMAT_L8 | (FORMAT_RGBA8 << 8): _convert<1, false, 3, true, true, false>(width, height, rptr, wptr); break; case FORMAT_LA8 | (FORMAT_L8 << 8): _convert<1, true, 1, false, true, true>(width, height, rptr, wptr); break; case FORMAT_LA8 | (FORMAT_R8 << 8): _convert<1, true, 1, false, true, false>(width, height, rptr, wptr); break; case FORMAT_LA8 | (FORMAT_RG8 << 8): _convert<1, true, 2, false, true, false>(width, height, rptr, wptr); break; case FORMAT_LA8 | (FORMAT_RGB8 << 8): _convert<1, true, 3, false, true, false>(width, height, rptr, wptr); break; case FORMAT_LA8 | (FORMAT_RGBA8 << 8): _convert<1, true, 3, true, true, false>(width, height, rptr, wptr); break; case FORMAT_R8 | (FORMAT_L8 << 8): _convert<1, false, 1, false, false, true>(width, height, rptr, wptr); break; case FORMAT_R8 | (FORMAT_LA8 << 8): _convert<1, false, 1, true, false, true>(width, height, rptr, wptr); break; case FORMAT_R8 | (FORMAT_RG8 << 8): _convert<1, false, 2, false, false, false>(width, height, rptr, wptr); break; case FORMAT_R8 | (FORMAT_RGB8 << 8): _convert<1, false, 3, false, false, false>(width, height, rptr, wptr); break; case FORMAT_R8 | (FORMAT_RGBA8 << 8): _convert<1, false, 3, true, false, false>(width, height, rptr, wptr); break; case FORMAT_RG8 | (FORMAT_L8 << 8): _convert<2, false, 1, false, false, true>(width, height, rptr, wptr); break; case FORMAT_RG8 | (FORMAT_LA8 << 8): _convert<2, false, 1, true, false, true>(width, height, rptr, wptr); break; case FORMAT_RG8 | (FORMAT_R8 << 8): _convert<2, false, 1, false, false, false>(width, height, rptr, wptr); break; case FORMAT_RG8 | (FORMAT_RGB8 << 8): _convert<2, false, 3, false, false, false>(width, height, rptr, wptr); break; case FORMAT_RG8 | (FORMAT_RGBA8 << 8): _convert<2, false, 3, true, false, false>(width, height, rptr, wptr); break; case FORMAT_RGB8 | (FORMAT_L8 << 8): _convert<3, false, 1, false, false, true>(width, height, rptr, wptr); break; case FORMAT_RGB8 | (FORMAT_LA8 << 8): _convert<3, false, 1, true, false, true>(width, height, rptr, wptr); break; case FORMAT_RGB8 | (FORMAT_R8 << 8): _convert<3, false, 1, false, false, false>(width, height, rptr, wptr); break; case FORMAT_RGB8 | (FORMAT_RG8 << 8): _convert<3, false, 2, false, false, false>(width, height, rptr, wptr); break; case FORMAT_RGB8 | (FORMAT_RGBA8 << 8): _convert<3, false, 3, true, false, false>(width, height, rptr, wptr); break; case FORMAT_RGBA8 | (FORMAT_L8 << 8): _convert<3, true, 1, false, false, true>(width, height, rptr, wptr); break; case FORMAT_RGBA8 | (FORMAT_LA8 << 8): _convert<3, true, 1, true, false, true>(width, height, rptr, wptr); break; case FORMAT_RGBA8 | (FORMAT_R8 << 8): _convert<3, true, 1, false, false, false>(width, height, rptr, wptr); break; case FORMAT_RGBA8 | (FORMAT_RG8 << 8): _convert<3, true, 2, false, false, false>(width, height, rptr, wptr); break; case FORMAT_RGBA8 | (FORMAT_RGB8 << 8): _convert<3, true, 3, false, false, false>(width, height, rptr, wptr); break; } r = PoolVector<uint8_t>::Read(); w = PoolVector<uint8_t>::Write(); bool gen_mipmaps = mipmaps; //mipmaps=false; _copy_internals_from(new_img); if (gen_mipmaps) generate_mipmaps(); } Image::Format Image::get_format() const { return format; } static double _bicubic_interp_kernel(double x) { x = ABS(x); double bc = 0; if (x <= 1) bc = (1.5 * x - 2.5) * x * x + 1; else if (x < 2) bc = ((-0.5 * x + 2.5) * x - 4) * x + 2; return bc; } template <int CC> static void _scale_cubic(const uint8_t *p_src, uint8_t *p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) { // get source image size int width = p_src_width; int height = p_src_height; double xfac = (double)width / p_dst_width; double yfac = (double)height / p_dst_height; // coordinates of source points and coefficients double ox, oy, dx, dy, k1, k2; int ox1, oy1, ox2, oy2; // destination pixel values // width and height decreased by 1 int ymax = height - 1; int xmax = width - 1; // temporary pointer for (uint32_t y = 0; y < p_dst_height; y++) { // Y coordinates oy = (double)y * yfac - 0.5f; oy1 = (int)oy; dy = oy - (double)oy1; for (uint32_t x = 0; x < p_dst_width; x++) { // X coordinates ox = (double)x * xfac - 0.5f; ox1 = (int)ox; dx = ox - (double)ox1; // initial pixel value uint8_t *dst = p_dst + (y * p_dst_width + x) * CC; double color[CC]; for (int i = 0; i < CC; i++) { color[i] = 0; } for (int n = -1; n < 3; n++) { // get Y coefficient k1 = _bicubic_interp_kernel(dy - (double)n); oy2 = oy1 + n; if (oy2 < 0) oy2 = 0; if (oy2 > ymax) oy2 = ymax; for (int m = -1; m < 3; m++) { // get X coefficient k2 = k1 * _bicubic_interp_kernel((double)m - dx); ox2 = ox1 + m; if (ox2 < 0) ox2 = 0; if (ox2 > xmax) ox2 = xmax; // get pixel of original image const uint8_t *p = p_src + (oy2 * p_src_width + ox2) * CC; for (int i = 0; i < CC; i++) { color[i] += p[i] * k2; } } } for (int i = 0; i < CC; i++) { dst[i] = CLAMP(Math::fast_ftoi(color[i]), 0, 255); } } } } template <int CC> static void _scale_bilinear(const uint8_t *p_src, uint8_t *p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) { enum { FRAC_BITS = 8, FRAC_LEN = (1 << FRAC_BITS), FRAC_MASK = FRAC_LEN - 1 }; for (uint32_t i = 0; i < p_dst_height; i++) { uint32_t src_yofs_up_fp = (i * p_src_height * FRAC_LEN / p_dst_height); uint32_t src_yofs_frac = src_yofs_up_fp & FRAC_MASK; uint32_t src_yofs_up = src_yofs_up_fp >> FRAC_BITS; uint32_t src_yofs_down = (i + 1) * p_src_height / p_dst_height; if (src_yofs_down >= p_src_height) src_yofs_down = p_src_height - 1; //src_yofs_up*=CC; //src_yofs_down*=CC; uint32_t y_ofs_up = src_yofs_up * p_src_width * CC; uint32_t y_ofs_down = src_yofs_down * p_src_width * CC; for (uint32_t j = 0; j < p_dst_width; j++) { uint32_t src_xofs_left_fp = (j * p_src_width * FRAC_LEN / p_dst_width); uint32_t src_xofs_frac = src_xofs_left_fp & FRAC_MASK; uint32_t src_xofs_left = src_xofs_left_fp >> FRAC_BITS; uint32_t src_xofs_right = (j + 1) * p_src_width / p_dst_width; if (src_xofs_right >= p_src_width) src_xofs_right = p_src_width - 1; src_xofs_left *= CC; src_xofs_right *= CC; for (uint32_t l = 0; l < CC; l++) { uint32_t p00 = p_src[y_ofs_up + src_xofs_left + l] << FRAC_BITS; uint32_t p10 = p_src[y_ofs_up + src_xofs_right + l] << FRAC_BITS; uint32_t p01 = p_src[y_ofs_down + src_xofs_left + l] << FRAC_BITS; uint32_t p11 = p_src[y_ofs_down + src_xofs_right + l] << FRAC_BITS; uint32_t interp_up = p00 + (((p10 - p00) * src_xofs_frac) >> FRAC_BITS); uint32_t interp_down = p01 + (((p11 - p01) * src_xofs_frac) >> FRAC_BITS); uint32_t interp = interp_up + (((interp_down - interp_up) * src_yofs_frac) >> FRAC_BITS); interp >>= FRAC_BITS; p_dst[i * p_dst_width * CC + j * CC + l] = interp; } } } } template <int CC> static void _scale_nearest(const uint8_t *p_src, uint8_t *p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) { for (uint32_t i = 0; i < p_dst_height; i++) { uint32_t src_yofs = i * p_src_height / p_dst_height; uint32_t y_ofs = src_yofs * p_src_width * CC; for (uint32_t j = 0; j < p_dst_width; j++) { uint32_t src_xofs = j * p_src_width / p_dst_width; src_xofs *= CC; for (uint32_t l = 0; l < CC; l++) { uint32_t p = p_src[y_ofs + src_xofs + l]; p_dst[i * p_dst_width * CC + j * CC + l] = p; } } } } void Image::resize_to_po2(bool p_square) { if (!