/*************************************************************************/ /* csg_shape.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "csg_shape.h" void CSGShape::set_use_collision(bool p_enable) { if (use_collision == p_enable) { return; } use_collision = p_enable; if (!is_inside_tree() || !is_root_shape()) { return; } if (use_collision) { root_collision_shape.instance(); root_collision_instance = RID_PRIME(PhysicsServer::get_singleton()->body_create(PhysicsServer::BODY_MODE_STATIC)); PhysicsServer::get_singleton()->body_set_state(root_collision_instance, PhysicsServer::BODY_STATE_TRANSFORM, get_global_transform()); PhysicsServer::get_singleton()->body_add_shape(root_collision_instance, root_collision_shape->get_rid()); PhysicsServer::get_singleton()->body_set_space(root_collision_instance, get_world()->get_space()); PhysicsServer::get_singleton()->body_attach_object_instance_id(root_collision_instance, get_instance_id()); set_collision_layer(collision_layer); set_collision_mask(collision_mask); _make_dirty(); //force update } else { PhysicsServer::get_singleton()->free(root_collision_instance); root_collision_instance = RID(); root_collision_shape.unref(); } _change_notify(); } bool CSGShape::is_using_collision() const { return use_collision; } void CSGShape::set_collision_layer(uint32_t p_layer) { collision_layer = p_layer; if (root_collision_instance.is_valid()) { PhysicsServer::get_singleton()->body_set_collision_layer(root_collision_instance, p_layer); } } uint32_t CSGShape::get_collision_layer() const { return collision_layer; } void CSGShape::set_collision_mask(uint32_t p_mask) { collision_mask = p_mask; if (root_collision_instance.is_valid()) { PhysicsServer::get_singleton()->body_set_collision_mask(root_collision_instance, p_mask); } } uint32_t CSGShape::get_collision_mask() const { return collision_mask; } void CSGShape::set_collision_mask_bit(int p_bit, bool p_value) { ERR_FAIL_INDEX_MSG(p_bit, 32, "Collision mask bit must be between 0 and 31 inclusive."); uint32_t mask = get_collision_mask(); if (p_value) { mask |= 1 << p_bit; } else { mask &= ~(1 << p_bit); } set_collision_mask(mask); } bool CSGShape::get_collision_mask_bit(int p_bit) const { ERR_FAIL_INDEX_V_MSG(p_bit, 32, false, "Collision mask bit must be between 0 and 31 inclusive."); return get_collision_mask() & (1 << p_bit); } void CSGShape::set_collision_layer_bit(int p_bit, bool p_value) { ERR_FAIL_INDEX_MSG(p_bit, 32, "Collision layer bit must be between 0 and 31 inclusive."); uint32_t layer = get_collision_layer(); if (p_value) { layer |= 1 << p_bit; } else { layer &= ~(1 << p_bit); } set_collision_layer(layer); } bool CSGShape::get_collision_layer_bit(int p_bit) const { ERR_FAIL_INDEX_V_MSG(p_bit, 32, false, "Collision layer bit must be between 0 and 31 inclusive."); return get_collision_layer() & (1 << p_bit); } bool CSGShape::is_root_shape() const { return !parent_shape; } void CSGShape::set_snap(float p_snap) { snap = p_snap; } float CSGShape::get_snap() const { return snap; } void CSGShape::_make_dirty(bool p_parent_removing) { if ((p_parent_removing || is_root_shape()) && !dirty) { call_deferred("_update_shape"); // Must be deferred; otherwise, is_root_shape() will use the previous parent } if (!is_root_shape()) { parent_shape->_make_dirty(); } else if (!dirty) { call_deferred("_update_shape"); } dirty = true; } CSGBrush *CSGShape::_get_brush() { if (dirty) { if (brush) { memdelete(brush); } brush = nullptr; CSGBrush *n = _build_brush(); for (int i = 0; i < get_child_count(); i++) { CSGShape *child = Object::cast_to(get_child(i)); if (!child) { continue; } if (!child->is_visible()) { continue; } CSGBrush *n2 = child->_get_brush(); if (!n2) { continue; } if (!n) { n = memnew(CSGBrush); n->copy_from(*n2, child->get_transform()); } else { CSGBrush *nn = memnew(CSGBrush); CSGBrush *nn2 = memnew(CSGBrush); nn2->copy_from(*n2, child->get_transform()); CSGBrushOperation bop; switch (child->get_operation()) { case CSGShape::OPERATION_UNION: bop.merge_brushes(CSGBrushOperation::OPERATION_UNION, *n, *nn2, *nn, snap); break; case CSGShape::OPERATION_INTERSECTION: bop.merge_brushes(CSGBrushOperation::OPERATION_INTERSECTION, *n, *nn2, *nn, snap); break; case CSGShape::OPERATION_SUBTRACTION: bop.merge_brushes(CSGBrushOperation::OPERATION_SUBTRACTION, *n, *nn2, *nn, snap); break; } memdelete(n); memdelete(nn2); n = nn; } } if (n) { AABB aabb; for (int i = 0; i < n->faces.size(); i++) { for (int j = 0; j < 3; j++) { if (i == 0 && j == 0) { aabb.position = n->faces[i].vertices[j]; } else { aabb.expand_to(n->faces[i].vertices[j]); } } } node_aabb = aabb; } else { node_aabb = AABB(); } brush = n; dirty = false; } return brush; } int CSGShape::mikktGetNumFaces(const SMikkTSpaceContext *pContext) { ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData); return surface.vertices.size() / 3; } int CSGShape::mikktGetNumVerticesOfFace(const SMikkTSpaceContext *pContext, const int iFace) { // always 3 return 3; } void CSGShape::mikktGetPosition(const SMikkTSpaceContext *pContext, float fvPosOut[], const int iFace, const int iVert) { ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData); Vector3 v = surface.verticesw[iFace * 3 + iVert]; fvPosOut[0] = v.x; fvPosOut[1] = v.y; fvPosOut[2] = v.z; } void CSGShape::mikktGetNormal(const SMikkTSpaceContext *pContext, float fvNormOut[], const int iFace, const int iVert) { ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData); Vector3 n = surface.normalsw[iFace * 3 + iVert]; fvNormOut[0] = n.x; fvNormOut[1] = n.y; fvNormOut[2] = n.z; } void CSGShape::mikktGetTexCoord(const SMikkTSpaceContext *pContext, float fvTexcOut[], const int iFace, const int iVert) { ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData); Vector2 t = surface.uvsw[iFace * 3 + iVert]; fvTexcOut[0] = t.x; fvTexcOut[1] = t.y; } void CSGShape::mikktSetTSpaceDefault(const SMikkTSpaceContext *pContext, const float fvTangent[], const float fvBiTangent[], const float fMagS, const float fMagT, const tbool bIsOrientationPreserving, const int iFace, const int iVert) { ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData); int i = iFace * 3 + iVert; Vector3 normal = surface.normalsw[i]; Vector3 tangent = Vector3(fvTangent[0], fvTangent[1], fvTangent[2]); Vector3 bitangent = Vector3(-fvBiTangent[0], -fvBiTangent[1], -fvBiTangent[2]); // for some reason these are reversed, something with the coordinate system in Godot float d = bitangent.dot(normal.cross(tangent)); i *= 4; surface.tansw[i++] = tangent.x; surface.tansw[i++] = tangent.y; surface.tansw[i++] = tangent.z; surface.tansw[i++] = d < 0 ? -1 : 1; } void CSGShape::_update_shape() { if (!is_root_shape()) { return; } set_base(RID()); root_mesh.unref(); //byebye root mesh CSGBrush *n = _get_brush(); ERR_FAIL_COND_MSG(!n, "Cannot get CSGBrush."); OAHashMap vec_map; Vector face_count; face_count.resize(n->materials.size() + 1); for (int i = 0; i < face_count.size(); i++) { face_count.write[i] = 0; } for (int i = 0; i < n->faces.size(); i++) { int mat = n->faces[i].material; ERR_CONTINUE(mat < -1 || mat >= face_count.size()); int idx = mat == -1 ? face_count.size() - 1 : mat; if (n->faces[i].smooth) { Plane p(n->faces[i].vertices[0], n->faces[i].vertices[1], n->faces[i].vertices[2]); for (int j = 0; j < 3; j++) { Vector3 v = n->faces[i].vertices[j]; Vector3 add; if (vec_map.lookup(v, add)) { add += p.normal; } else { add = p.normal; } vec_map.set(v, add); } } face_count.write[idx]++; } Vector surfaces; surfaces.resize(face_count.size()); //create arrays for (int i = 0; i < surfaces.size(); i++) { surfaces.write[i].vertices.resize(face_count[i] * 3); surfaces.write[i].normals.resize(face_count[i] * 3); surfaces.write[i].uvs.resize(face_count[i] * 3); if (calculate_tangents) { surfaces.write[i].tans.resize(face_count[i] * 3 * 4); } surfaces.write[i].last_added = 0; if (i != surfaces.size() - 1) { surfaces.write[i].material = n->materials[i]; } surfaces.write[i].verticesw = surfaces.write[i].vertices.write(); surfaces.write[i].normalsw = surfaces.write[i].normals.write(); surfaces.write[i].uvsw = surfaces.write[i].uvs.write(); if (calculate_tangents) { surfaces.write[i].tansw = surfaces.write[i].tans.write(); } } //fill arrays { for (int i = 0; i < n->faces.size(); i++) { int order[3] = { 0, 1, 2 }; if (n->faces[i].invert) { SWAP(order[1], order[2]); } int mat = n->faces[i].material; ERR_CONTINUE(mat < -1 || mat >= face_count.size()); int idx = mat == -1 ? face_count.size() - 1 : mat; int last = surfaces[idx].last_added; Plane p(n->faces[i].vertices[0], n->faces[i].vertices[1], n->faces[i].vertices[2]); for (int j = 0; j < 3; j++) { Vector3 v = n->faces[i].vertices[j]; Vector3 normal = p.normal; if (n->faces[i].smooth && vec_map.lookup(v, normal)) { normal.normalize(); } if (n->faces[i].invert) { normal = -normal; } int k = last + order[j]; surfaces[idx].verticesw[k] = v; surfaces[idx].uvsw[k] = n->faces[i].uvs[j]; surfaces[idx].normalsw[k] = normal; if (calculate_tangents) { // zero out our tangents for now k *= 4; surfaces[idx].tansw[k++] = 0.0; surfaces[idx].tansw[k++] = 0.0; surfaces[idx].tansw[k++] = 0.0; surfaces[idx].tansw[k++] = 0.0; } } surfaces.write[idx].last_added += 3; } } root_mesh.instance(); //create surfaces for (int i = 0; i < surfaces.size(); i++) { // calculate tangents for this surface bool have_tangents = calculate_tangents; if (have_tangents) { SMikkTSpaceInterface mkif; mkif.m_getNormal = mikktGetNormal; mkif.m_getNumFaces = mikktGetNumFaces; mkif.m_getNumVerticesOfFace = mikktGetNumVerticesOfFace; mkif.m_getPosition = mikktGetPosition; mkif.m_getTexCoord = mikktGetTexCoord; mkif.m_setTSpace = mikktSetTSpaceDefault; mkif.m_setTSpaceBasic = nullptr; SMikkTSpaceContext msc; msc.m_pInterface = &mkif; msc.m_pUserData = &surfaces.write[i]; have_tangents = genTangSpaceDefault(&msc); } // unset write access surfaces.write[i].verticesw.release(); surfaces.write[i].normalsw.release(); surfaces.write[i].uvsw.release(); surfaces.write[i].tansw.release(); if (surfaces[i].last_added == 0) { continue; } // and convert to surface array Array array; array.resize(Mesh::ARRAY_MAX); array[Mesh::ARRAY_VERTEX] = surfaces[i].vertices; array[Mesh::ARRAY_NORMAL] = surfaces[i].normals; array[Mesh::ARRAY_TEX_UV] = surfaces[i].uvs; if (have_tangents) { array[Mesh::ARRAY_TANGENT] = surfaces[i].tans; } int idx = root_mesh->get_surface_count(); root_mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, array); root_mesh->surface_set_material(idx, surfaces[i].material); } set_base(root_mesh->get_rid()); _update_collision_faces(); } void CSGShape::_update_collision_faces() { if (use_collision && is_root_shape() && root_collision_shape.is_valid()) { CSGBrush *n = _get_brush(); ERR_FAIL_COND_MSG(!n, "Cannot get CSGBrush."); PoolVector physics_faces; physics_faces.resize(n->faces.size() * 3); PoolVector::Write physicsw = physics_faces.write(); for (int i = 0; i < n->faces.size(); i++) { int order[3] = { 0, 1, 2 }; if (n->faces[i].invert) { SWAP(order[1], order[2]); } physicsw[i * 3 + 0] = n->faces[i].vertices[order[0]]; physicsw[i * 3 + 1] = n->faces[i].vertices[order[1]]; physicsw[i * 3 + 2] = n->faces[i].vertices[order[2]]; } root_collision_shape->set_faces(physics_faces); } } AABB CSGShape::get_aabb() const { return node_aabb; } PoolVector CSGShape::get_brush_faces() { ERR_FAIL_COND_V(!is_inside_tree(), PoolVector()); CSGBrush *b = _get_brush(); if (!b) { return PoolVector(); } PoolVector faces; int fc = b->faces.size(); faces.resize(fc * 3); { PoolVector::Write w = faces.write(); for (int i = 0; i < fc; i++) { w[i * 3 + 0] = b->faces[i].vertices[0]; w[i * 3 + 1] = b->faces[i].vertices[1]; w[i * 3 + 2] = b->faces[i].vertices[2]; } } return faces; } PoolVector CSGShape::get_faces(uint32_t p_usage_flags) const { return PoolVector(); } void CSGShape::_notification(int p_what) { switch (p_what) { case NOTIFICATION_PARENTED: { Node *parentn = get_parent(); if (parentn) { parent_shape = Object::cast_to(parentn); if (parent_shape) { set_base(RID()); root_mesh.unref(); } } if (!brush || parent_shape) { // Update this node if uninitialized, or both this node and its new parent if it gets added to another CSG shape _make_dirty(); } last_visible = is_visible(); } break; case NOTIFICATION_UNPARENTED: { if (!is_root_shape()) { // Update this node and its previous parent only if it's currently being removed from another CSG shape _make_dirty(true); // Must be forced since is_root_shape() uses the previous parent } parent_shape = nullptr; } break; case NOTIFICATION_VISIBILITY_CHANGED: { if (!is_root_shape() && last_visible != is_visible()) { // Update this node's parent only if its own visibility has changed, not the visibility of parent nodes parent_shape->_make_dirty(); } last_visible = is_visible(); } break; case NOTIFICATION_LOCAL_TRANSFORM_CHANGED: { if (!is_root_shape()) { // Update this node's parent only if its own transformation has changed, not the transformation of parent nodes parent_shape->_make_dirty(); } } break; case NOTIFICATION_ENTER_TREE: { if (use_collision && is_root_shape()) { root_collision_shape.instance(); root_collision_instance = PhysicsServer::get_singleton()->body_create(); PhysicsServer::get_singleton()->body_set_mode(root_collision_instance, PhysicsServer::BODY_MODE_STATIC); PhysicsServer::get_singleton()->body_set_state(root_collision_instance, PhysicsServer::BODY_STATE_TRANSFORM, get_global_transform()); PhysicsServer::get_singleton()->body_add_shape(root_collision_instance, root_collision_shape->get_rid()); PhysicsServer::get_singleton()->body_set_space(root_collision_instance, get_world()->get_space()); PhysicsServer::get_singleton()->body_attach_object_instance_id(root_collision_instance, get_instance_id()); set_collision_layer(collision_layer); set_collision_mask(collision_mask); _update_collision_faces(); } } break; case NOTIFICATION_EXIT_TREE: { if (use_collision && is_root_shape() && root_collision_instance.is_valid()) { PhysicsServer::get_singleton()->free(root_collision_instance); root_collision_instance = RID(); root_collision_shape.unref(); } } break; case NOTIFICATION_TRANSFORM_CHANGED: { if (use_collision && is_root_shape() && root_collision_instance.is_valid()) { PhysicsServer::get_singleton()->body_set_state(root_collision_instance, PhysicsServer::BODY_STATE_TRANSFORM, get_global_transform()); } } break; } } void CSGShape::set_operation(Operation p_operation) { operation = p_operation; _make_dirty(); update_gizmo(); } CSGShape::Operation CSGShape::get_operation() const { return operation; } void CSGShape::set_calculate_tangents(bool p_calculate_tangents) { calculate_tangents = p_calculate_tangents; _make_dirty(); } bool CSGShape::is_calculating_tangents() const { return calculate_tangents; } void CSGShape::_validate_property(PropertyInfo &property) const { bool is_collision_prefixed = property.name.begins_with("collision_"); if ((is_collision_prefixed || property.name.begins_with("use_collision")) && is_inside_tree() && !is_root_shape()) { //hide collision if not root property.usage = PROPERTY_USAGE_NOEDITOR; } else if (is_collision_prefixed && !bool(get("use_collision"))) { property.usage = PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL; } } // Calling _make_dirty() normally calls a deferred _update_shape. // This is problematic if we need to read the geometry immediately. // This function provides a means to make sure the shape is updated // immediately. It should only be used where necessary to prevent // updating CSGs multiple times per frame. Use _make_dirty in preference. void CSGShape::force_update_shape() { if (dirty) { _update_shape(); } } Array CSGShape::get_meshes() const { if (root_mesh.is_valid()) { Array arr; arr.resize(2); arr[0] = Transform(); arr[1] = root_mesh; return arr; } return Array(); } void