/* clang-format off */ #[modes] mode_color = mode_color_instancing = \n#define USE_INSTANCING mode_depth = #define MODE_RENDER_DEPTH mode_depth_instancing = #define MODE_RENDER_DEPTH \n#define USE_INSTANCING #[specializations] DISABLE_LIGHTMAP = false DISABLE_LIGHT_DIRECTIONAL = false DISABLE_LIGHT_OMNI = false DISABLE_LIGHT_SPOT = false DISABLE_FOG = false USE_RADIANCE_MAP = true USE_LIGHTMAP = false USE_SH_LIGHTMAP = false USE_LIGHTMAP_CAPTURE = false USE_MULTIVIEW = false RENDER_SHADOWS = false RENDER_SHADOWS_LINEAR = false SHADOW_MODE_PCF_5 = false SHADOW_MODE_PCF_13 = false LIGHT_USE_PSSM2 = false LIGHT_USE_PSSM4 = false LIGHT_USE_PSSM_BLEND = false BASE_PASS = true USE_ADDITIVE_LIGHTING = false // We can only use one type of light per additive pass. This means that if USE_ADDITIVE_LIGHTING is defined, and // these are false, we are doing a directional light pass. ADDITIVE_OMNI = false ADDITIVE_SPOT = false RENDER_MATERIAL = false #[vertex] #define M_PI 3.14159265359 #define SHADER_IS_SRGB true #include "stdlib_inc.glsl" #if !defined(MODE_RENDER_DEPTH) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) ||defined(LIGHT_CLEARCOAT_USED) #ifndef NORMAL_USED #define NORMAL_USED #endif #endif #ifdef MODE_UNSHADED #ifdef USE_ADDITIVE_LIGHTING #undef USE_ADDITIVE_LIGHTING #endif #endif // MODE_UNSHADED /* from RenderingServer: ARRAY_VERTEX = 0, // RGB32F or RGBA16 ARRAY_NORMAL = 1, // RG16 octahedral compression or RGBA16 normal + angle ARRAY_TANGENT = 2, // RG16 octahedral compression, sign stored in sign of G ARRAY_COLOR = 3, // RGBA8 ARRAY_TEX_UV = 4, // RG32F ARRAY_TEX_UV2 = 5, // RG32F ARRAY_CUSTOM0 = 6, // Depends on ArrayCustomFormat. ARRAY_CUSTOM1 = 7, ARRAY_CUSTOM2 = 8, ARRAY_CUSTOM3 = 9, ARRAY_BONES = 10, // RGBA16UI (x2 if 8 weights) ARRAY_WEIGHTS = 11, // RGBA16UNORM (x2 if 8 weights) */ /* INPUT ATTRIBS */ // Always contains vertex position in XYZ, can contain tangent angle in W. layout(location = 0) in highp vec4 vertex_angle_attrib; /* clang-format on */ #ifdef NORMAL_USED // Contains Normal/Axis in RG, can contain tangent in BA. layout(location = 1) in vec4 axis_tangent_attrib; #endif // location 2 is unused. #if defined(COLOR_USED) layout(location = 3) in vec4 color_attrib; #endif #ifdef UV_USED layout(location = 4) in vec2 uv_attrib; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(RENDER_MATERIAL) layout(location = 5) in vec2 uv2_attrib; #endif #if defined(CUSTOM0_USED) layout(location = 6) in vec4 custom0_attrib; #endif #if defined(CUSTOM1_USED) layout(location = 7) in vec4 custom1_attrib; #endif #if defined(CUSTOM2_USED) layout(location = 8) in vec4 custom2_attrib; #endif #if defined(CUSTOM3_USED) layout(location = 9) in vec4 custom3_attrib; #endif #if defined(BONES_USED) layout(location = 10) in uvec4 bone_attrib; #endif #if defined(WEIGHTS_USED) layout(location = 11) in vec4 weight_attrib; #endif vec3 oct_to_vec3(vec2 e) { vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y)); float t = max(-v.z, 0.0); v.xy += t * -sign(v.xy); return normalize(v); } void axis_angle_to_tbn(vec3 axis, float angle, out vec3 tangent, out vec3 binormal, out vec3 normal) { float c = cos(angle); float s = sin(angle); vec3 omc_axis = (1.0 - c) * axis; vec3 s_axis = s * axis; tangent = omc_axis.xxx * axis + vec3(c, -s_axis.z, s_axis.y); binormal = omc_axis.yyy * axis + vec3(s_axis.z, c, -s_axis.x); normal = omc_axis.zzz * axis + vec3(-s_axis.y, s_axis.x, c); } #ifdef USE_INSTANCING layout(location = 12) in highp