_can_modify(format)) { ERR_EXPLAIN("Cannot resize in indexed, compressed or custom image formats."); ERR_FAIL(); } int w = next_power_of_2(width); int h = next_power_of_2(height); if (w == width && h == height) { if (!p_square || w == h) return; //nothing to do } resize(w, h); } void Image::resize(int p_width, int p_height, Interpolation p_interpolation) { if (!_can_modify(format)) { ERR_EXPLAIN("Cannot resize in indexed, compressed or custom image formats."); ERR_FAIL(); } ERR_FAIL_COND(p_width <= 0); ERR_FAIL_COND(p_height <= 0); ERR_FAIL_COND(p_width > MAX_WIDTH); ERR_FAIL_COND(p_height > MAX_HEIGHT); if (p_width == width && p_height == height) return; Image dst(p_width, p_height, 0, format); PoolVector<uint8_t>::Read r = data.read(); const unsigned char *r_ptr = r.ptr(); PoolVector<uint8_t>::Write w = dst.data.write(); unsigned char *w_ptr = w.ptr(); switch (p_interpolation) { case INTERPOLATE_NEAREST: { switch (get_format_pixel_size(format)) { case 1: _scale_nearest<1>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 2: _scale_nearest<2>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 3: _scale_nearest<3>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 4: _scale_nearest<4>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } break; case INTERPOLATE_BILINEAR: { switch (get_format_pixel_size(format)) { case 1: _scale_bilinear<1>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 2: _scale_bilinear<2>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 3: _scale_bilinear<3>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 4: _scale_bilinear<4>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } break; case INTERPOLATE_CUBIC: { switch (get_format_pixel_size(format)) { case 1: _scale_cubic<1>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 2: _scale_cubic<2>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 3: _scale_cubic<3>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 4: _scale_cubic<4>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } break; } r = PoolVector<uint8_t>::Read(); w = PoolVector<uint8_t>::Write(); if (mipmaps > 0) dst.generate_mipmaps(); _copy_internals_from(dst); } void Image::crop(int p_width, int p_height) { if (!_can_modify(format)) { ERR_EXPLAIN("Cannot crop in indexed, compressed or custom image formats."); ERR_FAIL(); } ERR_FAIL_COND(p_width <= 0); ERR_FAIL_COND(p_height <= 0); ERR_FAIL_COND(p_width > MAX_WIDTH); ERR_FAIL_COND(p_height > MAX_HEIGHT); /* to save memory, cropping should be done in-place, however, since this function will most likely either not be used much, or in critical areas, for now it wont, because it's a waste of time. */ if (p_width == width && p_height == height) return; uint8_t pdata[16]; //largest is 16 uint32_t pixel_size = get_format_pixel_size(format); Image dst(p_width, p_height, 0, format); { PoolVector<uint8_t>::Read r = data.read(); PoolVector<uint8_t>::Write w = dst.data.write(); for (int y = 0; y < p_height; y++) { for (int x = 0; x < p_width; x++) { if ((x >= width || y >= height)) { for (uint32_t i = 0; i < pixel_size; i++) pdata[i] = 0; } else { _get_pixelb(x, y, pixel_size, r.ptr(), pdata); } dst._put_pixelb(x, y, pixel_size, w.ptr(), pdata); } } } if (mipmaps > 0) dst.generate_mipmaps(); _copy_internals_from(dst); } void Image::flip_y() { if (!_can_modify(format)) { ERR_EXPLAIN("Cannot flip_y in indexed, compressed or custom image formats."); ERR_FAIL(); } bool gm = mipmaps; if (gm) clear_mipmaps(); { PoolVector<uint8_t>::Write w = data.write(); uint8_t up[16]; uint8_t down[16]; uint32_t pixel_size = get_format_pixel_size(format); for (int y = 0; y < height / 2; y++) { for (int x = 0; x < width; x++) { _get_pixelb(x, y, pixel_size, w.ptr(), up); _get_pixelb(x, height - y - 1, pixel_size, w.ptr(), down); _put_pixelb(x, height - y - 1, pixel_size, w.ptr(), up); _put_pixelb(x, y, pixel_size, w.ptr(), down); } } } if (gm) generate_mipmaps(); } void Image::flip_x() { if (!_can_modify(format)) { ERR_EXPLAIN("Cannot flip_x in indexed, compressed or custom image formats."); ERR_FAIL(); } bool gm = mipmaps; if (gm) clear_mipmaps(); { PoolVector<uint8_t>::Write w = data.write(); uint8_t up[16]; uint8_t down[16]; uint32_t pixel_size = get_format_pixel_size(format); for (int y = 0; y < height; y++) { for (int x = 0; x < width / 2; x++) { _get_pixelb(x, y, pixel_size, w.ptr(), up); _get_pixelb(width - x - 1, y, pixel_size, w.ptr(), down); _put_pixelb(width - x - 1, y, pixel_size, w.ptr(), up); _put_pixelb(x, y, pixel_size, w.ptr(), down); } } } if (gm) generate_mipmaps(); } int Image::_get_dst_image_size(int p_width, int p_height, Format p_format, int &r_mipmaps, int p_mipmaps) { int size = 0; int w = p_width; int h = p_height; int mm = 0; int pixsize = get_format_pixel_size(p_format); int pixshift = get_format_pixel_rshift(p_format); int block = get_format_block_size(p_format); int minw, minh; get_format_min_pixel_size(p_format, minw, minh); while (true) { int bw = w % block != 0 ? w + (block - w % block) : w; int bh = h % block != 0 ? h + (block - h % block) : h; int s = bw * bh; s *= pixsize; s >>= pixshift; size += s; if (p_mipmaps >= 0 && mm == p_mipmaps) break; if (p_mipmaps >= 0) { w = MAX(minw, w >> 1); h = MAX(minh, h >> 1); } else { if (w == minw && h == minh) break; w = MAX(minw, w >> 1); h = MAX(minh, h >> 1); } mm++; }; r_mipmaps = mm; return size; } bool Image::_can_modify(Format p_format) const { return p_format <= FORMAT_RGBE9995; } template <int CC> static void _generate_po2_mipmap(const uint8_t *p_src, uint8_t *p_dst, uint32_t p_width, uint32_t p_height) { //fast power of 2 mipmap generation uint32_t dst_w = p_width >> 1; uint32_t dst_h = p_height >> 1; for (uint32_t i = 0; i < dst_h; i++) { const uint8_t *rup_ptr = &p_src[i * 2 * p_width * CC]; const uint8_t *rdown_ptr = rup_ptr + p_width * CC; uint8_t *dst_ptr = &p_dst[i * dst_w * CC]; uint32_t count = dst_w; while (count--) { for (int j = 0; j < CC; j++) { uint16_t val = 0; val += rup_ptr[j]; val += rup_ptr[j + CC]; val += rdown_ptr[j]; val += rdown_ptr[j + CC]; dst_ptr[j] = val >> 2; } dst_ptr += CC; rup_ptr += CC * 2; rdown_ptr += CC * 2; } } } void Image::expand_x2_hq2x() { ERR_FAIL_COND(!