CSGShape::_bind_methods() { ClassDB::bind_method(D_METHOD("_update_shape"), &CSGShape::_update_shape); ClassDB::bind_method(D_METHOD("is_root_shape"), &CSGShape::is_root_shape); ClassDB::bind_method(D_METHOD("set_operation", "operation"), &CSGShape::set_operation); ClassDB::bind_method(D_METHOD("get_operation"), &CSGShape::get_operation); ClassDB::bind_method(D_METHOD("set_snap", "snap"), &CSGShape::set_snap); ClassDB::bind_method(D_METHOD("get_snap"), &CSGShape::get_snap); ClassDB::bind_method(D_METHOD("set_use_collision", "operation"), &CSGShape::set_use_collision); ClassDB::bind_method(D_METHOD("is_using_collision"), &CSGShape::is_using_collision); ClassDB::bind_method(D_METHOD("set_collision_layer", "layer"), &CSGShape::set_collision_layer); ClassDB::bind_method(D_METHOD("get_collision_layer"), &CSGShape::get_collision_layer); ClassDB::bind_method(D_METHOD("set_collision_mask", "mask"), &CSGShape::set_collision_mask); ClassDB::bind_method(D_METHOD("get_collision_mask"), &CSGShape::get_collision_mask); ClassDB::bind_method(D_METHOD("set_collision_mask_bit", "bit", "value"), &CSGShape::set_collision_mask_bit); ClassDB::bind_method(D_METHOD("get_collision_mask_bit", "bit"), &CSGShape::get_collision_mask_bit); ClassDB::bind_method(D_METHOD("set_collision_layer_bit", "bit", "value"), &CSGShape::set_collision_layer_bit); ClassDB::bind_method(D_METHOD("get_collision_layer_bit", "bit"), &CSGShape::get_collision_layer_bit); ClassDB::bind_method(D_METHOD("set_calculate_tangents", "enabled"), &CSGShape::set_calculate_tangents); ClassDB::bind_method(D_METHOD("is_calculating_tangents"), &CSGShape::is_calculating_tangents); ClassDB::bind_method(D_METHOD("get_meshes"), &CSGShape::get_meshes); ADD_PROPERTY(PropertyInfo(Variant::INT, "operation", PROPERTY_HINT_ENUM, "Union,Intersection,Subtraction"), "set_operation", "get_operation"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "snap", PROPERTY_HINT_RANGE, "0.0001,1,0.001"), "set_snap", "get_snap"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "calculate_tangents"), "set_calculate_tangents", "is_calculating_tangents"); ADD_GROUP("Collision", "collision_"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_collision"), "set_use_collision", "is_using_collision"); ADD_PROPERTY(PropertyInfo(Variant::INT, "collision_layer", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_collision_layer", "get_collision_layer"); ADD_PROPERTY(PropertyInfo(Variant::INT, "collision_mask", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_collision_mask", "get_collision_mask"); BIND_ENUM_CONSTANT(OPERATION_UNION); BIND_ENUM_CONSTANT(OPERATION_INTERSECTION); BIND_ENUM_CONSTANT(OPERATION_SUBTRACTION); } CSGShape::CSGShape() { operation = OPERATION_UNION; parent_shape = nullptr; brush = nullptr; dirty = false; snap = 0.001; use_collision = false; collision_layer = 1; collision_mask = 1; calculate_tangents = true; set_notify_local_transform(true); } CSGShape::~CSGShape() { if (brush) { memdelete(brush); brush = nullptr; } } ////////////////////////////////// CSGBrush *CSGCombiner::_build_brush() { return memnew(CSGBrush); //does not build anything } CSGCombiner::CSGCombiner() { } ///////////////////// CSGBrush *CSGPrimitive::_create_brush_from_arrays(const PoolVector &p_vertices, const PoolVector &p_uv, const PoolVector &p_smooth, const PoolVector> &p_materials) { CSGBrush *brush = memnew(CSGBrush); PoolVector invert; invert.resize(p_vertices.size() / 3); { int ic = invert.size(); PoolVector::Write w = invert.write(); for (int i = 0; i < ic; i++) { w[i] = invert_faces; } } brush->build_from_faces(p_vertices, p_uv, p_smooth, p_materials, invert); return brush; } void CSGPrimitive::_bind_methods() { ClassDB::bind_method(D_METHOD("set_invert_faces", "invert_faces"), &CSGPrimitive::set_invert_faces); ClassDB::bind_method(D_METHOD("is_inverting_faces"), &CSGPrimitive::is_inverting_faces); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "invert_faces"), "set_invert_faces", "is_inverting_faces"); } void CSGPrimitive::set_invert_faces(bool p_invert) { if (invert_faces == p_invert) { return; } invert_faces = p_invert; _make_dirty(); } bool CSGPrimitive::is_inverting_faces() { return invert_faces; } CSGPrimitive::CSGPrimitive() { invert_faces = false; } ///////////////////// CSGBrush *CSGMesh::_build_brush() { if (!mesh.is_valid()) { return memnew(CSGBrush); } PoolVector vertices; PoolVector smooth; PoolVector> materials; PoolVector uvs; Ref material = get_material(); for (int i = 0; i < mesh->get_surface_count(); i++) { if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) { continue; } Array arrays = mesh->surface_get_arrays(i); if (arrays.size() == 0) { _make_dirty(); ERR_FAIL_COND_V(arrays.size() == 0, memnew(CSGBrush)); } PoolVector avertices = arrays[Mesh::ARRAY_VERTEX]; if (avertices.size() == 0) { continue; } PoolVector::Read vr = avertices.read(); PoolVector anormals = arrays[Mesh::ARRAY_NORMAL]; PoolVector::Read nr; bool nr_used = false; if (anormals.size()) { nr = anormals.read(); nr_used = true; } PoolVector auvs = arrays[Mesh::ARRAY_TEX_UV]; PoolVector::Read uvr; bool uvr_used = false; if (auvs.size()) { uvr = auvs.read(); uvr_used = true; } Ref mat; if (material.is_valid()) { mat = material; } else { mat = mesh->surface_get_material(i); } PoolVector aindices = arrays[Mesh::ARRAY_INDEX]; if (aindices.size()) { int as = vertices.size(); int is = aindices.size(); vertices.resize(as + is); smooth.resize((as + is) / 3); materials.resize((as + is) / 3); uvs.resize(as + is); PoolVector::Write vw = vertices.write(); PoolVector::Write sw = smooth.write(); PoolVector::Write uvw = uvs.write(); PoolVector>::Write mw = materials.write(); PoolVector::Read ir = aindices.read(); for (int j = 0; j < is; j += 3) { Vector3 vertex[3]; Vector3 normal[3]; Vector2 uv[3]; for (int k = 0; k < 3; k++) { int idx = ir[j + k]; vertex[k] = vr[idx]; if (nr_used) { normal[k] = nr[idx]; } if (uvr_used) { uv[k] = uvr[idx]; } } bool flat = normal[0].distance_to(normal[1]) < CMP_EPSILON && normal[0].distance_to(normal[2]) < CMP_EPSILON; vw[as + j + 0] = vertex[0]; vw[as + j + 1] = vertex[1]; vw[as + j + 2] = vertex[2]; uvw[as + j + 0] = uv[0]; uvw[as + j + 1] = uv[1]; uvw[as + j + 2] = uv[2]; sw[(as + j) / 3] = !flat; mw[(as + j) / 3] = mat; } } else { int as = vertices.size(); int is = avertices.size(); vertices.resize(as + is); smooth.resize((as + is) / 3); uvs.resize(as + is); materials.resize((as + is) / 3); PoolVector::Write vw = vertices.write(); PoolVector::Write sw = smooth.write(); PoolVector::Write uvw = uvs.write(); PoolVector>::Write mw = materials.write(); for (int j = 0; j < is; j += 3) { Vector3 vertex[3]; Vector3 normal[3]; Vector2 uv[3]; for (int k = 0; k < 3; k++) { vertex[k] = vr[j + k]; if (nr_used) { normal[k] = nr[j + k]; } if (uvr_used) { uv[k] = uvr[j + k]; } } bool flat = normal[0].distance_to(normal[1]) < CMP_EPSILON && normal[0].distance_to(normal[2]) < CMP_EPSILON; vw[as + j + 0] = vertex[0]; vw[as + j + 1] = vertex[1]; vw[as + j + 2] = vertex[2]; uvw[as + j + 0] = uv[0]; uvw[as + j + 1] = uv[1]; uvw[as + j + 2] = uv[2]; sw[(as + j) / 3] = !flat; mw[(as + j) / 3] = mat; } } } if (vertices.size() == 0) { return memnew(CSGBrush); } return _create_brush_from_arrays(vertices, uvs, smooth, materials); } void CSGMesh::_mesh_changed() { _make_dirty(); update_gizmo(); } void CSGMesh::set_material(const Ref &p_material) { if (material == p_material) { return; } material = p_material; _make_dirty(); } Ref CSGMesh::get_material() const { return material; } void CSGMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_mesh", "mesh"), &CSGMesh::set_mesh); ClassDB::bind_method(D_METHOD("get_mesh"), &CSGMesh::get_mesh); ClassDB::bind_method(D_METHOD("_mesh_changed"), &CSGMesh::_mesh_changed); ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGMesh::set_material); ClassDB::bind_method(D_METHOD("get_material"), &CSGMesh::get_material); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "mesh", PROPERTY_HINT_RESOURCE_TYPE, "Mesh"), "set_mesh", "get_mesh"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material"); } void CSGMesh::set_mesh(const Ref &p_mesh) { if (mesh == p_mesh) { return; } if (mesh.is_valid()) { mesh->disconnect("changed", this, "_mesh_changed"); } mesh = p_mesh; if (mesh.is_valid()) { mesh->connect("changed", this, "_mesh_changed"); } _mesh_changed(); } Ref CSGMesh::get_mesh() { return mesh; } //////////////////////////////// CSGBrush *CSGSphere::_build_brush() { // set our bounding box CSGBrush *brush = memnew(CSGBrush); int face_count = rings * radial_segments * 2 - radial_segments * 2; bool invert_val = is_inverting_faces(); Ref material = get_material(); PoolVector faces; PoolVector uvs; PoolVector smooth; PoolVector> materials; PoolVector invert; faces.resize(face_count * 3); uvs.resize(face_count * 3); smooth.resize(face_count); materials.resize(face_count); invert.resize(face_count); { PoolVector::Write facesw = faces.write(); PoolVector::Write uvsw = uvs.write(); PoolVector::Write smoothw = smooth.write(); PoolVector>::Write materialsw = materials.write(); PoolVector::Write invertw = invert.write(); // We want to follow an order that's convenient for UVs. // For latitude step we start at the top and move down like in an image. const double latitude_step = -Math_PI / rings; const double longitude_step = Math_TAU / radial_segments; int face = 0; for (int i = 0; i < rings; i++) { double latitude0 = latitude_step * i + Math_TAU / 4; double cos0 = Math::cos(latitude0); double sin0 = Math::sin(latitude0); double v0 = double(i) / rings; double latitude1 = latitude_step * (i + 1) + Math_TAU / 4; double cos1 = Math::cos(latitude1); double sin1 = Math::sin(latitude1); double v1 = double(i + 1) / rings; for (int j = 0; j < radial_segments; j++) { double longitude0 = longitude_step * j; // We give sin to X and cos to Z on purpose. // This allows UVs to be CCW on +X so it maps to images well. double x0 = Math::sin(longitude0); double z0 = Math::cos(longitude0); double u0 = double(j) / radial_segments; double longitude1 = longitude_step * (j + 1); if (j == radial_segments - 1) { longitude1 = 0; } double x1 = Math::sin(longitude1); double z1 = Math::cos(longitude1); double u1 = double(j + 1) / radial_segments; Vector3 v[4] = { Vector3(x0 * cos0, sin0, z0 * cos0) * radius, Vector3(x1 * cos0, sin0, z1 * cos0) * radius, Vector3(x1 * cos1, sin1, z1 * cos1) * radius, Vector3(x0 * cos1, sin1, z0 * cos1) * radius, }; Vector2 u[4] = { Vector2(u0, v0), Vector2(u1, v0), Vector2(u1, v1), Vector2(u0, v1), }; // Draw the first face, but skip this at the north pole (i == 0). if (i > 0) { facesw[face * 3 + 0] = v[0]; facesw[face * 3 + 1] = v[1]; facesw[face * 3 + 2] = v[2]; uvsw[face * 3 + 0] = u[0]; uvsw[face * 3 + 1] = u[1]; uvsw[face * 3 + 2] = u[2]; smoothw[face] = smooth_faces; invertw[face] = invert_val; materialsw[face] = material; face++; } // Draw the second face, but skip this at the south pole (i == rings - 1). if (i < rings - 1) { facesw[face * 3 + 0] = v[2]; facesw[face * 3 + 1] = v[3]; facesw[face * 3 + 2] = v[0]; uvsw[face * 3 + 0] = u[2]; uvsw[face * 3 + 1] = u[3]; uvsw[face * 3 + 2] = u[0]; smoothw[face] = smooth_faces; invertw[face] = invert_val; materialsw[face] = material; face++; } } } if (face != face_count) { ERR_PRINT("Face mismatch bug! fix code"); } } brush->build_from_faces(faces, uvs, smooth, materials, invert); return brush; } void CSGSphere::_bind_methods() { ClassDB::bind_method(D_METHOD("set_radius", "radius"), &CSGSphere::set_radius); ClassDB::bind_method(D_METHOD("get_radius"), &CSGSphere::get_radius); ClassDB::bind_method(D_METHOD("set_radial_segments", "radial_segments"), &CSGSphere::set_radial_segments); ClassDB::bind_method(D_METHOD("get_radial_segments"), &CSGSphere::get_radial_segments); ClassDB::bind_method(D_METHOD("set_rings", "rings"), &CSGSphere::set_rings); ClassDB::bind_method(D_METHOD("get_rings"), &CSGSphere::get_rings); ClassDB::bind_method(D_METHOD("set_smooth_faces", "smooth_faces"), &CSGSphere::set_smooth_faces); ClassDB::bind_method(D_METHOD("get_smooth_faces"), &CSGSphere::get_smooth_faces); ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGSphere::set_material); ClassDB::bind_method(D_METHOD("get_material"), &CSGSphere::get_material); ADD_PROPERTY(PropertyInfo(Variant::REAL, "radius", PROPERTY_HINT_RANGE, "0.001,100.0,0.001"), "set_radius", "get_radius"); ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1"), "set_radial_segments", "get_radial_segments"); ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "1,100,1"), "set_rings", "get_rings"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "smooth_faces"), "set_smooth_faces", "get_smooth_faces"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material"); } void CSGSphere::set_radius(const float p_radius) { ERR_FAIL_COND(p_radius <= 0); radius = p_radius; _make_dirty(); update_gizmo(); _change_notify("radius"); } float CSGSphere::get_radius() const { return radius; } void CSGSphere::set_radial_segments(const int p_radial_segments) { radial_segments = p_radial_segments > 4 ? p_radial_segments : 4; _make_dirty(); update_gizmo(); } int CSGSphere::get_radial_segments() const { return radial_segments; } void CSGSphere::set_rings(const int p_rings) { rings = p_rings > 1 ? p_rings : 1; _make_dirty(); update_gizmo(); } int CSGSphere::get_rings() const { return rings; } void CSGSphere::set_smooth_faces(const bool p_smooth_faces) { smooth_faces = p_smooth_faces; _make_dirty(); } bool CSGSphere::get_smooth_faces() const { return smooth_faces; } void CSGSphere::set_material(const Ref &p_material) { material = p_material; _make_dirty(); } Ref CSGSphere::get_material() const { return material; } CSGSphere::CSGSphere() { // defaults radius = 1.0; radial_segments = 12; rings = 6; smooth_faces = true; } /////////////// CSGBrush *CSGBox::_build_brush() { // set our bounding box CSGBrush *brush = memnew(CSGBrush); int face_count = 12; //it's a cube.. bool invert_val = is_inverting_faces(); Ref material = get_material(); PoolVector faces; PoolVector uvs; PoolVector smooth; PoolVector> materials; PoolVector invert; faces.resize(face_count * 3); uvs.resize(face_count * 3); smooth.resize(face_count); materials.resize(face_count); invert.resize(face_count); { PoolVector::Write facesw = faces.write(); PoolVector::Write uvsw = uvs.write(); PoolVector::Write smoothw = smooth.write(); PoolVector>::Write materialsw = materials.write(); PoolVector::Write invertw = invert.write(); int face = 0; Vector3 vertex_mul(width * 0.5, height * 0.5, depth * 0.5); { for (int i = 0; i < 6; i++) { Vector3 face_points[4]; float uv_points[8] = { 0, 0, 0, 1, 1, 1, 1, 0 }; for (int j = 0; j < 4; j++) { float v[3]; v[0] = 1.0; v[1] = 1 - 2 * ((j >> 1) & 1); v[2] = v[1] * (1 - 2 * (j & 1)); for (int k = 0; k < 3; k++) { if (i < 3) { face_points[j][(i + k) % 3] = v[k]; } else { face_points[3 - j][(i + k) % 3] = -v[k]; } } } Vector2 u[4]; for (int j = 0; j < 4; j++) { u[j] = Vector2(uv_points[j * 2 + 0], uv_points[j * 2 + 1]); } //face 1 facesw[face * 3 + 0] = face_points[0] * vertex_mul; facesw[face * 3 + 1] = face_points[1] * vertex_mul; facesw[face * 3 + 2] = face_points[2] * vertex_mul; uvsw[face * 3 + 0] = u[0]; uvsw[face * 3 + 1] = u[1]; uvsw[face * 3 + 2] = u[2]; smoothw[face] = false; invertw[face] = invert_val; materialsw[face] = material; face++; //face 1 facesw[face * 3 + 0] = face_points[2] * vertex_mul; facesw[face * 3 + 1] = face_points[3] * vertex_mul; facesw[face * 3 + 2] = face_points[0] * vertex_mul; uvsw[face * 3 + 0] = u[2]; uvsw[face * 3 + 1] = u[3]; uvsw[face * 3 + 2] = u[0]; smoothw[face] = false; invertw[face] = invert_val; materialsw[face] = material; face++; } } if (face != face_count) { ERR_PRINT("Face mismatch bug! fix code"); } } brush->build_from_faces(faces, uvs, smooth, materials, invert); return brush; } void CSGBox::_bind_methods() { ClassDB::bind_method(D_METHOD("set_width", "width"), &CSGBox::set_width); ClassDB::bind_method(D_METHOD("get_width"), &CSGBox::get_width); ClassDB::bind_method(D_METHOD("set_height", "height"), &CSGBox::set_height); ClassDB::bind_method(D_METHOD("get_height"), &CSGBox::get_height); ClassDB::bind_method(D_METHOD("set_depth", "depth"), &CSGBox::set_depth); ClassDB::bind_method(D_METHOD("get_depth"), &CSGBox::get_depth); ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGBox::set_material); ClassDB::bind_method(D_METHOD("get_material"), &CSGBox::get_material); ADD_PROPERTY(PropertyInfo(Variant::REAL, "width", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_width", "get_width"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "height", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_height", "get_height"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "depth", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_depth", "get_depth"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material"); } void CSGBox::set_width(const float p_width) { width = p_width; _make_dirty(); update_gizmo(); _change_notify("width"); } float CSGBox::get_width() const { return width; } void CSGBox::set_height(const float p_height) { height = p_height; _make_dirty(); update_gizmo(); _change_notify("height"); } float CSGBox::get_height() const { return height; } void CSGBox::set_depth(const float p_depth) { depth = p_depth; _make_dirty(); update_gizmo(); _change_notify("depth"); } float CSGBox::get_depth() const { return depth; } void CSGBox::set_material(const Ref &p_material) { material = p_material; _make_dirty(); update_gizmo(); } Ref CSGBox::get_material() const { return material; } CSGBox::CSGBox() { // defaults width = 2.0; height = 2.0; depth = 2.0; } /////////////// CSGBrush *CSGCylinder::_build_brush() { // set our bounding box CSGBrush *brush = memnew(CSGBrush); int face_count = sides * (cone ? 1 : 2) + sides + (cone ? 0 : sides); bool invert_val = is_inverting_faces(); Ref material = get_material(); PoolVector faces; PoolVector uvs; PoolVector smooth; PoolVector> materials; PoolVector invert; faces.resize(face_count * 3); uvs.resize(face_count * 3); smooth.resize(face_count); materials.resize(face_count); invert.resize(face_count); { PoolVector::Write facesw = faces.write(); PoolVector::Write uvsw = uvs.write(); PoolVector::Write smoothw = smooth.write(); PoolVector>::Write materialsw = materials.write(); PoolVector::Write invertw = invert.write(); int face = 0; Vector3 vertex_mul(radius, height * 0.5, radius); { for (int i = 0; i < sides; i++) { float inc = float(i) / sides; float inc_n = float((i + 1)) / sides; if (i == sides - 1) { inc_n = 0; } float ang = inc * Math_PI * 2.0; float ang_n = inc_n * Math_PI * 2.0; Vector3 base(Math::cos(ang), 0, Math::sin(ang)); Vector3 base_n(Math::cos(ang_n), 0, Math::sin(ang_n)); Vector3 face_points[4] = { base + Vector3(0, -1, 0), base_n + Vector3(0, -1, 0), base_n * (cone ? 0.0 : 1.0) + Vector3(0, 1, 0), base * (cone ? 0.0 : 1.0) + Vector3(0, 1, 0), }; Vector2 u[4] = { Vector2(inc, 0), Vector2(inc_n, 0), Vector2(inc_n, 1), Vector2(inc, 1), }; //side face 1 facesw[face * 3 + 0] = face_points[0] * vertex_mul; facesw[face * 3 + 1] = face_points[1] * vertex_mul; facesw[face * 3 + 2] = face_points[2] * vertex_mul; uvsw[face * 3 + 0] = u[0]; uvsw[face * 3 + 1] = u[1]; uvsw[face * 3 + 2] = u[2]; smoothw[face] = smooth_faces; invertw[face] = invert_val; materialsw[face] = material; face++; if (!cone) { //side face 2 facesw[face * 3 + 0] = face_points[2] * vertex_mul; facesw[face * 3 + 1] = face_points[3] * vertex_mul; facesw[face * 3 + 2] = face_points[0] * vertex_mul; uvsw[face * 3 + 0] = u[2]; uvsw[face * 3 + 1] = u[3]; uvsw[face * 3 + 2] = u[0]; smoothw[face] = smooth_faces; invertw[face] = invert_val; materialsw[face] = material; face++; } //bottom face 1 facesw[face * 3 + 0] = face_points[1] * vertex_mul; facesw[face * 3 + 1] = face_points[0] * vertex_mul; facesw[face * 3 + 2] = Vector3(0, -1, 0) * vertex_mul; uvsw[face * 3 + 0] = Vector2(face_points[1].x, face_points[1].y) * 0.5 + Vector2(0.5, 0.5); uvsw[face * 3 + 1] = Vector2(face_points[0].x, face_points[0].y) * 0.5 + Vector2(0.5, 0.5); uvsw[face * 3 + 2] = Vector2(0.5, 0.5); smoothw[face] = false; invertw[face] = invert_val; materialsw[face] = material; face++; if (!cone) { //top face 1 facesw[face * 3 + 0] = face_points[3] * vertex_mul; facesw[face * 3 + 1] = face_points[2] * vertex_mul; facesw[face * 3 + 2] = Vector3(0, 1, 0) * vertex_mul; uvsw[face * 3 + 0] = Vector2(face_points[1].x, face_points[1].y) * 0.5 + Vector2(0.5, 0.5); uvsw[face * 3 + 1] = Vector2(face_points[0].x, face_points[0].y) * 0.5 + Vector2(0.5, 0.5); uvsw[face * 3 + 2] = Vector2(0.5, 0.5); smoothw[face] = false; invertw[face] = invert_val; materialsw[face] = material; face++; } } } if (face != face_count) { ERR_PRINT("Face mismatch bug! fix code"); } } brush->build_from_faces(faces, uvs, smooth, materials, invert); return brush; } void CSGCylinder::_bind_methods() { ClassDB::bind_method(D_METHOD("set_radius", "radius"), &CSGCylinder::set_radius); ClassDB::bind_method(D_METHOD("get_radius"), &CSGCylinder::get_radius); ClassDB::bind_method(D_METHOD("set_height", "height"), &CSGCylinder::set_height); ClassDB::bind_method(D_METHOD("get_height"), &CSGCylinder::get_height); ClassDB::bind_method(D_METHOD("set_sides", "sides"), &CSGCylinder::set_sides); ClassDB::bind_method(D_METHOD("get_sides"), &CSGCylinder::get_sides); ClassDB::bind_method(D_METHOD("set_cone", "cone"), &CSGCylinder::set_cone); ClassDB::bind_method(D_METHOD("is_cone"), &CSGCylinder::is_cone); ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGCylinder::set_material); ClassDB::bind_method(D_METHOD("get_material"), &CSGCylinder::get_material); ClassDB::bind_method(D_METHOD("set_smooth_faces", "smooth_faces"), &CSGCylinder::set_smooth_faces); ClassDB::bind_method(D_METHOD("get_smooth_faces"), &CSGCylinder::get_smooth_faces); ADD_PROPERTY(PropertyInfo(Variant::REAL, "radius", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_radius", "get_radius"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "height", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_height", "get_height"); ADD_PROPERTY(PropertyInfo(Variant::INT, "sides", PROPERTY_HINT_RANGE, "3,64,1"), "set_sides", "get_sides"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "cone"), "set_cone", "is_cone"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "smooth_faces"), "set_smooth_faces", "get_smooth_faces"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material"); } void CSGCylinder::set_radius(const float p_radius) { radius = p_radius; _make_dirty(); update_gizmo(); _change_notify("radius"); } float CSGCylinder::get_radius() const { return radius; } void CSGCylinder::set_height(const float p_height) { height = p_height; _make_dirty(); update_gizmo(); _change_notify("height"); } float CSGCylinder::get_height() const { return height; } void CSGCylinder::set_sides(const int p_sides) { ERR_FAIL_COND(p_sides < 3); sides = p_sides; _make_dirty(); update_gizmo(); } int CSGCylinder::get_sides() const { return sides; } void CSGCylinder::set_cone(const bool p_cone) { cone = p_cone; _make_dirty(); update_gizmo(); } bool CSGCylinder::is_cone() const { return cone; } void CSGCylinder::set_smooth_faces(const bool p_smooth_faces) { smooth_faces = p_smooth_faces; _make_dirty(); } bool CSGCylinder::get_smooth_faces() const { return smooth_faces; } void CSGCylinder::set_material(const Ref &p_material) { material = p_material; _make_dirty(); } Ref CSGCylinder::get_material() const { return material; } CSGCylinder::CSGCylinder() { // defaults radius = 1.0; height = 1.0; sides = 8; cone = false; smooth_faces = true; } /////////////// CSGBrush *CSGTorus::_build_brush() { // set our bounding box float min_radius = inner_radius; float max_radius = outer_radius; if (min_radius == max_radius) { return memnew(CSGBrush); //sorry, can't } if (min_radius > max_radius) { SWAP(min_radius, max_radius); } float radius = (max_radius - min_radius) * 0.5; CSGBrush *brush = memnew(CSGBrush); int face_count = ring_sides * sides * 2; bool invert_val = is_inverting_faces(); Ref material = get_material(); PoolVector faces; PoolVector uvs; PoolVector smooth; PoolVector> materials; PoolVector invert; faces.resize(face_count * 3); uvs.resize(face_count * 3); smooth.resize(face_count); materials.resize(face_count); invert.resize(face_count); { PoolVector::Write