vec4 instance_xform0; layout(location = 13) in highp vec4 instance_xform1; layout(location = 14) in highp vec4 instance_xform2; layout(location = 15) in highp uvec4 instance_color_custom_data; // Color packed into xy, Custom data into zw. #endif #define FLAGS_NON_UNIFORM_SCALE (1 << 4) layout(std140) uniform GlobalShaderUniformData { //ubo:1 vec4 global_shader_uniforms[MAX_GLOBAL_SHADER_UNIFORMS]; }; layout(std140) uniform SceneData { // ubo:2 highp mat4 projection_matrix; highp mat4 inv_projection_matrix; highp mat4 inv_view_matrix; highp mat4 view_matrix; // Used for billboards to cast correct shadows. highp mat4 main_cam_inv_view_matrix; vec2 viewport_size; vec2 screen_pixel_size; mediump vec4 ambient_light_color_energy; mediump float ambient_color_sky_mix; float pad2; float emissive_exposure_normalization; bool use_ambient_light; bool use_ambient_cubemap; bool use_reflection_cubemap; float fog_aerial_perspective; float time; mat3 radiance_inverse_xform; uint directional_light_count; float z_far; float z_near; float IBL_exposure_normalization; bool fog_enabled; float fog_density; float fog_height; float fog_height_density; vec3 fog_light_color; float fog_sun_scatter; float shadow_bias; float pad; uint camera_visible_layers; bool pancake_shadows; } scene_data; #ifdef USE_ADDITIVE_LIGHTING #if defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT) struct PositionalShadowData { highp mat4 shadow_matrix; highp vec3 light_position; highp float shadow_normal_bias; vec3 pad; highp float shadow_atlas_pixel_size; }; layout(std140) uniform PositionalShadows { // ubo:9 PositionalShadowData positional_shadows[MAX_LIGHT_DATA_STRUCTS]; }; uniform lowp uint positional_shadow_index; #else // ADDITIVE_DIRECTIONAL struct DirectionalShadowData { highp vec3 direction; highp float shadow_atlas_pixel_size; highp vec4 shadow_normal_bias; highp vec4 shadow_split_offsets; highp mat4 shadow_matrix1; highp mat4 shadow_matrix2; highp mat4 shadow_matrix3; highp mat4 shadow_matrix4; mediump float fade_from; mediump float fade_to; mediump vec2 pad; }; layout(std140) uniform DirectionalShadows { // ubo:10 DirectionalShadowData directional_shadows[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS]; }; uniform lowp uint directional_shadow_index; #endif // !(defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT)) #endif // USE_ADDITIVE_LIGHTING #ifdef USE_MULTIVIEW layout(std140) uniform MultiviewData { // ubo:8 highp mat4 projection_matrix_view[MAX_VIEWS]; highp mat4 inv_projection_matrix_view[MAX_VIEWS]; highp vec4 eye_offset[MAX_VIEWS]; } multiview_data; #endif uniform highp mat4 world_transform; uniform highp vec3 compressed_aabb_position; uniform highp vec3 compressed_aabb_size; uniform highp vec4 uv_scale; uniform highp uint model_flags; #ifdef RENDER_MATERIAL uniform mediump vec2 uv_offset; #endif /* Varyings */ out highp vec3 vertex_interp; #ifdef NORMAL_USED out vec3 normal_interp; #endif #if defined(COLOR_USED) out vec4 color_interp; #endif #if defined(UV_USED) out vec2 uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) out vec2 uv2_interp; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) out vec3 tangent_interp; out vec3 binormal_interp; #endif #ifdef USE_ADDITIVE_LIGHTING out highp vec4 shadow_coord; #if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) out highp vec4 shadow_coord2; #endif #ifdef LIGHT_USE_PSSM4 out highp vec4 shadow_coord3; out highp vec4 shadow_coord4; #endif //LIGHT_USE_PSSM4 #endif #ifdef