_can_modify(format)); Format current = format; bool mm = has_mipmaps(); if (mm) { clear_mipmaps(); } if (current != FORMAT_RGBA8) convert(FORMAT_RGBA8); PoolVector<uint8_t> dest; dest.resize(width * 2 * height * 2 * 4); { PoolVector<uint8_t>::Read r = data.read(); PoolVector<uint8_t>::Write w = dest.write(); hq2x_resize((const uint32_t *)r.ptr(), width, height, (uint32_t *)w.ptr()); } width *= 2; height *= 2; data = dest; if (current != FORMAT_RGBA8) convert(current); if (mipmaps) { generate_mipmaps(); } } void Image::shrink_x2() { ERR_FAIL_COND(data.size() == 0); if (mipmaps) { //just use the lower mipmap as base and copy all PoolVector<uint8_t> new_img; int ofs = get_mipmap_offset(1); int new_size = data.size() - ofs; new_img.resize(new_size); { PoolVector<uint8_t>::Write w = new_img.write(); PoolVector<uint8_t>::Read r = data.read(); copymem(w.ptr(), &r[ofs], new_size); } width = MAX(width / 2, 1); height = MAX(height / 2, 1); data = new_img; } else { PoolVector<uint8_t> new_img; ERR_FAIL_COND(!_can_modify(format)); int ps = get_format_pixel_size(format); new_img.resize((width / 2) * (height / 2) * ps); { PoolVector<uint8_t>::Write w = new_img.write(); PoolVector<uint8_t>::Read r = data.read(); switch (format) { case FORMAT_L8: case FORMAT_R8: _generate_po2_mipmap<1>(r.ptr(), w.ptr(), width, height); break; case FORMAT_LA8: _generate_po2_mipmap<2>(r.ptr(), w.ptr(), width, height); break; case FORMAT_RG8: _generate_po2_mipmap<2>(r.ptr(), w.ptr(), width, height); break; case FORMAT_RGB8: _generate_po2_mipmap<3>(r.ptr(), w.ptr(), width, height); break; case FORMAT_RGBA8: _generate_po2_mipmap<4>(r.ptr(), w.ptr(), width, height); break; default: {} } } width /= 2; height /= 2; data = new_img; } } Error Image::generate_mipmaps() { if (!_can_modify(format)) { ERR_EXPLAIN("Cannot generate mipmaps in indexed, compressed or custom image formats."); ERR_FAIL_V(ERR_UNAVAILABLE); } ERR_FAIL_COND_V(width == 0 || height == 0, ERR_UNCONFIGURED); int mmcount; int size = _get_dst_image_size(width, height, format, mmcount); data.resize(size); PoolVector<uint8_t>::Write wp = data.write(); if (next_power_of_2(width) == uint32_t(width) && next_power_of_2(height) == uint32_t(height)) { //use fast code for powers of 2 int prev_ofs = 0; int prev_h = height; int prev_w = width; for (int i = 1; i < mmcount; i++) { int ofs, w, h; _get_mipmap_offset_and_size(i, ofs, w, h); switch (format) { case FORMAT_L8: case FORMAT_R8: _generate_po2_mipmap<1>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break; case FORMAT_LA8: case FORMAT_RG8: _generate_po2_mipmap<2>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break; case FORMAT_RGB8: _generate_po2_mipmap<3>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break; case FORMAT_RGBA8: _generate_po2_mipmap<4>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break; default: {} } prev_ofs = ofs; prev_w = w; prev_h = h; } } else { //use slow code.. //use bilinear filtered code for non powers of 2 int prev_ofs = 0; int prev_h = height; int prev_w = width; for (int i = 1; i < mmcount; i++) { int ofs, w, h; _get_mipmap_offset_and_size(i, ofs, w, h); switch (format) { case FORMAT_L8: case FORMAT_R8: _scale_bilinear<1>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h, w, h); break; case FORMAT_LA8: case FORMAT_RG8: _scale_bilinear<2>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h, w, h); break; case FORMAT_RGB8: _scale_bilinear<3>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h, w, h); break; case FORMAT_RGBA8: _scale_bilinear<4>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h, w, h); break; default: {} } prev_ofs = ofs; prev_w = w; prev_h = h; } } mipmaps = true; return OK; } void Image::clear_mipmaps() { if (!mipmaps) return; if (empty()) return; int ofs, w, h; _get_mipmap_offset_and_size(1, ofs, w, h); data.resize(ofs); mipmaps = false; } bool Image::empty() const { return (data.size() == 0); } PoolVector<uint8_t> Image::get_data() const { return data; } void Image::create(int p_width, int p_height, bool p_use_mipmaps, Format p_format) { int mm = 0; int size = _get_dst_image_size(p_width, p_height, p_format, mm, p_use_mipmaps ? -1 : 0); data.resize(size); { PoolVector<uint8_t>::Write w = data.write(); zeromem(w.ptr(), size); } width = p_width; height = p_height; mipmaps = p_use_mipmaps; format = p_format; } void Image::create(int p_width, int p_height, bool p_use_mipmaps, Format p_format, const PoolVector<uint8_t> &p_data) { ERR_FAIL_INDEX(p_width - 1, MAX_WIDTH); ERR_FAIL_INDEX(p_height - 1, MAX_HEIGHT); int mm; int size = _get_dst_image_size(p_width, p_height, p_format, mm, p_use_mipmaps ? -1 : 0); if (size != p_data.size()) { ERR_EXPLAIN("Expected data size of " + itos(size) + " in Image::create()"); ERR_FAIL_COND(p_data.size() != size); } height = p_height; width = p_width; format = p_format; data = p_data; mipmaps = p_use_mipmaps; } void Image::create(const char **p_xpm) { int size_width, size_height; int pixelchars = 0; mipmaps = false; bool has_alpha = false; enum Status { READING_HEADER, READING_COLORS, READING_PIXELS, DONE }; Status status = READING_HEADER; int line = 0; HashMap<String, Color> colormap; int colormap_size; uint32_t pixel_size; PoolVector<uint8_t>::Write w; while (status != DONE) { const char *line_ptr = p_xpm[line]; switch (status) { case READING_HEADER: { String line_str = line_ptr; line_str.replace("\t", " "); size_width = line_str.get_slicec(' ', 0).to_int(); size_height = line_str.get_slicec(' ', 1).to_int(); colormap_size = line_str.get_slicec(' ', 2).to_int(); pixelchars = line_str.get_slicec(' ', 3).to_int(); ERR_FAIL_COND(colormap_size > 32766); ERR_FAIL_COND(pixelchars > 5); ERR_FAIL_COND(size_width > 32767); ERR_FAIL_COND(size_height > 32767); status = READING_COLORS; } break; case READING_COLORS: { String colorstring; for (int i = 0; i < pixelchars; i++) { colorstring += *line_ptr; line_ptr++; } //skip spaces while (*line_ptr == ' ' || *line_ptr == '\t' || *line_ptr == 0) { if (*line_ptr == 0) break; line_ptr++; } if (*line_ptr == 'c') { line_ptr++; while (*line_ptr == ' ' || *line_ptr == '\t' || *line_ptr == 0) { if (*line_ptr == 0) break; line_ptr++; } if (*line_ptr == '#') { line_ptr++; uint8_t col_r = 0; uint8_t col_g = 0; uint8_t col_b = 0; //uint8_t col_a=255; for (int i = 0; i < 6; i++) { char v = line_ptr[i]; if (v >= '0' && v <= '9') v -= '0'; else if (v >= 'A' && v <= 'F') v = (v - 'A') + 10; else if (v >= 'a' && v <= 'f') v = (v - 'a') + 10; else break; switch (i) { case 0: col_r = v << 4; break; case 1: col_r |= v; break; case 2: col_g = v << 4; break; case 3: col_g |= v; break; case 4: col_b = v << 4; break; case 5: col_b |= v; break; }; } // magenta mask if (col_r == 255 && col_g == 0 && col_b == 255) { colormap[colorstring] = Color(0, 0, 0, 0); has_alpha = true; } else { colormap[colorstring] = Color(col_r / 255.0, col_g / 255.0, col_b / 255.0, 1.0); } } } if (line == colormap_size) { status = READING_PIXELS; create(size_width, size_height, 0, has_alpha ? FORMAT_RGBA8 : FORMAT_RGB8); w = data.write(); pixel_size = has_alpha ? 