facesw = faces.write(); PoolVector::Write uvsw = uvs.write(); PoolVector::Write smoothw = smooth.write(); PoolVector>::Write materialsw = materials.write(); PoolVector::Write invertw = invert.write(); int face = 0; { for (int i = 0; i < sides; i++) { float inci = float(i) / sides; float inci_n = float((i + 1)) / sides; if (i == sides - 1) { inci_n = 0; } float angi = inci * Math_PI * 2.0; float angi_n = inci_n * Math_PI * 2.0; Vector3 normali = Vector3(Math::cos(angi), 0, Math::sin(angi)); Vector3 normali_n = Vector3(Math::cos(angi_n), 0, Math::sin(angi_n)); for (int j = 0; j < ring_sides; j++) { float incj = float(j) / ring_sides; float incj_n = float((j + 1)) / ring_sides; if (j == ring_sides - 1) { incj_n = 0; } float angj = incj * Math_PI * 2.0; float angj_n = incj_n * Math_PI * 2.0; Vector2 normalj = Vector2(Math::cos(angj), Math::sin(angj)) * radius + Vector2(min_radius + radius, 0); Vector2 normalj_n = Vector2(Math::cos(angj_n), Math::sin(angj_n)) * radius + Vector2(min_radius + radius, 0); Vector3 face_points[4] = { Vector3(normali.x * normalj.x, normalj.y, normali.z * normalj.x), Vector3(normali.x * normalj_n.x, normalj_n.y, normali.z * normalj_n.x), Vector3(normali_n.x * normalj_n.x, normalj_n.y, normali_n.z * normalj_n.x), Vector3(normali_n.x * normalj.x, normalj.y, normali_n.z * normalj.x) }; Vector2 u[4] = { Vector2(inci, incj), Vector2(inci, incj_n), Vector2(inci_n, incj_n), Vector2(inci_n, incj), }; // face 1 facesw[face * 3 + 0] = face_points[0]; facesw[face * 3 + 1] = face_points[2]; facesw[face * 3 + 2] = face_points[1]; uvsw[face * 3 + 0] = u[0]; uvsw[face * 3 + 1] = u[2]; uvsw[face * 3 + 2] = u[1]; smoothw[face] = smooth_faces; invertw[face] = invert_val; materialsw[face] = material; face++; //face 2 facesw[face * 3 + 0] = face_points[3]; facesw[face * 3 + 1] = face_points[2]; facesw[face * 3 + 2] = face_points[0]; uvsw[face * 3 + 0] = u[3]; uvsw[face * 3 + 1] = u[2]; uvsw[face * 3 + 2] = u[0]; smoothw[face] = smooth_faces; invertw[face] = invert_val; materialsw[face] = material; face++; } } } if (face != face_count) { ERR_PRINT("Face mismatch bug! fix code"); } } brush->build_from_faces(faces, uvs, smooth, materials, invert); return brush; } void CSGTorus::_bind_methods() { ClassDB::bind_method(D_METHOD("set_inner_radius", "radius"), &CSGTorus::set_inner_radius); ClassDB::bind_method(D_METHOD("get_inner_radius"), &CSGTorus::get_inner_radius); ClassDB::bind_method(D_METHOD("set_outer_radius", "radius"), &CSGTorus::set_outer_radius); ClassDB::bind_method(D_METHOD("get_outer_radius"), &CSGTorus::get_outer_radius); ClassDB::bind_method(D_METHOD("set_sides", "sides"), &CSGTorus::set_sides); ClassDB::bind_method(D_METHOD("get_sides"), &CSGTorus::get_sides); ClassDB::bind_method(D_METHOD("set_ring_sides", "sides"), &CSGTorus::set_ring_sides); ClassDB::bind_method(D_METHOD("get_ring_sides"), &CSGTorus::get_ring_sides); ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGTorus::set_material); ClassDB::bind_method(D_METHOD("get_material"), &CSGTorus::get_material); ClassDB::bind_method(D_METHOD("set_smooth_faces", "smooth_faces"), &CSGTorus::set_smooth_faces); ClassDB::bind_method(D_METHOD("get_smooth_faces"), &CSGTorus::get_smooth_faces); ADD_PROPERTY(PropertyInfo(Variant::REAL, "inner_radius", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_inner_radius", "get_inner_radius"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "outer_radius", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_outer_radius", "get_outer_radius"); ADD_PROPERTY(PropertyInfo(Variant::INT, "sides", PROPERTY_HINT_RANGE, "3,64,1"), "set_sides", "get_sides"); ADD_PROPERTY(PropertyInfo(Variant::INT, "ring_sides", PROPERTY_HINT_RANGE, "3,64,1"), "set_ring_sides", "get_ring_sides"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "smooth_faces"), "set_smooth_faces", "get_smooth_faces"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material"); } void CSGTorus::set_inner_radius(const float p_inner_radius) { inner_radius = p_inner_radius; _make_dirty(); update_gizmo(); _change_notify("inner_radius"); } float CSGTorus::get_inner_radius() const { return inner_radius; } void CSGTorus::set_outer_radius(const float p_outer_radius) { outer_radius = p_outer_radius; _make_dirty(); update_gizmo(); _change_notify("outer_radius"); } float CSGTorus::get_outer_radius() const { return outer_radius; } void CSGTorus::set_sides(const int p_sides) { ERR_FAIL_COND(p_sides < 3); sides = p_sides; _make_dirty(); update_gizmo(); } int CSGTorus::get_sides() const { return sides; } void CSGTorus::set_ring_sides(const int p_ring_sides) { ERR_FAIL_COND(p_ring_sides < 3); ring_sides = p_ring_sides; _make_dirty(); update_gizmo(); } int CSGTorus::get_ring_sides() const { return ring_sides; } void CSGTorus::set_smooth_faces(const bool p_smooth_faces) { smooth_faces = p_smooth_faces; _make_dirty(); } bool CSGTorus::get_smooth_faces() const { return smooth_faces; } void CSGTorus::set_material(const Ref &p_material) { material = p_material; _make_dirty(); } Ref CSGTorus::get_material() const { return material; } CSGTorus::CSGTorus() { // defaults inner_radius = 2.0; outer_radius = 3.0; sides = 8; ring_sides = 6; smooth_faces = true; } /////////////// CSGBrush *CSGPolygon::_build_brush() { CSGBrush *brush = memnew(CSGBrush); if (polygon.size() < 3) { return brush; } // Triangulate polygon shape. Vector shape_polygon = polygon; if (Triangulate::get_area(shape_polygon) > 0) { shape_polygon.invert(); } int shape_sides = shape_polygon.size(); Vector shape_faces = Geometry::triangulate_polygon(shape_polygon); ERR_FAIL_COND_V_MSG(shape_faces.size() < 3, brush, "Failed to triangulate CSGPolygon. Make sure the polygon doesn't have any intersecting edges."); // Get polygon enclosing Rect2. Rect2 shape_rect(shape_polygon[0], Vector2()); for (int i = 1; i < shape_sides; i++) { shape_rect.expand_to(shape_polygon[i]); } // If MODE_PATH, check if curve has changed. Ref curve; if (mode == MODE_PATH) { Path *current_path = Object::cast_to(get_node_or_null(path_node)); if (path != current_path) { if (path) { path->disconnect("tree_exited", this, "_path_exited"); path->disconnect("curve_changed", this, "_path_changed"); } path = current_path; if (path) { path->connect("tree_exited", this, "_path_exited"); path->connect("curve_changed", this, "_path_changed"); } } if (!path) { return brush; } curve = path->get_curve(); if (curve.is_null() || curve->get_point_count() < 2) { return brush; } } // Calculate the number of extrusions, ends and faces. int extrusions = 0; int extrusion_face_count = shape_sides * 2; int end_count = 0; int shape_face_count = shape_faces.size() / 3; real_t curve_length = 1.0; switch (mode) { case MODE_DEPTH: extrusions = 1; end_count = 2; break; case MODE_SPIN: extrusions = spin_sides; if (spin_degrees < 360) { end_count = 2; } break; case MODE_PATH: { curve_length = curve->get_baked_length(); if (path_interval_type == PATH_INTERVAL_DISTANCE) { extrusions = MAX(1, Math::ceil(curve_length / path_interval)) + 1; } else { extrusions = Math::ceil(1.0 * curve->get_point_count() / path_interval); } if (!path_joined) { end_count = 2; extrusions -= 1; } } break; } int face_count = extrusions * extrusion_face_count + end_count * shape_face_count; // Initialize variables used to create the mesh. Ref material = get_material(); PoolVector faces; PoolVector uvs; PoolVector smooth; PoolVector> materials; PoolVector invert; faces.resize(face_count * 3); uvs.resize(face_count * 3); smooth.resize(face_count); materials.resize(face_count); invert.resize(face_count); int faces_removed = 0; { PoolVector::Write facesw = faces.write(); PoolVector::Write uvsw = uvs.write(); PoolVector::Write smoothw = smooth.write(); PoolVector>::Write materialsw = materials.write(); PoolVector::Write invertw = invert.write(); int face = 0; Transform base_xform; Transform current_xform; Transform previous_xform; Transform previous_previous_xform; double u_step = 1.0 / extrusions; if (path_u_distance > 0.0) { u_step *= curve_length / path_u_distance; } double v_step = 1.0 / shape_sides; double spin_step = Math::deg2rad(spin_degrees / spin_sides); double extrusion_step = 1.0 / extrusions; if (mode == MODE_PATH) { if (path_joined) { extrusion_step = 1.0 / (extrusions - 1); } extrusion_step *= curve_length; } if (mode == MODE_PATH) { if (!path_local) { base_xform = path->get_global_transform(); } Vector3 current_point = curve->interpolate_baked(0); Vector3 next_point = curve->interpolate_baked(extrusion_step); Vector3 current_up = Vector3(0, 1, 0); Vector3 direction = next_point - current_point; if (path_joined) { Vector3 last_point = curve->interpolate_baked(curve->get_baked_length()); direction = next_point - last_point; } switch (path_rotation) { case PATH_ROTATION_POLYGON: direction = Vector3(0, 0, -1); break; case PATH_ROTATION_PATH: break; case PATH_ROTATION_PATH_FOLLOW: current_up = curve->interpolate_baked_up_vector(0); break; } Transform facing = Transform().looking_at(direction, current_up); current_xform = base_xform.translated(current_point) * facing; } // Create the mesh. if (end_count > 0) { // Add front end face. for (int face_idx = 0; face_idx < shape_face_count; face_idx++) { for (int face_vertex_idx = 0; face_vertex_idx < 3; face_vertex_idx++) { // We need to reverse the rotation of the shape face vertices. int index = shape_faces[face_idx * 3 + 2 - face_vertex_idx]; Point2 p = shape_polygon[index]; Point2 uv = (p - shape_rect.position) / shape_rect.size; // Use the left side of the bottom half of the y-inverted texture. uv.x = uv.x / 2; uv.y = 1 - (uv.y / 2); facesw[face * 3 + face_vertex_idx] = current_xform.xform(Vector3(p.x, p.y, 0)); uvsw[face * 3 + face_vertex_idx] = uv; } smoothw[face] = false; materialsw[face] = material; invertw[face] = invert_faces; face++; } } real_t angle_simplify_dot = Math::cos(Math::deg2rad(path_simplify_angle)); Vector3 previous_simplify_dir = Vector3(0, 0, 0); int faces_combined = 0; // Add extrusion faces. for (int x0 = 0; x0 < extrusions; x0++) { previous_previous_xform = previous_xform; previous_xform = current_xform; switch (mode) { case MODE_DEPTH: { current_xform.translate(Vector3(0, 0, -depth)); } break; case MODE_SPIN: { current_xform.rotate(Vector3(0, 1, 0), spin_step); } break; case MODE_PATH: { double previous_offset = x0 * extrusion_step; double current_offset = (x0 + 1) * extrusion_step; double next_offset = (x0 + 2) * extrusion_step; if (x0 == extrusions - 1) { if (path_joined) { current_offset = 0; next_offset = extrusion_step; } else { next_offset = current_offset; } } Vector3 previous_point = curve->interpolate_baked(previous_offset); Vector3 current_point = curve->interpolate_baked(current_offset); Vector3 next_point = curve->interpolate_baked(next_offset); Vector3 current_up = Vector3(0, 1, 0); Vector3 direction = next_point - previous_point; Vector3 current_dir = (current_point - previous_point).normalized(); // If the angles are similar, remove the previous face and replace it with this one. if (path_simplify_angle > 0.0 && x0 > 0 && previous_simplify_dir.dot(current_dir) > angle_simplify_dot) { faces_combined += 1; previous_xform = previous_previous_xform; face -= extrusion_face_count; faces_removed += extrusion_face_count; } else { faces_combined = 0; previous_simplify_dir = current_dir; } switch (path_rotation) { case PATH_ROTATION_POLYGON: direction = Vector3(0, 0, -1); break; case PATH_ROTATION_PATH: break; case PATH_ROTATION_PATH_FOLLOW: current_up = curve->interpolate_baked_up_vector(current_offset); break; } Transform facing = Transform().looking_at(direction, current_up); current_xform = base_xform.translated(current_point) * facing; } break; } double u0 = (x0 - faces_combined) * u_step; double u1 = ((x0 + 1) * u_step); if (mode == MODE_PATH && !path_continuous_u) { u0 = 0.0; u1 = 1.0; } for (int y0 = 0; y0 < shape_sides; y0++) { int y1 = (y0 + 1) % shape_sides; // Use the top half of the texture. double v0 = (y0 * v_step) / 2; double v1 = ((y0 + 1) * v_step) / 2; Vector3 v[4] = { previous_xform.xform(Vector3(shape_polygon[y0].x, shape_polygon[y0].y, 0)), current_xform.xform(Vector3(shape_polygon[y0].x, shape_polygon[y0].y, 0)), current_xform.xform(Vector3(shape_polygon[y1].x, shape_polygon[y1].y, 0)), previous_xform.xform(Vector3(shape_polygon[y1].x, shape_polygon[y1].y, 0)), }; Vector2 u[4] = { Vector2(u0, v0), Vector2(u1, v0), Vector2(u1, v1), Vector2(u0, v1), }; // Face 1 facesw[face * 3 + 0] = v[0]; facesw[face * 3 + 1] = v[1]; facesw[face * 3 + 2] = v[2]; uvsw[face * 3 + 0] = u[0]; uvsw[face * 3 + 1] = u[1]; uvsw[face * 3 + 2] = u[2]; smoothw[face] = smooth_faces; invertw[face] = invert_faces; materialsw[face] = material; face++; // Face 2 facesw[face * 3 + 0] = v[2]; facesw[face * 3 + 1] = v[3]; facesw[face * 3 + 2] = v[0]; uvsw[face * 3 + 0] = u[2]; uvsw[face * 3 + 1] = u[3]; uvsw[face * 3 + 2] = u[0]; smoothw[face] = smooth_faces; invertw[face] = invert_faces; materialsw[face] = material; face++; } } if (end_count > 1) { // Add back end face. for (int face_idx = 0; face_idx < shape_face_count; face_idx++) { for (int face_vertex_idx = 0; face_vertex_idx < 3; face_vertex_idx++) { int index = shape_faces[face_idx * 3 + face_vertex_idx]; Point2 p = shape_polygon[index]; Point2 uv = (p - shape_rect.position) / shape_rect.size; // Use the x-inverted ride side of the bottom half of the y-inverted texture. uv.x = 1 - uv.x / 2; uv.y = 1 - (uv.y / 2); facesw[face * 3 + face_vertex_idx] = current_xform.xform(Vector3(p.x, p.y, 0)); uvsw[face * 3 + face_vertex_idx] = uv; } smoothw[face] = false; materialsw[face] = material; invertw[face] = invert_faces; face++; } } face_count -= faces_removed; ERR_FAIL_COND_V_MSG(face != face_count, brush, "Bug: Failed to create the CSGPolygon mesh correctly."); } if (faces_removed > 0) { faces.resize(face_count * 3); uvs.resize(face_count * 3); smooth.resize(face_count); materials.resize(face_count); invert.resize(face_count); } brush->build_from_faces(faces, uvs, smooth, materials, invert); return brush; } void CSGPolygon::_notification(int p_what) { if (p_what == NOTIFICATION_EXIT_TREE) { if (path) { path->disconnect("tree_exited", this, "_path_exited"); path->disconnect("curve_changed", this, "_path_changed"); path = nullptr; } } } void CSGPolygon::_validate_property(PropertyInfo &property) const { if (property.name.begins_with("spin") && mode != MODE_SPIN) { property.usage = 0; } if (property.name.begins_with("path") && mode != MODE_PATH) { property.usage = 0; } if (property.name == "depth" && mode != MODE_DEPTH) { property.usage = 0; } CSGShape::_validate_property(property); } void CSGPolygon::_path_changed() { _make_dirty(); update_gizmo(); } void CSGPolygon::_path_exited() { path = nullptr; } void CSGPolygon::_bind_methods() { ClassDB::bind_method(D_METHOD("set_polygon", "polygon"), &CSGPolygon::set_polygon); ClassDB::bind_method(D_METHOD("get_polygon"), &CSGPolygon::get_polygon); ClassDB::bind_method(D_METHOD("set_mode", "mode"), &CSGPolygon::set_mode); ClassDB::bind_method(D_METHOD("get_mode"), &CSGPolygon::get_mode); ClassDB::bind_method(D_METHOD("set_depth", "depth"), &CSGPolygon::set_depth); ClassDB::bind_method(D_METHOD("get_depth"), &CSGPolygon::get_depth); ClassDB::bind_method(D_METHOD("set_spin_degrees", "degrees"), &CSGPolygon::set_spin_degrees); ClassDB::bind_method(D_METHOD("get_spin_degrees"), &CSGPolygon::get_spin_degrees); ClassDB::bind_method(D_METHOD("set_spin_sides", "spin_sides"), &CSGPolygon::set_spin_sides); ClassDB::bind_method(D_METHOD("get_spin_sides"), &CSGPolygon::get_spin_sides); ClassDB::bind_method(D_METHOD("set_path_node", "path"), &CSGPolygon::set_path_node); ClassDB::bind_method(D_METHOD("get_path_node"), &CSGPolygon::get_path_node); ClassDB::bind_method(D_METHOD("set_path_interval_type", "interval_type"), &CSGPolygon::set_path_interval_type); ClassDB::bind_method(D_METHOD("get_path_interval_type"), &CSGPolygon::get_path_interval_type); ClassDB::bind_method(D_METHOD("set_path_interval", "path_interval"), &CSGPolygon::set_path_interval); ClassDB::bind_method(D_METHOD("get_path_interval"), &CSGPolygon::get_path_interval); ClassDB::bind_method(D_METHOD("set_path_simplify_angle", "degrees"), &CSGPolygon::set_path_simplify_angle); ClassDB::bind_method(D_METHOD("get_path_simplify_angle"), &CSGPolygon::get_path_simplify_angle); ClassDB::bind_method(D_METHOD("set_path_rotation", "path_rotation"), &CSGPolygon::set_path_rotation); ClassDB::bind_method(D_METHOD("get_path_rotation"), &CSGPolygon::get_path_rotation); ClassDB::bind_method(D_METHOD("set_path_local", "enable"), &CSGPolygon::set_path_local); ClassDB::bind_method(D_METHOD("is_path_local"), &CSGPolygon::is_path_local); ClassDB::bind_method(D_METHOD("set_path_continuous_u", "enable"), &CSGPolygon::set_path_continuous_u); ClassDB::bind_method(D_METHOD("is_path_continuous_u"), &CSGPolygon::is_path_continuous_u); ClassDB::bind_method(D_METHOD("set_path_u_distance", "distance"), &CSGPolygon::set_path_u_distance); ClassDB::bind_method(D_METHOD("get_path_u_distance"), &CSGPolygon::get_path_u_distance); ClassDB::bind_method(D_METHOD("set_path_joined", "enable"), &CSGPolygon::set_path_joined); ClassDB::bind_method(D_METHOD("is_path_joined"), &CSGPolygon::is_path_joined); ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGPolygon::set_material); ClassDB::bind_method(D_METHOD("get_material"), &CSGPolygon::get_material); ClassDB::bind_method(D_METHOD("set_smooth_faces", "smooth_faces"), &CSGPolygon::set_smooth_faces); ClassDB::bind_method(D_METHOD("get_smooth_faces"), &CSGPolygon::get_smooth_faces); ClassDB::bind_method(D_METHOD("_is_editable_3d_polygon"), &CSGPolygon::_is_editable_3d_polygon); ClassDB::bind_method(D_METHOD("_has_editable_3d_polygon_no_depth"), &CSGPolygon::_has_editable_3d_polygon_no_depth); ClassDB::bind_method(D_METHOD("_path_exited"), &CSGPolygon::_path_exited); ClassDB::bind_method(D_METHOD("_path_changed"), &CSGPolygon::_path_changed); ADD_PROPERTY(PropertyInfo(Variant::POOL_VECTOR2_ARRAY, "polygon"), "set_polygon", "get_polygon"); ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Depth,Spin,Path"), "set_mode", "get_mode"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "depth", PROPERTY_HINT_EXP_RANGE, "0.01,100.0,0.01,or_greater"), "set_depth", "get_depth"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "spin_degrees", PROPERTY_HINT_RANGE, "1,360,0.1"), "set_spin_degrees", "get_spin_degrees"); ADD_PROPERTY(PropertyInfo(Variant::INT, "spin_sides", PROPERTY_HINT_RANGE, "3,64,1"), "set_spin_sides", "get_spin_sides"); ADD_PROPERTY(PropertyInfo(Variant::NODE_PATH, "path_node", PROPERTY_HINT_NODE_PATH_VALID_TYPES, "Path"), "set_path_node", "get_path_node"); ADD_PROPERTY(PropertyInfo(Variant::INT, "path_interval_type", PROPERTY_HINT_ENUM, "Distance,Subdivide"), "set_path_interval_type", "get_path_interval_type"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "path_interval", PROPERTY_HINT_RANGE, "0.01,1.0,0.01,exp,or_greater"), "set_path_interval", "get_path_interval"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "path_simplify_angle", PROPERTY_HINT_EXP_RANGE, "0.0,180.0,0.1,or_greater"), "set_path_simplify_angle", "get_path_simplify_angle"); ADD_PROPERTY(PropertyInfo(Variant::INT, "path_rotation", PROPERTY_HINT_ENUM, "Polygon,Path,PathFollow"), "set_path_rotation", "get_path_rotation"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "path_local"), "set_path_local", "is_path_local"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "path_continuous_u"), "set_path_continuous_u", "is_path_continuous_u"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "path_u_distance", PROPERTY_HINT_RANGE, "0.0,10.0,0.01,or_greater"), "set_path_u_distance", "get_path_u_distance"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "path_joined"), "set_path_joined", "is_path_joined"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "smooth_faces"), "set_smooth_faces", "get_smooth_faces"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material"); BIND_ENUM_CONSTANT(MODE_DEPTH); BIND_ENUM_CONSTANT(MODE_SPIN); BIND_ENUM_CONSTANT(MODE_PATH); BIND_ENUM_CONSTANT(PATH_ROTATION_POLYGON); BIND_ENUM_CONSTANT(PATH_ROTATION_PATH); BIND_ENUM_CONSTANT(PATH_ROTATION_PATH_FOLLOW); BIND_ENUM_CONSTANT(PATH_INTERVAL_DISTANCE); BIND_ENUM_CONSTANT(PATH_INTERVAL_SUBDIVIDE); } void CSGPolygon::set_polygon(const Vector &p_polygon) { polygon = p_polygon; _make_dirty(); update_gizmo(); } Vector CSGPolygon::get_polygon() const { return polygon; } void CSGPolygon::set_mode(Mode p_mode) { mode = p_mode; _make_dirty(); update_gizmo(); _change_notify(); } CSGPolygon::Mode CSGPolygon::get_mode() const { return mode; } void CSGPolygon::set_depth(const float p_depth) { ERR_FAIL_COND(p_depth < 0.001); depth = p_depth; _make_dirty(); update_gizmo(); } float CSGPolygon::get_depth() const { return depth; } void CSGPolygon::set_path_continuous_u(bool p_enable) { path_continuous_u = p_enable; _make_dirty(); } bool CSGPolygon::is_path_continuous_u() const { return path_continuous_u; } void CSGPolygon::set_path_u_distance(real_t p_path_u_distance) { path_u_distance = p_path_u_distance; _make_dirty(); update_gizmo(); } real_t CSGPolygon::get_path_u_distance() const { return path_u_distance; } void CSGPolygon::set_spin_degrees(const float p_spin_degrees) { ERR_FAIL_COND(p_spin_degrees < 0.01 || p_spin_degrees > 360); spin_degrees = p_spin_degrees; _make_dirty(); update_gizmo(); } float CSGPolygon::get_spin_degrees() const { return spin_degrees; } void CSGPolygon::set_spin_sides(int p_spin_sides) { ERR_FAIL_COND(p_spin_sides < 3); spin_sides = p_spin_sides; _make_dirty(); update_gizmo(); } int CSGPolygon::get_spin_sides() const { return spin_sides; } void CSGPolygon::set_path_node(const NodePath &p_path) { path_node = p_path; _make_dirty(); update_gizmo(); } NodePath CSGPolygon::get_path_node() const { return path_node; } void CSGPolygon::set_path_interval_type(PathIntervalType p_interval_type) { path_interval_type = p_interval_type; _make_dirty(); update_gizmo(); } CSGPolygon::PathIntervalType CSGPolygon::get_path_interval_type() const { return path_interval_type; } void CSGPolygon::set_path_interval(float p_interval) { path_interval = p_interval; _make_dirty(); update_gizmo(); } float CSGPolygon::get_path_interval() const { return path_interval; } void CSGPolygon::set_path_simplify_angle(float angle) { path_simplify_angle = angle; _make_dirty(); update_gizmo(); } float CSGPolygon::get_path_simplify_angle() const { return path_simplify_angle; } void CSGPolygon::set_path_rotation(PathRotation p_rotation) { path_rotation = p_rotation; _make_dirty(); update_gizmo(); } CSGPolygon::PathRotation CSGPolygon::get_path_rotation() const { return path_rotation; } void CSGPolygon::set_path_local(bool p_enable) { path_local = p_enable; _make_dirty(); update_gizmo(); } bool CSGPolygon::is_path_local() const { return path_local; } void CSGPolygon::set_path_joined(bool p_enable) { path_joined = p_enable; _make_dirty(); update_gizmo(); } bool CSGPolygon::is_path_joined() const { return path_joined; } void CSGPolygon::set_smooth_faces(const bool p_smooth_faces) { smooth_faces = p_smooth_faces; _make_dirty(); } bool CSGPolygon::get_smooth_faces() const { return smooth_faces; } void CSGPolygon::set_material(const Ref &p_material) { material = p_material; _make_dirty(); } Ref CSGPolygon::get_material() const { return material; } bool CSGPolygon::_is_editable_3d_polygon() const { return true; } bool CSGPolygon::_has_editable_3d_polygon_no_depth() const { return true; } CSGPolygon::CSGPolygon() { // defaults mode = MODE_DEPTH; polygon.push_back(Vector2(0, 0)); polygon.push_back(Vector2(0, 1)); polygon.push_back(Vector2(1, 1)); polygon.push_back(Vector2(1, 0)); depth = 1.0; spin_degrees = 360; spin_sides = 8; smooth_faces = false; path_interval_type = PATH_INTERVAL_DISTANCE; path_interval = 1.0; path_simplify_angle = 0.0; path_rotation = PATH_ROTATION_PATH_FOLLOW; path_local = false; path_continuous_u = true; path_u_distance = 1.0; path_joined = false; path = nullptr; }