MATERIAL_UNIFORMS_USED /* clang-format off */ layout(std140) uniform MaterialUniforms { // ubo:3 #MATERIAL_UNIFORMS }; /* clang-format on */ #endif /* clang-format off */ #GLOBALS /* clang-format on */ invariant gl_Position; void main() { highp vec3 vertex = vertex_angle_attrib.xyz * compressed_aabb_size + compressed_aabb_position; highp mat4 model_matrix = world_transform; #ifdef USE_INSTANCING highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0)); model_matrix = model_matrix * transpose(m); #endif #ifdef NORMAL_USED vec3 normal = oct_to_vec3(axis_tangent_attrib.xy * 2.0 - 1.0); #endif highp mat3 model_normal_matrix; if (bool(model_flags & uint(FLAGS_NON_UNIFORM_SCALE))) { model_normal_matrix = transpose(inverse(mat3(model_matrix))); } else { model_normal_matrix = mat3(model_matrix); } #if defined(NORMAL_USED) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) vec3 binormal; float binormal_sign; vec3 tangent; if (axis_tangent_attrib.z > 0.0 || axis_tangent_attrib.w < 1.0) { // Uncompressed format. vec2 signed_tangent_attrib = axis_tangent_attrib.zw * 2.0 - 1.0; tangent = oct_to_vec3(vec2(signed_tangent_attrib.x, abs(signed_tangent_attrib.y) * 2.0 - 1.0)); binormal_sign = sign(signed_tangent_attrib.y); binormal = normalize(cross(normal, tangent) * binormal_sign); } else { // Compressed format. float angle = vertex_angle_attrib.w; binormal_sign = angle > 0.5 ? 1.0 : -1.0; // 0.5 does not exist in UNORM16, so values are either greater or smaller. angle = abs(angle * 2.0 - 1.0) * M_PI; // 0.5 is basically zero, allowing to encode both signs reliably. vec3 axis = normal; axis_angle_to_tbn(axis, angle, tangent, binormal, normal); binormal *= binormal_sign; } #endif #if defined(COLOR_USED) color_interp = color_attrib; #ifdef USE_INSTANCING vec4 instance_color = vec4(unpackHalf2x16(instance_color_custom_data.x), unpackHalf2x16(instance_color_custom_data.y)); color_interp *= instance_color; #endif #endif #if defined(UV_USED) uv_interp = uv_attrib; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) uv2_interp = uv2_attrib; #endif if (uv_scale != vec4(0.0)) { // Compression enabled #ifdef UV_USED uv_interp = (uv_interp - 0.5) * uv_scale.xy; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) uv2_interp = (uv2_interp - 0.5) * uv_scale.zw; #endif } #if defined(OVERRIDE_POSITION) highp vec4 position; #endif #ifdef USE_MULTIVIEW mat4 projection_matrix = multiview_data.projection_matrix_view[ViewIndex]; mat4 inv_projection_matrix = multiview_data.inv_projection_matrix_view[ViewIndex]; vec3 eye_offset = multiview_data.eye_offset[ViewIndex].xyz; #else mat4 projection_matrix = scene_data.projection_matrix; mat4 inv_projection_matrix = scene_data.inv_projection_matrix; vec3 eye_offset = vec3(0.0, 0.0, 0.0); #endif //USE_MULTIVIEW #ifdef USE_INSTANCING vec4 instance_custom = vec4(unpackHalf2x16(instance_color_custom_data.z), unpackHalf2x16(instance_color_custom_data.w)); #else vec4 instance_custom = vec4(0.0); #endif // Using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = (model_matrix * vec4(vertex, 1.0)).xyz; #ifdef NORMAL_USED normal = model_normal_matrix * normal; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) tangent = model_normal_matrix * tangent; binormal = model_normal_matrix * binormal; #endif #endif float roughness = 1.0; highp mat4 modelview = scene_data.view_matrix * model_matrix; highp mat3 modelview_normal = mat3(scene_data.view_matrix) * model_normal_matrix; float point_size = 1.0; { #CODE : VERTEX } gl_PointSize = point_size; // Using local coordinates (default) #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) vertex = (modelview * vec4(vertex, 1.0)).xyz; #ifdef NORMAL_USED normal = modelview_normal * normal; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) binormal = modelview_normal * binormal; tangent = modelview_normal * tangent; #endif #endif // !