4 : 3; } } break; case READING_PIXELS: { int y = line - colormap_size - 1; for (int x = 0; x < size_width; x++) { char pixelstr[6] = { 0, 0, 0, 0, 0, 0 }; for (int i = 0; i < pixelchars; i++) pixelstr[i] = line_ptr[x * pixelchars + i]; Color *colorptr = colormap.getptr(pixelstr); ERR_FAIL_COND(!colorptr); uint8_t pixel[4]; for (uint32_t i = 0; i < pixel_size; i++) { pixel[i] = CLAMP((*colorptr)[i] * 255, 0, 255); } _put_pixelb(x, y, pixel_size, w.ptr(), pixel); } if (y == (size_height - 1)) status = DONE; } break; default: {} } line++; } } #define DETECT_ALPHA_MAX_THRESHOLD 254 #define DETECT_ALPHA_MIN_THRESHOLD 2 #define DETECT_ALPHA(m_value) \ { \ uint8_t value = m_value; \ if (value < DETECT_ALPHA_MIN_THRESHOLD) \ bit = true; \ else if (value < DETECT_ALPHA_MAX_THRESHOLD) { \ \ detected = true; \ break; \ } \ } #define DETECT_NON_ALPHA(m_value) \ { \ uint8_t value = m_value; \ if (value > 0) { \ \ detected = true; \ break; \ } \ } bool Image::is_invisible() const { if (format == FORMAT_L8 || format == FORMAT_RGB8 || format == FORMAT_RG8) return false; int len = data.size(); if (len == 0) return true; int w, h; _get_mipmap_offset_and_size(1, len, w, h); PoolVector<uint8_t>::Read r = data.read(); const unsigned char *data_ptr = r.ptr(); bool detected = false; switch (format) { case FORMAT_LA8: { for (int i = 0; i < (len >> 1); i++) { DETECT_NON_ALPHA(data_ptr[(i << 1) + 1]); } } break; case FORMAT_RGBA8: { for (int i = 0; i < (len >> 2); i++) { DETECT_NON_ALPHA(data_ptr[(i << 2) + 3]) } } break; case FORMAT_PVRTC2A: case FORMAT_PVRTC4A: case FORMAT_DXT3: case FORMAT_DXT5: { detected = true; } break; default: {} } return !detected; } Image::AlphaMode Image::detect_alpha() const { int len = data.size(); if (len == 0) return ALPHA_NONE; int w, h; _get_mipmap_offset_and_size(1, len, w, h); PoolVector<uint8_t>::Read r = data.read(); const unsigned char *data_ptr = r.ptr(); bool bit = false; bool detected = false; switch (format) { case FORMAT_LA8: { for (int i = 0; i < (len >> 1); i++) { DETECT_ALPHA(data_ptr[(i << 1) + 1]); } } break; case FORMAT_RGBA8: { for (int i = 0; i < (len >> 2); i++) { DETECT_ALPHA(data_ptr[(i << 2) + 3]) } } break; case FORMAT_PVRTC2A: case FORMAT_PVRTC4A: case FORMAT_DXT3: case FORMAT_DXT5: { detected = true; } break; default: {} } if (detected) return ALPHA_BLEND; else if (bit) return ALPHA_BIT; else return ALPHA_NONE; } Error Image::load(const String &p_path) { return ImageLoader::load_image(p_path, this); } Error Image::save_png(const String &p_path) const { if (save_png_func == NULL) return ERR_UNAVAILABLE; return save_png_func(p_path, Ref<Image>((Image *)this)); } int Image::get_image_data_size(int p_width, int p_height, Format p_format, int p_mipmaps) { int mm; return _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmaps); } int Image::get_image_required_mipmaps(int p_width, int p_height, Format p_format) { int mm; _get_dst_image_size(p_width, p_height, p_format, mm, -1); return mm; } bool Image::is_compressed() const { return format > FORMAT_RGBE9995; } Error Image::decompress() { if (format >= FORMAT_DXT1 && format <= FORMAT_BPTC_RGBFU && _image_decompress_bc) _image_decompress_bc(this); else if (format >= FORMAT_PVRTC2 && format <= FORMAT_PVRTC4A && _image_decompress_pvrtc) _image_decompress_pvrtc(this); else if (format == FORMAT_ETC && _image_decompress_etc1) _image_decompress_etc1(this); else if (format >= FORMAT_ETC2_R11 && format <= FORMAT_ETC2_RGB8A1 && _image_decompress_etc1) _image_decompress_etc2(this); else return ERR_UNAVAILABLE; return OK; } Error Image::compress(CompressMode p_mode, CompressSource p_source, float p_lossy_quality) { switch (p_mode) { case COMPRESS_S3TC: { ERR_FAIL_COND_V(!_image_compress_bc_func, ERR_UNAVAILABLE); _image_compress_bc_func(this, p_source); } break; case COMPRESS_PVRTC2: { ERR_FAIL_COND_V(!_image_compress_pvrtc2_func, ERR_UNAVAILABLE); _image_compress_pvrtc2_func(this); } break; case COMPRESS_PVRTC4: { ERR_FAIL_COND_V(!_image_compress_pvrtc4_func, ERR_UNAVAILABLE); _image_compress_pvrtc4_func(this); } break; case COMPRESS_ETC: { ERR_FAIL_COND_V(!_image_compress_etc1_func, ERR_UNAVAILABLE); _image_compress_etc1_func(this, p_lossy_quality); } break; case COMPRESS_ETC2: { ERR_FAIL_COND_V(!_image_compress_etc2_func, ERR_UNAVAILABLE); _image_compress_etc2_func(this, p_lossy_quality, p_source); } break; } return OK; } Image::Image(const char **p_xpm) { width = 0; height = 0; mipmaps = false; format = FORMAT_L8; create(p_xpm); } Image::Image(int p_width, int p_height, bool p_use_mipmaps, Format p_format) { width = 0; height = 0; mipmaps = p_use_mipmaps; format = FORMAT_L8; create(p_width, p_height, p_use_mipmaps, p_format); } Image::Image(int p_width, int p_height, bool p_mipmaps, Format p_format, const PoolVector<uint8_t> &p_data) { width = 0; height = 0; mipmaps = p_mipmaps; format = FORMAT_L8; create(p_width, p_height, p_mipmaps, p_format, p_data); } Rect2 Image::get_used_rect() const { if (format != FORMAT_LA8 && format != FORMAT_RGBA8) return Rect2(Point2(), Size2(width, height)); int len = data.size(); if (len == 0) return Rect2(); //int data_size = len; PoolVector<uint8_t>::Read r = data.read(); const unsigned char *rptr = r.ptr(); int ps = format == FORMAT_LA8 ? 