/**************************************************************************/ /* geometry_2d.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef GEOMETRY_2D_H #define GEOMETRY_2D_H #include "core/math/delaunay_2d.h" #include "core/math/math_funcs.h" #include "core/math/triangulate.h" #include "core/math/vector2.h" #include "core/math/vector2i.h" #include "core/math/vector3.h" #include "core/math/vector3i.h" #include "core/templates/vector.h" class Geometry2D { public: static real_t get_closest_points_between_segments(const Vector2 &p1, const Vector2 &q1, const Vector2 &p2, const Vector2 &q2, Vector2 &c1, Vector2 &c2) { Vector2 d1 = q1 - p1; // Direction vector of segment S1. Vector2 d2 = q2 - p2; // Direction vector of segment S2. Vector2 r = p1 - p2; real_t a = d1.dot(d1); // Squared length of segment S1, always nonnegative. real_t e = d2.dot(d2); // Squared length of segment S2, always nonnegative. real_t f = d2.dot(r); real_t s, t; // Check if either or both segments degenerate into points. if (a <= (real_t)CMP_EPSILON && e <= (real_t)CMP_EPSILON) { // Both segments degenerate into points. c1 = p1; c2 = p2; return Math::sqrt((c1 - c2).dot(c1 - c2)); } if (a <= (real_t)CMP_EPSILON) { // First segment degenerates into a point. s = 0.0; t = f / e; // s = 0 => t = (b*s + f) / e = f / e t = CLAMP(t, 0.0f, 1.0f); } else { real_t c = d1.dot(r); if (e <= (real_t)CMP_EPSILON) { // Second segment degenerates into a point. t = 0.0; s = CLAMP(-c / a, 0.0f, 1.0f); // t = 0 => s = (b*t - c) / a = -c / a } else { // The general nondegenerate case starts here. real_t b = d1.dot(d2); real_t denom = a * e - b * b; // Always nonnegative. // If segments not parallel, compute closest point on L1 to L2 and // clamp to segment S1. Else pick arbitrary s (here 0). if (denom != 0.0f) { s = CLAMP((b * f - c * e) / denom, 0.0f, 1.0f); } else { s = 0.0; } // Compute point on L2 closest to S1(s) using // t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e t = (b * s + f) / e; //If t in [0,1] done. Else clamp t, recompute s for the new value // of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a // and clamp s to [0, 1]. if (t < 0.0f) { t = 0.0; s = CLAMP(-c / a, 0.0f, 1.0f); } else if (t > 1.0f) { t = 1.0; s = CLAMP((b - c) / a, 0.0f, 1.0f); } } } c1 = p1 + d1 * s; c2 = p2 + d2 * t; return Math::sqrt((c1 - c2).dot(c1 - c2)); } static Vector2 get_closest_point_to_segment(const Vector2 &p_point, const Vector2 *p_segment) { Vector2 p = p_point - p_segment[0]; Vector2 n = p_segment[1] - p_segment[0]; real_t l2 = n.length_squared(); if (l2 < 1e-20f) { return p_segment[0]; // Both points are the same, just give any. } real_t d = n.dot(p) / l2; if (d <= 0.0f) { return p_segment[0]; // Before first point. } else if (d >= 1.0f) { return p_segment[1]; // After first point. } else { return p_segment[0] + n * d; // Inside. } } static real_t get_distance_to_segment(const Vector2 &p_point, const Vector2 *p_segment) { return p_point.distance_to(get_closest_point_to_segment(p_point, p_segment)); } static bool is_point_in_triangle(const Vector2 &s, const Vector2 &a, const Vector2 &b, const Vector2 &c) { Vector2 an = a - s; Vector2 bn = b - s; Vector2 cn = c - s; bool orientation = an.cross(bn) > 0; if ((bn.cross(cn) > 0) != orientation) { return false; } return (cn.cross(an) > 0) == orientation; } static Vector2 get_closest_point_to_segment_uncapped(const Vector2 &p_point, const Vector2 *p_segment) { Vector2 p = p_point - p_segment[0]; Vector2 n = p_segment[1] - p_segment[0]; real_t l2 = n.length_squared(); if (l2 < 1e-20f) { return p_segment[0]; // Both points are the same, just give any. } real_t d = n.dot(p) / l2; return p_segment[0] + n * d; // Inside. } // Disable False Positives in MSVC compiler; we correctly check for 0 here to prevent a division by 0. // See: https://github.com/godotengine/godot/pull/44274 #ifdef _MSC_VER #pragma warning(disable : 4723) #endif static bool line_intersects_line(const Vector2 &p_from_a, const Vector2 &p_dir_a, const Vector2 &p_from_b, const Vector2 &p_dir_b, Vector2 &r_result) { // See http://paulbourke.net/geometry/pointlineplane/ const real_t denom = p_dir_b.y * p_dir_a.x - p_dir_b.x * p_dir_a.y; if (Math::is_zero_approx(denom)) { // Parallel? return false; } const Vector2 v = p_from_a - p_from_b; const real_t t = (p_dir_b.x * v.y - p_dir_b.y * v.x) / denom; r_result = p_from_a + t * p_dir_a; return true; } // Re-enable division by 0 warning #ifdef _MSC_VER #pragma warning(default : 4723) #endif static bool segment_intersects_segment(const Vector2 &p_from_a, const Vector2 &p_to_a, const Vector2 &p_from_b, const Vector2 &p_to_b, Vector2 *r_result) { Vector2 B = p_to_a - p_from_a; Vector2 C = p_from_b - p_from_a; Vector2 D = p_to_b - p_from_a; real_t ABlen = B.dot(B); if (ABlen <= 0) { return false; } Vector2 Bn = B / ABlen; C = Vector2(C.x * Bn.x + C.y * Bn.y, C.y * Bn.x - C.x * Bn.y); D = Vector2(D.x * Bn.x + D.y * Bn.y, D.y * Bn.x - D.x * Bn.y); // Fail if C x B and D x B have the same sign (segments don't intersect). if ((C.y < (real_t)-CMP_EPSILON && D.y < (real_t)-CMP_EPSILON) || (C.y > (real_t)CMP_EPSILON && D.y > (real_t)CMP_EPSILON)) { return false; } // Fail if segments are parallel or colinear. // (when A x B == zero, i.e (C - D) x B == zero, i.e C x B == D x B) if (Math::is_equal_approx(C.y, D.y)) { return false; } real_t ABpos = D.x + (C.x - D.x) * D.y / (D.y - C.y); // Fail if segment C-D crosses line A-B outside of segment A-B. if ((ABpos < 0) || (ABpos > 1)) { return false; } // Apply the discovered position to line A-B in the original coordinate system. if (r_result) { *r_result = p_from_a + B * ABpos; } return true; } static inline bool is_point_in_circle(const Vector2 &p_point, const Vector2 &p_circle_pos, real_t p_circle_radius) { return p_point.distance_squared_to(p_circle_pos) <= p_circle_radius * p_circle_radius; } static real_t segment_intersects_circle(const Vector2 &p_from, const Vector2 &p_to, const Vector2 &p_circle_pos, real_t p_circle_radius) { Vector2 line_vec = p_to - p_from; Vector2 vec_to_line = p_from - p_circle_pos; // Create a quadratic formula of the form ax^2 + bx + c = 0 real_t a, b, c; a = line_vec.dot(line_vec); b = 2 * vec_to_line.dot(line_vec); c = vec_to_line.dot(vec_to_line) - p_circle_radius * p_circle_radius; // Solve for t. real_t sqrtterm = b * b - 4 * a * c; // If the term we intend to square root is less than 0 then the answer won't be real, // so it definitely won't be t in the range 0 to 1. if (sqrtterm < 0) { return -1; } // If we can assume that the line segment starts outside the circle (e.g. for continuous time collision detection) // then the following can be skipped and we can just return the equivalent of res1. sqrtterm = Math::sqrt(sqrtterm); real_t res1 = (-b - sqrtterm) / (2 * a); real_t res2 = (-b + sqrtterm) / (2 * a); if (res1 >= 0 && res1 <= 1) { return res1; } if (res2 >= 0 && res2 <= 1) { return res2; } return -1; } static bool segment_intersects_rect(const Vector2 &p_from, const Vector2 &p_to, const Rect2 &p_rect) { if (p_rect.has_point(p_from) || p_rect.has_point(p_to)) { return true; } const Vector2 rect_points[4] = { p_rect.position, p_rect.position + Vector2(p_rect.size.x, 0), p_rect.position + p_rect.size, p_rect.position + Vector2(0, p_rect.size.y) }; // Check if any of the rect's edges intersect the segment. for (int i = 0; i < 4; i++) { if (segment_intersects_segment(p_from, p_to, rect_points[i], rect_points[(i + 1) % 4], nullptr)) { return true; } } return false; } enum PolyBooleanOperation { OPERATION_UNION, OPERATION_DIFFERENCE, OPERATION_INTERSECTION, OPERATION_XOR }; enum PolyJoinType { JOIN_SQUARE, JOIN_ROUND, JOIN_MITER }; enum PolyEndType { END_POLYGON, END_JOINED, END_BUTT, END_SQUARE, END_ROUND }; static Vector> merge_polygons(const Vector &p_polygon_a, const Vector &p_polygon_b) { return _polypaths_do_operation(OPERATION_UNION, p_polygon_a, p_polygon_b); } static Vector> clip_polygons(const Vector &p_polygon_a, const Vector &p_polygon_b) { return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polygon_a, p_polygon_b); } static Vector> intersect_polygons(const Vector &p_polygon_a, const Vector &p_polygon_b) { return _polypaths_do_operation(OPERATION_INTERSECTION, p_polygon_a, p_polygon_b); } static Vector> exclude_polygons(const Vector &p_polygon_a, const Vector &p_polygon_b) { return _polypaths_do_operation(OPERATION_XOR, p_polygon_a, p_polygon_b); } static Vector> clip_polyline_with_polygon(const Vector &p_polyline, const Vector &p_polygon) { return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polyline, p_polygon, true); } static Vector> intersect_polyline_with_polygon(const Vector &p_polyline, const Vector &p_polygon) { return _polypaths_do_operation(OPERATION_INTERSECTION, p_polyline, p_polygon, true); } static Vector> offset_polygon(const Vector &p_polygon, real_t p_delta, PolyJoinType p_join_type) { return _polypath_offset(p_polygon, p_delta, p_join_type, END_POLYGON); } static Vector> offset_polyline(const Vector &p_polygon, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) { ERR_FAIL_COND_V_MSG(p_end_type == END_POLYGON, Vector>(), "Attempt to offset a polyline like a polygon (use offset_polygon instead)."); return _polypath_offset(p_polygon, p_delta, p_join_type, p_end_type); } static Vector triangulate_delaunay(const Vector &p_points) { Vector tr = Delaunay2D::triangulate(p_points); Vector triangles; triangles.resize(3 * tr.size()); int *ptr = triangles.ptrw(); for (int i = 0; i < tr.size(); i++) { *ptr++ = tr[i].points[0]; *ptr++ = tr[i].points[1]; *ptr++ = tr[i].points[2]; } return triangles; } static Vector triangulate_polygon(const Vector &p_polygon) { Vector triangles; if (!Triangulate::triangulate(p_polygon, triangles)) { return Vector(); //fail } return triangles; } static bool is_polygon_clockwise(const Vector &p_polygon) { int c = p_polygon.size(); if (c < 3) { return false; } const Vector2 *p = p_polygon.ptr(); real_t sum = 0; for (int i = 0; i < c; i++) { const Vector2 &v1 = p[i]; const Vector2 &v2 = p[(i + 1) % c]; sum += (v2.x - v1.x) * (v2.y + v1.y); } return sum > 0.0f; } // Alternate implementation that should be faster. static bool is_point_in_polygon(const Vector2 &p_point, const Vector &p_polygon) { int c = p_polygon.size(); if (c < 3) { return false; } const Vector2 *p = p_polygon.ptr(); Vector2 further_away(-1e20, -1e20); Vector2 further_away_opposite(1e20, 1e20); for (int i = 0; i < c; i++) { further_away = further_away.max(p[i]); further_away_opposite = further_away_opposite.min(p[i]); } // Make point outside that won't intersect with points in segment from p_point. further_away += (further_away - further_away_opposite) * Vector2(1.221313, 1.512312); int intersections = 0; for (int i = 0; i < c; i++) { const Vector2 &v1 = p[i]; const Vector2 &v2 = p[(i + 1) % c]; Vector2 res; if (segment_intersects_segment(v1, v2, p_point, further_away, &res)) { intersections++; if (res.is_equal_approx(p_point)) { // Point is in one of the polygon edges. return true; } } } return (intersections & 1); } static bool is_segment_intersecting_polygon(const Vector2 &p_from, const Vector2 &p_to, const Vector &p_polygon) { int c = p_polygon.size(); const Vector2 *p = p_polygon.ptr(); for (int i = 0; i < c; i++) { const Vector2 &v1 = p[i]; const Vector2 &v2 = p[(i + 1) % c]; if (segment_intersects_segment(p_from, p_to, v1, v2, nullptr)) { return true; } } return false; } static real_t vec2_cross(const Point2 &O, const Point2 &A, const Point2 &B) { return (real_t)(A.x - O.x) * (B.y - O.y) - (real_t)(A.y - O.y) * (B.x - O.x); } // Returns a list of points on the convex hull in counter-clockwise order. // Note: the last point in the returned list is the same as the first one. static Vector convex_hull(Vector P) { int n = P.size(), k = 0; Vector H; H.resize(2 * n); // Sort points lexicographically. P.sort(); // Build lower hull. for (int i = 0; i < n; ++i) { while (k >= 2 && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) { k--; } H.write[k++] = P[i]; } // Build upper hull. for (int i = n - 2, t = k + 1; i >= 0; i--) { while (k >= t && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) { k--; } H.write[k++] = P[i]; } H.resize(k); return H; } static Vector bresenham_line(const Point2i &p_start, const Point2i &p_end) { Vector points; Vector2i delta = (p_end - p_start).abs() * 2; Vector2i step = (p_end - p_start).sign(); Vector2i current = p_start; if (delta.x > delta.y) { int err = delta.x / 2; for (; current.x != p_end.x; current.x += step.x) { points.push_back(current); err -= delta.y; if (err < 0) { current.y += step.y; err += delta.x; } } } else { int err = delta.y / 2; for (; current.y != p_end.y; current.y += step.y) { points.push_back(current); err -= delta.x; if (err < 0) { current.x += step.x; err += delta.y; } } } points.push_back(current); return points; } static Vector> decompose_polygon_in_convex(const Vector &polygon); static void make_atlas(const Vector &p_rects, Vector &r_result, Size2i &r_size); static Vector partial_pack_rects(const Vector &p_sizes, const Size2i &p_atlas_size); private: static Vector> _polypaths_do_operation(PolyBooleanOperation p_op, const Vector &p_polypath_a, const Vector &p_polypath_b, bool is_a_open = false); static Vector> _polypath_offset(const Vector &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type); }; #endif // GEOMETRY_2D_H