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) // Using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = (scene_data.view_matrix * vec4(vertex, 1.0)).xyz; #ifdef NORMAL_USED normal = (scene_data.view_matrix * vec4(normal, 0.0)).xyz; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) binormal = (scene_data.view_matrix * vec4(binormal, 0.0)).xyz; tangent = (scene_data.view_matrix * vec4(tangent, 0.0)).xyz; #endif #endif vertex_interp = vertex; #ifdef NORMAL_USED normal_interp = normal; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) tangent_interp = tangent; binormal_interp = binormal; #endif // Calculate shadows. #ifdef USE_ADDITIVE_LIGHTING #if defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT) // Apply normal bias at draw time to avoid issues with scaling non-fused geometry. vec3 light_rel_vec = positional_shadows[positional_shadow_index].light_position - vertex_interp; float light_length = length(light_rel_vec); float aNdotL = abs(dot(normalize(normal_interp), normalize(light_rel_vec))); vec3 normal_offset = (1.0 - aNdotL) * positional_shadows[positional_shadow_index].shadow_normal_bias * light_length * normal_interp; #ifdef ADDITIVE_SPOT // Calculate coord here so we can take advantage of prefetch. shadow_coord = positional_shadows[positional_shadow_index].shadow_matrix * vec4(vertex_interp + normal_offset, 1.0); #endif #ifdef ADDITIVE_OMNI // Can't interpolate unit direction nicely, so forget about prefetch. shadow_coord = vec4(vertex_interp + normal_offset, 1.0); #endif #else // ADDITIVE_DIRECTIONAL vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(directional_shadows[directional_shadow_index].direction, -normalize(normal_interp)))); vec3 normal_offset = base_normal_bias * directional_shadows[directional_shadow_index].shadow_normal_bias.x; shadow_coord = directional_shadows[directional_shadow_index].shadow_matrix1 * vec4(vertex_interp + normal_offset, 1.0); #if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) normal_offset = base_normal_bias * directional_shadows[directional_shadow_index].shadow_normal_bias.y; shadow_coord2 = directional_shadows[directional_shadow_index].shadow_matrix2 * vec4(vertex_interp + normal_offset, 1.0); #endif #ifdef LIGHT_USE_PSSM4 normal_offset = base_normal_bias * directional_shadows[directional_shadow_index].shadow_normal_bias.z; shadow_coord3 = directional_shadows[directional_shadow_index].shadow_matrix3 * vec4(vertex_interp + normal_offset, 1.0); normal_offset = base_normal_bias * directional_shadows[directional_shadow_index].shadow_normal_bias.w; shadow_coord4 = directional_shadows[directional_shadow_index].shadow_matrix4 * vec4(vertex_interp + normal_offset, 1.0); #endif //LIGHT_USE_PSSM4 #endif // !(defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT)) #endif // USE_ADDITIVE_LIGHTING #if defined(RENDER_SHADOWS) && !defined(RENDER_SHADOWS_LINEAR) // This is an optimized version of normalize(vertex_interp) * scene_data.shadow_bias / length(vertex_interp). float light_length_sq = dot(vertex_interp, vertex_interp); vertex_interp += vertex_interp * scene_data.shadow_bias / light_length_sq; #endif #if defined(OVERRIDE_POSITION) gl_Position = position; #else gl_Position = projection_matrix * vec4(vertex_interp, 1.0); #endif #ifdef RENDER_MATERIAL gl_Position.xy = (uv2_attrib.xy + uv_offset) * 2.0 - 1.0; gl_Position.z = 0.00001; gl_Position.w = 1.0; #endif } /* clang-format off */ #[fragment] // Default to SPECULAR_SCHLICK_GGX. #if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_TOON) #define SPECULAR_SCHLICK_GGX #endif #if !defined(MODE_RENDER_DEPTH) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) ||defined(LIGHT_CLEARCOAT_USED) #ifndef NORMAL_USED #define NORMAL_USED #endif #endif #ifdef MODE_UNSHADED #ifdef USE_ADDITIVE_LIGHTING #undef USE_ADDITIVE_LIGHTING #endif #endif // MODE_UNSHADED #ifndef MODE_RENDER_DEPTH #include "tonemap_inc.glsl" #endif #include "stdlib_inc.glsl" /* texture unit usage, N is max_texture_unit-N 1-color correction // In tonemap_inc.glsl 2-radiance 3-shadow 5-screen 6-depth */ #define M_PI 3.14159265359 /* clang-format on */ #define SHADER_IS_SRGB true /* Varyings */ #if defined(COLOR_USED) in vec4 color_interp; #endif #if defined(UV_USED) in vec2 uv_interp; #endif #if defined(UV2_USED) in vec2 uv2_interp; #else #ifdef USE_LIGHTMAP in vec2 uv2_interp; #endif #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) in vec3 tangent_interp; in vec3 binormal_interp; #endif #ifdef NORMAL_USED in vec3 normal_interp; #endif in highp vec3 vertex_interp; #ifdef USE_ADDITIVE_LIGHTING in highp vec4 shadow_coord; #if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) in highp vec4 shadow_coord2; #endif #ifdef LIGHT_USE_PSSM4 in highp vec4 shadow_coord3; in highp vec4 shadow_coord4; #endif //LIGHT_USE_PSSM4 #endif #ifdef USE_RADIANCE_MAP #define RADIANCE_MAX_LOD 5.0 uniform samplerCube radiance_map; // texunit:-2 #endif layout(std140) uniform GlobalShaderUniformData { //ubo:1 vec4 global_shader_uniforms[MAX_GLOBAL_SHADER_UNIFORMS]; }; /* Material Uniforms */ #ifdef MATERIAL_UNIFORMS_USED /* clang-format off */ layout(std140) uniform MaterialUniforms { // ubo:3 #MATERIAL_UNIFORMS }; /* clang-format on */ #endif layout(std140) uniform SceneData { // ubo:2 highp mat4 projection_matrix; highp mat4 inv_projection_matrix; highp mat4 inv_view_matrix; highp mat4 view_matrix; // Used for billboards to cast correct shadows. highp mat4 main_cam_inv_view_matrix; vec2 viewport_size; vec2 screen_pixel_size; mediump vec4 ambient_light_color_energy; mediump float ambient_color_sky_mix; float pad2; float emissive_exposure_normalization; bool use_ambient_light; bool use_ambient_cubemap; bool use_reflection_cubemap; float fog_aerial_perspective; float time; mat3 radiance_inverse_xform; uint directional_light_count; float z_far; float z_near; float IBL_exposure_normalization; bool fog_enabled; float fog_density; float fog_height; float fog_height_density; vec3 fog_light_color; float fog_sun_scatter; float shadow_bias; float pad; uint camera_visible_layers; bool pancake_shadows; } scene_data; #ifdef USE_MULTIVIEW layout(std140) uniform MultiviewData { // ubo:8 highp mat4 projection_matrix_view[MAX_VIEWS]; highp mat4 inv_projection_matrix_view[MAX_VIEWS]; highp vec4 eye_offset[MAX_VIEWS]; } multiview_data; #endif /* clang-format off */ #GLOBALS /* clang-format on */ #define LIGHT_BAKE_DISABLED 0u #define LIGHT_BAKE_STATIC 1u #define LIGHT_BAKE_DYNAMIC 2u #ifndef MODE_RENDER_DEPTH // Directional light data. #if !defined(DISABLE_LIGHT_DIRECTIONAL) || (!defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT)) struct