2 : 4; int minx = 0xFFFFFF, miny = 0xFFFFFFF; int maxx = -1, maxy = -1; for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { bool opaque = rptr[(j * width + i) * ps + (ps - 1)] > 2; if (!opaque) continue; if (i > maxx) maxx = i; if (j > maxy) maxy = j; if (i < minx) minx = i; if (j < miny) miny = j; } } if (maxx == -1) return Rect2(); else return Rect2(minx, miny, maxx - minx + 1, maxy - miny + 1); } Ref<Image> Image::get_rect(const Rect2 &p_area) const { Ref<Image> img = memnew(Image(p_area.size.x, p_area.size.y, mipmaps, format)); img->blit_rect(Ref<Image>((Image *)this), p_area, Point2(0, 0)); return img; } void Image::blit_rect(const Ref<Image> &p_src, const Rect2 &p_src_rect, const Point2 &p_dest) { ERR_FAIL_COND(p_src.is_null()); int dsize = data.size(); int srcdsize = p_src->data.size(); ERR_FAIL_COND(dsize == 0); ERR_FAIL_COND(srcdsize == 0); ERR_FAIL_COND(format != p_src->format); Rect2i clipped_src_rect = Rect2i(0, 0, p_src->width, p_src->height).clip(p_src_rect); if (clipped_src_rect.size.x <= 0 || clipped_src_rect.size.y <= 0) return; Rect2i dest_rect = Rect2i(0, 0, width, height).clip(Rect2i(p_dest, clipped_src_rect.size)); PoolVector<uint8_t>::Write wp = data.write(); uint8_t *dst_data_ptr = wp.ptr(); PoolVector<uint8_t>::Read rp = p_src->data.read(); const uint8_t *src_data_ptr = rp.ptr(); int pixel_size = get_format_pixel_size(format); for (int i = 0; i < dest_rect.size.y; i++) { for (int j = 0; j < dest_rect.size.x; j++) { int src_x = clipped_src_rect.position.x + j; int src_y = clipped_src_rect.position.y + i; int dst_x = dest_rect.position.x + j; int dst_y = dest_rect.position.y + i; const uint8_t *src = &src_data_ptr[(src_y * p_src->width + src_x) * pixel_size]; uint8_t *dst = &dst_data_ptr[(dst_y * width + dst_x) * pixel_size]; for (int k = 0; k < pixel_size; k++) { dst[k] = src[k]; } } } } void Image::blit_rect_mask(const Ref<Image> &p_src, const Ref<Image> &p_mask, const Rect2 &p_src_rect, const Point2 &p_dest) { ERR_FAIL_COND(p_src.is_null()); ERR_FAIL_COND(p_mask.is_null()); int dsize = data.size(); int srcdsize = p_src->data.size(); int maskdsize = p_mask->data.size(); ERR_FAIL_COND(dsize == 0); ERR_FAIL_COND(srcdsize == 0); ERR_FAIL_COND(maskdsize == 0); ERR_FAIL_COND(p_src->width != p_mask->width); ERR_FAIL_COND(p_src->height != p_mask->height); ERR_FAIL_COND(format != p_src->format); Rect2i clipped_src_rect = Rect2i(0, 0, p_src->width, p_src->height).clip(p_src_rect); if (clipped_src_rect.size.x <= 0 || clipped_src_rect.size.y <= 0) return; Rect2i dest_rect = Rect2i(0, 0, width, height).clip(Rect2i(p_dest, clipped_src_rect.size)); PoolVector<uint8_t>::Write wp = data.write(); uint8_t *dst_data_ptr = wp.ptr(); PoolVector<uint8_t>::Read rp = p_src->data.read(); const uint8_t *src_data_ptr = rp.ptr(); int pixel_size = get_format_pixel_size(format); Ref<Image> msk = p_mask; msk->lock(); for (int i = 0; i < dest_rect.size.y; i++) { for (int j = 0; j < dest_rect.size.x; j++) { int src_x = clipped_src_rect.position.x + j; int src_y = clipped_src_rect.position.y + i; if (msk->get_pixel(src_x, src_y).a != 0) { int dst_x = dest_rect.position.x + j; int dst_y = dest_rect.position.y + i; const uint8_t *src = &src_data_ptr[(src_y * p_src->width + src_x) * pixel_size]; uint8_t *dst = &dst_data_ptr[(dst_y * width + dst_x) * pixel_size]; for (int k = 0; k < pixel_size; k++) { dst[k] = src[k]; } } } } msk->unlock(); } void Image::blend_rect(const Ref<Image> &p_src, const Rect2 &p_src_rect, const Point2 &p_dest) { ERR_FAIL_COND(p_src.is_null()); int dsize = data.size(); int srcdsize = p_src->data.size(); ERR_FAIL_COND(dsize == 0); ERR_FAIL_COND(srcdsize == 0); ERR_FAIL_COND(format != p_src->format); Rect2i clipped_src_rect = Rect2i(0, 0, p_src->width, p_src->height).clip(p_src_rect); if (clipped_src_rect.size.x <= 0 || clipped_src_rect.size.y <= 0) return; Rect2i dest_rect = Rect2i(0, 0, width, height).clip(Rect2i(p_dest, clipped_src_rect.size)); lock(); Ref<Image> img = p_src; img->lock(); for (int i = 0; i < dest_rect.size.y; i++) { for (int j = 0; j < dest_rect.size.x; j++) { int src_x = clipped_src_rect.position.x + j; int src_y = clipped_src_rect.position.y + i; int dst_x = dest_rect.position.x + j; int dst_y = dest_rect.position.y + i; Color sc = img->get_pixel(src_x, src_y); Color dc = get_pixel(dst_x, dst_y); dc.r = (double)(sc.a * sc.r + dc.a * (1.0 - sc.a) * dc.r); dc.g = (double)(sc.a * sc.g + dc.a * (1.0 - sc.a) * dc.g); dc.b = (double)(sc.a * sc.b + dc.a * (1.0 - sc.a) * dc.b); dc.a = (double)(sc.a + dc.a * (1.0 - sc.a)); set_pixel(dst_x, dst_y, dc); } } img->unlock(); unlock(); } void Image::blend_rect_mask(const Ref<Image> &p_src, const Ref<Image> &p_mask, const Rect2 &p_src_rect, const Point2 &p_dest) { ERR_FAIL_COND(p_src.is_null()); ERR_FAIL_COND(p_mask.is_null()); int dsize = data.size(); int srcdsize = p_src->data.size(); int maskdsize = p_mask->data.size(); ERR_FAIL_COND(dsize == 0); ERR_FAIL_COND(srcdsize == 0); ERR_FAIL_COND(maskdsize == 0); ERR_FAIL_COND(p_src->width != p_mask->width); ERR_FAIL_COND(p_src->height != p_mask->height); ERR_FAIL_COND(format != p_src->format); Rect2i clipped_src_rect = Rect2i(0, 0, p_src->width, p_src->height).clip(p_src_rect); if (clipped_src_rect.size.x <= 0 || clipped_src_rect.size.y <= 0) return; Rect2i dest_rect = Rect2i(0, 0, width, height).clip(Rect2i(p_dest, clipped_src_rect.size)); lock(); Ref<Image> img = p_src; Ref<Image> msk = p_mask; img->lock(); msk->lock(); for (int i = 0; i < dest_rect.size.y; i++) { for (int j = 0; j < dest_rect.size.x; j++) { int src_x = clipped_src_rect.position.x + j; int src_y = clipped_src_rect.position.y + i; // If the mask's pixel is transparent then we skip it //Color c = msk->get_pixel(src_x, src_y); //if (c.a == 0) continue; if (msk->get_pixel(src_x, src_y).a != 0) { int dst_x = dest_rect.position.x + j; int dst_y = dest_rect.position.y + i; Color sc = img->get_pixel(src_x, src_y); Color dc = get_pixel(dst_x, dst_y); dc.r = (double)(sc.a * sc.r + dc.a * (1.0 - sc.a) * dc.r); dc.g = (double)(sc.a * sc.g + dc.a * (1.0 - sc.a) * dc.g); dc.b = (double)(sc.a * sc.b + dc.a * (1.0 - sc.a) * dc.b); dc.a = (double)(sc.a + dc.a * (1.0 - sc.a)); set_pixel(dst_x, dst_y, dc); } } } msk->unlock(); img->unlock(); unlock(); } void Image::fill(const Color &c) { lock(); PoolVector<uint8_t>::Write wp = data.write(); uint8_t *dst_data_ptr = wp.ptr(); int pixel_size = get_format_pixel_size(format); // put first pixel with the format-aware API set_pixel(0, 0, c); for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { uint8_t *dst = &dst_data_ptr[(y * width + x) * pixel_size]; for (int k = 0; k < pixel_size; k++) { dst[k] = dst_data_ptr[k]; } } } unlock(); } Ref<Image> (*Image::_png_mem_loader_func)(const uint8_t *, int) = NULL; Ref<Image> (*Image::_jpg_mem_loader_func)(const uint8_t *, int) = NULL; void (*Image::_image_compress_bc_func)(Image *, Image::CompressSource) = NULL; void (*Image::_image_compress_pvrtc2_func)(Image *) = NULL; void (*Image::_image_compress_pvrtc4_func)(Image *) = NULL; void (*Image::_image_compress_etc1_func)(Image *, float) = NULL; void (*Image::_image_compress_etc2_func)(Image *, float, Image::CompressSource) = NULL; void (*Image::_image_decompress_pvrtc)(Image *) = NULL; void (*Image::_image_decompress_bc)(Image *) = NULL; void (*Image::_image_decompress_etc1)(Image *) = NULL; void (*Image::_image_decompress_etc2)(Image *) = NULL; PoolVector<uint8_t> (*Image::lossy_packer)(const Ref<Image> &, float) = NULL; Ref<Image> (*Image::lossy_unpacker)(const PoolVector<uint8_t> &) = NULL; PoolVector<uint8_t> (*Image::lossless_packer)(const Ref<Image> &) = NULL; Ref<Image> (*Image::lossless_unpacker)(const PoolVector<uint8_t> &) = NULL; void Image::_set_data(const Dictionary &p_data) { ERR_FAIL_COND(!p_data.has("width")); ERR_FAIL_COND(!p_data.has("height")); ERR_FAIL_COND(!p_data.has("format")); ERR_FAIL_COND(!p_data.has("mipmaps")); ERR_FAIL_COND(!p_data.has("data")); int dwidth = p_data["width"]; int dheight = p_data["height"]; String dformat = p_data["format"]; bool dmipmaps = p_data["mipmaps"]; PoolVector<uint8_t> ddata = p_data["data"]; Format ddformat = FORMAT_MAX; for (int i = 0; i < FORMAT_MAX; i++) { if (dformat == get_format_name(Format(i))) { ddformat = Format(i); break; } } ERR_FAIL_COND(ddformat == FORMAT_MAX); create(dwidth, dheight, dmipmaps, ddformat, ddata); } Dictionary Image::_get_data() const { Dictionary d; d["width"] = width; d["height"] = height; d["format"] = get_format_name(format); d["mipmaps"] = mipmaps; d["data"] = data; return d; } void Image::lock() { ERR_FAIL_COND(data.size() == 0); write_lock = data.write(); } void Image::unlock() { write_lock = PoolVector<uint8_t>::Write(); } Color Image::get_pixel(int p_x, int p_y) const { uint8_t *ptr = write_lock.ptr(); #ifdef DEBUG_ENABLED if (!ptr) { ERR_EXPLAIN("Image must be locked with 'lock()' before using get_pixel()"); ERR_FAIL_COND_V(!ptr, Color()); } ERR_FAIL_INDEX_V(p_x, width, Color()); ERR_FAIL_INDEX_V(p_y, height, Color()); #endif uint32_t ofs = p_y * width + p_x; switch (format) { case FORMAT_L8: { float l = ptr[ofs] / 255.0; return Color(l, l, l, 1); } break; case FORMAT_LA8: { float l = ptr[ofs * 2 + 0] / 255.0; float a = ptr[ofs * 2 + 1] / 255.0; return Color(l, l, l, a); } break; case FORMAT_R8: { float r = ptr[ofs] / 255.0; return Color(r, 0, 0, 1); } break; case FORMAT_RG8: { float r = ptr[ofs * 2 + 0] / 255.0; float g = ptr[ofs * 2 + 1] / 255.0; return Color(r, g, 0, 1); } break; case FORMAT_RGB8: { float r = ptr[ofs * 3 + 0] / 255.0; float g = ptr[ofs * 3 + 1] / 255.0; float b = ptr[ofs * 3 + 2] / 255.0; return Color(r, g, b, 1); } break; case FORMAT_RGBA8: { float r = ptr[ofs * 4 + 0] / 255.0; float g = ptr[ofs * 4 + 1] / 255.0; float b = ptr[ofs * 4 + 2] / 255.0; float a = ptr[ofs * 4 + 3] / 255.0; return Color(r, g, b, a); } break; case FORMAT_RGBA4444: { uint16_t u = ((uint16_t *)ptr)[ofs]; float r = (u & 0xF) / 15.0; float g = ((u >> 4) & 0xF) / 15.0; float b = ((u >> 8) & 0xF) / 15.0; float a = ((u >> 12) & 0xF) / 15.0; return Color(r, g, b, a); } break; case FORMAT_RGBA5551: { uint16_t u = ((uint16_t *)ptr)[ofs]; float r = (u & 0x1F) / 15.0; float g = ((u >> 5) & 0x1F) / 15.0; float b = ((u >> 10) & 0x1F) / 15.0; float a = ((u >> 15) & 0x1) / 1.0; return Color(r, g, b, a); } break; case FORMAT_RF: { float r = ((float *)ptr)[ofs]; return Color(r, 0, 0, 1); } break; case FORMAT_RGF: { float r = ((float *)ptr)[ofs * 2 + 0]; float g = ((float *)ptr)[ofs * 2 + 1]; return Color(r, g, 0, 1); } break; case FORMAT_RGBF: { float r = ((float *)ptr)[ofs * 3 + 0]; float g = ((float *)ptr)[ofs * 3 + 1]; float b = ((float *)ptr)[ofs * 3 + 2]; return Color(r, g, b, 1); } break; case FORMAT_RGBAF: { float r = ((float *)ptr)[ofs * 4 + 0]; float g = ((float *)ptr)[ofs * 4 + 1]; float b = ((float *)ptr)[ofs * 4 + 2]; float a = ((float *)ptr)[ofs * 4 + 3]; return Color(r, g, b, a); } break; case FORMAT_RH: { uint16_t r = ((uint16_t *)ptr)[ofs]; return Color(Math::half_to_float(r), 0, 0, 1); } break; case FORMAT_RGH: { uint16_t r = ((uint16_t *)ptr)[ofs * 2 + 0]; uint16_t g = ((uint16_t *)ptr)[ofs * 2 + 1]; return Color(Math::half_to_float(r), Math::half_to_float(g), 0, 1); } break; case FORMAT_RGBH: { uint16_t r = ((uint16_t *)ptr)[ofs * 3 + 0]; uint16_t g = ((uint16_t *)ptr)[ofs * 3 + 1]; uint16_t b = ((uint16_t *)ptr)[ofs * 3 + 2]; return Color(Math::half_to_float(r), Math::half_to_float(g), Math::half_to_float(b), 1); } break; case FORMAT_RGBAH: { uint16_t r = ((uint16_t *)ptr)[ofs * 4 + 0]; uint16_t g = ((uint16_t *)ptr)[ofs * 4 + 1]; uint16_t b = ((uint16_t *)ptr)[ofs * 4 + 2]; uint16_t a = ((uint16_t *)ptr)[ofs * 4 + 3]; return Color(Math::half_to_float(r), Math::half_to_float(g), Math::half_to_float(b), Math::half_to_float(a)); } break; case FORMAT_RGBE9995: { uint32_t rgbe = ((uint32_t *)ptr)[ofs]; float r = rgbe & 0x1ff; float g = (rgbe >> 9) & 0x1ff; float b = (rgbe >> 18) & 0x1ff; float e = (rgbe >> 27); float m = Math::pow(2, e - 15.0 - 9.0); ; float rd = r * m; float gd = g * m; float bd = b * m; return Color(rd, gd, bd, 1.0); } break; default: { ERR_EXPLAIN("Can't get_pixel() on compressed image, sorry."); ERR_FAIL_V(Color()); } } return Color(); } void Image::set_pixel(int p_x, int p_y, const Color &p_color) { uint8_t *ptr = write_lock.ptr(); #ifdef DEBUG_ENABLED if (!ptr) { ERR_EXPLAIN("Image must be locked with 'lock()' before using set_pixel()"); ERR_FAIL_COND(!ptr); } ERR_FAIL_INDEX(p_x, width); ERR_FAIL_INDEX(p_y, height); #endif uint32_t ofs = p_y * width + p_x; switch (format) { case FORMAT_L8: { ptr[ofs] = uint8_t(CLAMP(p_color.gray() * 255.0, 0, 255)); } break; case FORMAT_LA8: { ptr[ofs * 2 + 0] = uint8_t(CLAMP(p_color.gray() * 255.0, 0, 255)); ptr[ofs * 2 + 1] = uint8_t(CLAMP(p_color.a * 255.0, 0, 255)); } break; case FORMAT_R8: { ptr[ofs] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255)); } break; case FORMAT_RG8: { ptr[ofs * 2 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255)); ptr[ofs * 2 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255)); } break; case FORMAT_RGB8: { ptr[ofs * 3 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255)); ptr[ofs * 3 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255)); ptr[ofs * 3 + 2] = uint8_t(CLAMP(p_color.b * 255.0, 0, 255)); } break; case FORMAT_RGBA8: { ptr[ofs * 4 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255)); ptr[ofs * 4 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255)); ptr[ofs * 4 + 2] = uint8_t(CLAMP(p_color.b * 255.0, 0, 255)); ptr[ofs * 4 + 3] = uint8_t(CLAMP(p_color.a * 255.0, 0, 255)); } break; case FORMAT_RGBA4444: { uint16_t rgba = 0; rgba = uint16_t(CLAMP(p_color.r * 15.0, 0, 15)); rgba |= uint16_t(CLAMP(p_color.g * 15.0, 0, 15)) << 4; rgba |= uint16_t(CLAMP(p_color.b * 15.0, 0, 15)) << 8; rgba |= uint16_t(CLAMP(p_color.a * 15.0, 0, 15)) << 12; ((uint16_t *)ptr)[ofs] = rgba; } break; case FORMAT_RGBA5551: { uint16_t rgba = 0; rgba = uint16_t(CLAMP(p_color.r * 31.0, 0, 31)); rgba |= uint16_t(CLAMP(p_color.g * 31.0, 0, 31)) << 5; rgba |= uint16_t(CLAMP(p_color.b * 31.0, 0, 31)) << 10; rgba |= uint16_t(p_color.a > 0.5 ? 1 : 0) << 15; ((uint16_t *)ptr)[ofs] = rgba; } break; case FORMAT_RF: { ((float *)ptr)[ofs] = p_color.r; } break; case FORMAT_RGF: { ((float *)ptr)[ofs * 2 + 0] = p_color.r; ((float *)ptr)[ofs * 2 + 1] = p_color.g; } break; case FORMAT_RGBF: { ((float *)ptr)[ofs * 3 + 0] = p_color.r; ((float *)ptr)[ofs * 3 + 1] = p_color.g; ((float *)ptr)[ofs * 3 + 2] = p_color.b; } break; case FORMAT_RGBAF: { ((float *)ptr)[ofs * 4 + 0] = p_color.r; ((float *)ptr)[ofs * 4 + 1] = p_color.g; ((float *)ptr)[ofs * 4 + 2] = p_color.b; ((float *)ptr)[ofs * 4 + 3] = p_color.a; } break; case FORMAT_RH: { ((uint16_t *)ptr)[ofs] = Math::make_half_float(p_color.r); } break; case FORMAT_RGH: { ((uint16_t *)ptr)[ofs * 2 + 0] = Math::make_half_float(p_color.r); ((uint16_t *)ptr)[ofs * 2 + 1] = Math::make_half_float(p_color.g); } break; case FORMAT_RGBH: { ((uint16_t *)ptr)[ofs * 3 + 0] = Math::make_half_float(p_color.r); ((uint16_t *)ptr)[ofs * 3 + 1] = Math::make_half_float(p_color.g); ((uint16_t *)ptr)[ofs * 3 + 2] = Math::make_half_float(p_color.b); } break; case FORMAT_RGBAH: { ((uint16_t *)ptr)[ofs * 4 + 0] = Math::make_half_float(p_color.r); ((uint16_t *)ptr)[ofs * 4 + 1] = Math::make_half_float(p_color.g); ((uint16_t *)ptr)[ofs * 4 + 2] = Math::make_half_float(p_color.b); ((uint16_t *)ptr)[ofs * 4 + 3] = Math::make_half_float(p_color.a); } break; case FORMAT_RGBE9995: { ((uint32_t *)ptr)[ofs] = p_color.to_rgbe9995(); } break; default: { ERR_EXPLAIN("Can't set_pixel() on compressed image, sorry."); ERR_FAIL(); } } } Image::DetectChannels Image::get_detected_channels() { ERR_FAIL_COND_V(data.size() == 0, DETECTED_RGBA); ERR_FAIL_COND_V(is_compressed(), DETECTED_RGBA); bool r = false, g = false, b = false, a = false, c = false; lock(); for (int i = 0; i < width; i++) { for (int j = 0; j < height; j++) { Color col = get_pixel(i, j); if (col.r > 0.001) r = true; if (col.g > 0.001) g = true; if (col.b > 0.001) b = true; if (col.a < 0.999) a = true; if (col.r != col.b || col.r != col.g || col.b != col.g) { c = true; } } } unlock(); if (!c && !a) return DETECTED_L; if (!c && a) return DETECTED_LA; if (r && !g && !b && !a) return DETECTED_R; if (r && g && !b && !a) return DETECTED_RG; if (r && g && b && !a) return DETECTED_RGB; return DETECTED_RGBA; } void Image::_bind_methods() { ClassDB::bind_method(D_METHOD("get_width"), &Image::get_width); ClassDB::bind_method(D_METHOD("get_height"), &Image::get_height); ClassDB::bind_method(D_METHOD("get_size"), &Image::get_size); ClassDB::bind_method(D_METHOD("has_mipmaps"), &Image::has_mipmaps); ClassDB::bind_method(D_METHOD("get_format"), &Image::get_format); ClassDB::bind_method(D_METHOD("get_data"), &Image::get_data); ClassDB::bind_method(D_METHOD("convert", "format"), &Image::convert); ClassDB::bind_method(D_METHOD("get_mipmap_offset", "mipmap"), &Image::get_mipmap_offset); ClassDB::bind_method(D_METHOD("resize_to_po2", "square"), &Image::resize_to_po2, DEFVAL(false)); ClassDB::bind_method(D_METHOD("resize", "width", "height", "interpolation"), &Image::resize, DEFVAL(INTERPOLATE_BILINEAR)); ClassDB::bind_method(D_METHOD("shrink_x2"), &Image::shrink_x2); ClassDB::bind_method(D_METHOD("expand_x2_hq2x"), &Image::expand_x2_hq2x); ClassDB::bind_method(D_METHOD("crop", "width", "height"), &Image::crop); ClassDB::bind_method(D_METHOD("flip_x"), &Image::flip_x); ClassDB::bind_method(D_METHOD("flip_y"), &Image::flip_y); ClassDB::bind_method(D_METHOD("generate_mipmaps"), &Image::generate_mipmaps); ClassDB::bind_method(D_METHOD("clear_mipmaps"), &Image::clear_mipmaps); ClassDB::bind_method(D_METHOD("create", "width", "height", "use_mipmaps", "format"), &Image::_create_empty); ClassDB::bind_method(D_METHOD("create_from_data", "width", "height", "use_mipmaps", "format", "data"), &Image::_create_from_data); ClassDB::bind_method(D_METHOD("is_empty"), &Image::empty); ClassDB::bind_method(D_METHOD("load", "path"), &Image::load); ClassDB::bind_method(D_METHOD("save_png", "path"), &Image::save_png); ClassDB::bind_method(D_METHOD("detect_alpha"), &Image::detect_alpha); ClassDB::bind_method(D_METHOD("is_invisible"), &Image::is_invisible); ClassDB::bind_method(D_METHOD("compress", "mode", "source", "lossy_quality"), &Image::compress); ClassDB::bind_method(D_METHOD("decompress"), &Image::decompress); ClassDB::bind_method(D_METHOD("is_compressed"), &Image::is_compressed); ClassDB::bind_method(D_METHOD("fix_alpha_edges"), &Image::fix_alpha_edges); ClassDB::bind_method(D_METHOD("premultiply_alpha"), &Image::premultiply_alpha); ClassDB::bind_method(D_METHOD("srgb_to_linear"), &Image::srgb_to_linear); ClassDB::bind_method(D_METHOD("normalmap_to_xy"), &Image::normalmap_to_xy); ClassDB::bind_method(D_METHOD("blit_rect", "src", "src_rect", "dst"), &Image::blit_rect); ClassDB::bind_method(D_METHOD("blit_rect_mask", "src", "mask", "src_rect", "dst"), &Image::blit_rect_mask); ClassDB::bind_method(D_METHOD("blend_rect", "src", "src_rect", "dst"), &Image::blend_rect); ClassDB::bind_method(D_METHOD("blend_rect_mask", "src", "mask", "src_rect", "dst"), &Image::blend_rect_mask); ClassDB::bind_method(D_METHOD("fill", "color"), &Image::fill); ClassDB::bind_method(D_METHOD("get_used_rect"), &Image::get_used_rect); ClassDB::bind_method(D_METHOD("get_rect", "rect"), &Image::get_rect); ClassDB::bind_method(D_METHOD("copy_from", "src"), &Image::copy_internals_from); ClassDB::bind_method(D_METHOD("_set_data", "data"), &Image::_set_data); ClassDB::bind_method(D_METHOD("_get_data"), &Image::_get_data); ClassDB::bind_method(D_METHOD("lock"), &Image::lock); ClassDB::bind_method(D_METHOD("unlock"), &Image::unlock); ClassDB::bind_method(D_METHOD("set_pixel", "x", "y", "color"), &Image::set_pixel); ClassDB::bind_method(D_METHOD("get_pixel", "x", "y"), &Image::get_pixel); ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_STORAGE), "_set_data", "_get_data"); BIND_ENUM_CONSTANT(FORMAT_L8); //luminance BIND_ENUM_CONSTANT(FORMAT_LA8); //luminance-alpha BIND_ENUM_CONSTANT(FORMAT_R8); BIND_ENUM_CONSTANT(FORMAT_RG8); BIND_ENUM_CONSTANT(FORMAT_RGB8); BIND_ENUM_CONSTANT(FORMAT_RGBA8); BIND_ENUM_CONSTANT(FORMAT_RGBA4444); BIND_ENUM_CONSTANT(FORMAT_RGBA5551); BIND_ENUM_CONSTANT(FORMAT_RF); //float BIND_ENUM_CONSTANT(FORMAT_RGF); BIND_ENUM_CONSTANT(FORMAT_RGBF); BIND_ENUM_CONSTANT(FORMAT_RGBAF); BIND_ENUM_CONSTANT(FORMAT_RH); //half float BIND_ENUM_CONSTANT(FORMAT_RGH); BIND_ENUM_CONSTANT(FORMAT_RGBH); BIND_ENUM_CONSTANT(FORMAT_RGBAH); BIND_ENUM_CONSTANT(FORMAT_RGBE9995); BIND_ENUM_CONSTANT(FORMAT_DXT1); //s3tc bc1 BIND_ENUM_CONSTANT(FORMAT_DXT3); //bc2 BIND_ENUM_CONSTANT(FORMAT_DXT5); //bc3 BIND_ENUM_CONSTANT(FORMAT_RGTC_R); BIND_ENUM_CONSTANT(FORMAT_RGTC_RG); BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBA); //btpc bc6h BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBF); //float / BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBFU); //unsigned float BIND_ENUM_CONSTANT(FORMAT_PVRTC2); //pvrtc BIND_ENUM_CONSTANT(FORMAT_PVRTC2A); BIND_ENUM_CONSTANT(FORMAT_PVRTC4); BIND_ENUM_CONSTANT(FORMAT_PVRTC4A); BIND_ENUM_CONSTANT(FORMAT_ETC); //etc1 BIND_ENUM_CONSTANT(FORMAT_ETC2_R11); //etc2 BIND_ENUM_CONSTANT(FORMAT_ETC2_R11S); //signed ); NOT srgb. BIND_ENUM_CONSTANT(FORMAT_ETC2_RG11); BIND_ENUM_CONSTANT(FORMAT_ETC2_RG11S); BIND_ENUM_CONSTANT(FORMAT_ETC2_RGB8); BIND_ENUM_CONSTANT(FORMAT_ETC2_RGBA8); BIND_ENUM_CONSTANT(FORMAT_ETC2_RGB8A1); BIND_ENUM_CONSTANT(FORMAT_MAX); BIND_ENUM_CONSTANT(INTERPOLATE_NEAREST); BIND_ENUM_CONSTANT(INTERPOLATE_BILINEAR); BIND_ENUM_CONSTANT(INTERPOLATE_CUBIC); BIND_ENUM_CONSTANT(ALPHA_NONE); BIND_ENUM_CONSTANT(ALPHA_BIT); BIND_ENUM_CONSTANT(ALPHA_BLEND); BIND_ENUM_CONSTANT(COMPRESS_S3TC); BIND_ENUM_CONSTANT(COMPRESS_PVRTC2); BIND_ENUM_CONSTANT(COMPRESS_PVRTC4); BIND_ENUM_CONSTANT(COMPRESS_ETC); BIND_ENUM_CONSTANT(COMPRESS_ETC2); BIND_ENUM_CONSTANT(COMPRESS_SOURCE_GENERIC); BIND_ENUM_CONSTANT(COMPRESS_SOURCE_SRGB); BIND_ENUM_CONSTANT(COMPRESS_SOURCE_NORMAL); } void Image::set_compress_bc_func(void (*p_compress_func)(Image *, CompressSource)) { _image_compress_bc_func = p_compress_func; } void Image::normalmap_to_xy() { convert(Image::FORMAT_RGBA8); { int len = data.size() / 4; PoolVector<uint8_t>::Write wp = data.write(); unsigned char *data_ptr = wp.ptr(); for (int i = 0; i < len; i++) { data_ptr[(i << 2) + 3] = data_ptr[(i << 2) + 0]; //x to w data_ptr[(i << 2) + 0] = data_ptr[(i << 2) + 1]; //y to xz data_ptr[(i << 2) + 2] = data_ptr[(i << 2) + 1]; } } convert(Image::FORMAT_LA8); } void Image::srgb_to_linear() { if (data.size() == 0) return; static const uint8_t srgb2lin[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 26, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 47, 48, 49, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 112, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 139, 140, 142, 144, 145, 147, 148, 150, 152, 153, 155, 157, 159, 160, 162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 188, 190, 192, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 235, 237, 239, 241, 243, 245, 248, 250, 252 }; ERR_FAIL_COND(format != FORMAT_RGB8 && format != FORMAT_RGBA8); if (format == FORMAT_RGBA8) { int len = data.size() / 4; PoolVector<uint8_t>::Write wp = data.write(); unsigned char *data_ptr = wp.ptr(); for (int i = 0; i < len; i++) { data_ptr[(i << 2) + 0] = srgb2lin[data_ptr[(i << 2) + 0]]; data_ptr[(i << 2) + 1] = srgb2lin[data_ptr[(i << 2) + 1]]; data_ptr[(i << 2) + 2] = srgb2lin[data_ptr[(i << 2) + 2]]; } } else if (format == FORMAT_RGB8) { int len = data.size() / 3; PoolVector<uint8_t>::Write wp = data.write(); unsigned char *data_ptr = wp.ptr(); for (int i = 0; i < len; i++) { data_ptr[(i * 3) + 0] = srgb2lin[data_ptr[(i * 3) + 0]]; data_ptr[(i * 3) + 1] = srgb2lin[data_ptr[(i * 3) + 1]]; data_ptr[(i * 3) + 2] = srgb2lin[data_ptr[(i * 3) + 2]]; } } } void Image::premultiply_alpha() { if (data.size() == 0) return; if (format != FORMAT_RGBA8) return; //not needed PoolVector<uint8_t>::Write wp = data.write(); unsigned char *data_ptr = wp.ptr(); for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { uint8_t *ptr = &data_ptr[(i * width + j) * 4]; ptr[0] = (uint16_t(ptr[0]) * uint16_t(ptr[3])) >> 8; ptr[1] = (uint16_t(ptr[1]) * uint16_t(ptr[3])) >> 8; ptr[2] = (uint16_t(ptr[2]) * uint16_t(ptr[3])) >> 8; } } } void Image::fix_alpha_edges() { if (data.size() == 0) return; if (format != FORMAT_RGBA8) return; //not needed PoolVector<uint8_t> dcopy = data; PoolVector<uint8_t>::Read rp = dcopy.read(); const uint8_t *srcptr = rp.ptr(); PoolVector<uint8_t>::Write wp = data.write(); unsigned char *data_ptr = wp.ptr(); const int max_radius = 4; const int alpha_threshold = 20; const int max_dist = 0x7FFFFFFF; for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { const uint8_t *rptr = &srcptr[(i * width + j) * 4]; uint8_t *wptr = &data_ptr[(i * width + j) * 4]; if (rptr[3] >= alpha_threshold) continue; int closest_dist = max_dist; uint8_t closest_color[3]; int from_x = MAX(0, j - max_radius); int to_x = MIN(width - 1, j + max_radius); int from_y = MAX(0, i - max_radius); int to_y = MIN(height - 1, i + max_radius); for (int k = from_y; k <= to_y; k++) { for (int l = from_x; l <= to_x; l++) { int dy = i - k; int dx = j - l; int dist = dy * dy + dx * dx; if (dist >= closest_dist) continue; const uint8_t *rp = &srcptr[(k * width + l) << 2]; if (rp[3] < alpha_threshold) continue; closest_dist = dist; closest_color[0] = rp[0]; closest_color[1] = rp[1]; closest_color[2] = rp[2]; } } if (closest_dist != max_dist) { wptr[0] = closest_color[0]; wptr[1] = closest_color[1]; wptr[2] = closest_color[2]; } } } } String Image::get_format_name(Format p_format) { ERR_FAIL_INDEX_V(p_format, FORMAT_MAX, String()); return format_names[p_format]; } Image::Image(const uint8_t *p_mem_png_jpg, int p_len) { width = 0; height = 0; mipmaps = false; format = FORMAT_L8; if (_png_mem_loader_func) { copy_internals_from(_png_mem_loader_func(p_mem_png_jpg, p_len)); } if (empty() && _jpg_mem_loader_func) { copy_internals_from(_jpg_mem_loader_func(p_mem_png_jpg, p_len)); } } Ref<Resource> Image::duplicate(bool p_subresources) const { Ref<Image> copy; copy.instance(); copy->_copy_internals_from(*this); return copy; } Image::Image() { width = 0; height = 0; mipmaps = false; format = FORMAT_L8; } Image::~Image() { if (write_lock.ptr()) { unlock(); } }