DirectionalLightData { mediump vec3 direction; mediump float energy; mediump vec3 color; mediump float size; lowp uint unused; lowp uint bake_mode; mediump float shadow_opacity; mediump float specular; }; layout(std140) uniform DirectionalLights { // ubo:7 DirectionalLightData directional_lights[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS]; }; #if defined(USE_ADDITIVE_LIGHTING) && (!defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT)) // Directional shadows can be in the base pass or in the additive passes uniform highp sampler2DShadow directional_shadow_atlas; // texunit:-3 #endif // defined(USE_ADDITIVE_LIGHTING) && (!defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT)) #endif // !DISABLE_LIGHT_DIRECTIONAL // Omni and spot light data. #if !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT) || defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT) struct LightData { // This structure needs to be as packed as possible. highp vec3 position; highp float inv_radius; mediump vec3 direction; highp float size; mediump vec3 color; mediump float attenuation; mediump float cone_attenuation; mediump float cone_angle; mediump float specular_amount; mediump float shadow_opacity; lowp vec3 pad; lowp uint bake_mode; }; #if !defined(DISABLE_LIGHT_OMNI) || defined(ADDITIVE_OMNI) layout(std140) uniform OmniLightData { // ubo:5 LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; }; #ifdef BASE_PASS uniform uint omni_light_indices[MAX_FORWARD_LIGHTS]; uniform uint omni_light_count; #endif // BASE_PASS #endif // DISABLE_LIGHT_OMNI #if !defined(DISABLE_LIGHT_SPOT) || defined(ADDITIVE_SPOT) layout(std140) uniform SpotLightData { // ubo:6 LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; }; #ifdef BASE_PASS uniform uint spot_light_indices[MAX_FORWARD_LIGHTS]; uniform uint spot_light_count; #endif // BASE_PASS #endif // DISABLE_LIGHT_SPOT #endif // !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT) #ifdef USE_ADDITIVE_LIGHTING #ifdef ADDITIVE_OMNI uniform highp samplerCubeShadow omni_shadow_texture; // texunit:-3 uniform lowp uint omni_light_index; #endif #ifdef ADDITIVE_SPOT uniform highp sampler2DShadow spot_shadow_texture; // texunit:-3 uniform lowp uint spot_light_index; #endif #if defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT) struct PositionalShadowData { highp mat4 shadow_matrix; highp vec3 light_position; highp float shadow_normal_bias; vec3 pad; highp float shadow_atlas_pixel_size; }; layout(std140) uniform PositionalShadows { // ubo:9 PositionalShadowData positional_shadows[MAX_LIGHT_DATA_STRUCTS]; }; uniform lowp uint positional_shadow_index; #else // ADDITIVE_DIRECTIONAL struct DirectionalShadowData { highp vec3 direction; highp float shadow_atlas_pixel_size; highp vec4 shadow_normal_bias; highp vec4 shadow_split_offsets; highp mat4 shadow_matrix1; highp mat4 shadow_matrix2; highp mat4 shadow_matrix3; highp mat4 shadow_matrix4; mediump float fade_from; mediump float fade_to; mediump vec2 pad; }; layout(std140) uniform DirectionalShadows { // ubo:10 DirectionalShadowData directional_shadows[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS]; }; uniform lowp uint directional_shadow_index; #endif // !(defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT)) #if !defined(ADDITIVE_OMNI) float sample_shadow(highp sampler2DShadow shadow, float shadow_pixel_size, vec4 pos) { float avg = textureProj(shadow, pos); #ifdef SHADOW_MODE_PCF_13 pos /= pos.w; avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size * 2.0, 0.0), pos.zw)); avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size * 2.0, 0.0), pos.zw)); avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, shadow_pixel_size * 2.0), pos.zw)); avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, -shadow_pixel_size * 2.0), pos.zw)); // Early bail if distant samples are fully shaded (or none are shaded) to improve performance. if (avg <= 0.000001) { // None shaded at all. return 0.0; } else if (avg >= 4.999999) { // All fully shaded. return 1.0; } avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size, 0.0), pos.zw)); avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size, 0.0), pos.zw)); avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, shadow_pixel_size), pos.zw)); avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, -shadow_pixel_size), pos.zw)); avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size, shadow_pixel_size), pos.zw)); avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size, shadow_pixel_size), pos.zw)); avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size, -shadow_pixel_size), pos.zw)); avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size, -shadow_pixel_size), pos.zw)); return avg * (1.0 / 13.0); #endif #ifdef SHADOW_MODE_PCF_5 pos /= pos.w; avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size, 0.0), pos.zw)); avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size, 0.0), pos.zw)); avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, shadow_pixel_size), pos.zw)); avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, -shadow_pixel_size), pos.zw)); return avg * (1.0 / 5.0); #endif return avg; } #endif //!defined(ADDITIVE_OMNI) #endif // USE_ADDITIVE_LIGHTING #endif // !MODE_RENDER_DEPTH #ifndef DISABLE_LIGHTMAP #ifdef USE_LIGHTMAP uniform mediump sampler2DArray lightmap_textures; //texunit:-4 uniform lowp uint lightmap_slice; uniform highp vec4 lightmap_uv_scale; uniform float lightmap_exposure_normalization; #ifdef USE_SH_LIGHTMAP uniform mediump mat3 lightmap_normal_xform; #endif // USE_SH_LIGHTMAP #endif // USE_LIGHTMAP #ifdef USE_LIGHTMAP_CAPTURE uniform mediump vec4[9] lightmap_captures; #endif // USE_LIGHTMAP_CAPTURE #endif // !DISABLE_LIGHTMAP #ifdef USE_MULTIVIEW uniform highp sampler2DArray depth_buffer; // texunit:-6 uniform highp sampler2DArray color_buffer; // texunit:-5 vec3 multiview_uv(vec2 uv) { return vec3(uv, ViewIndex); } ivec3 multiview_uv(ivec2 uv) { return ivec3(uv, int(ViewIndex)); } #else uniform highp sampler2D depth_buffer; // texunit:-6 uniform highp sampler2D color_buffer; // texunit:-5 vec2 multiview_uv(vec2 uv) { return uv; } ivec2 multiview_uv(ivec2 uv) { return uv; } #endif uniform highp mat4 world_transform; uniform mediump float opaque_prepass_threshold; #ifndef MODE_RENDER_DEPTH #ifdef RENDER_MATERIAL layout(location = 0) out vec4 albedo_output_buffer; layout(location = 1) out vec4 normal_output_buffer; layout(location = 2) out vec4 orm_output_buffer; layout(location = 3) out vec4 emission_output_buffer; #else // !RENDER_MATERIAL // Normal color rendering. layout(location = 0) out vec4 frag_color; #endif // !RENDER_MATERIAL #endif // !MODE_RENDER_DEPTH vec3 F0(float metallic, float specular, vec3 albedo) { float dielectric = 0.16 * specular * specular; // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials; // see https://google.github.io/filament/Filament.md.html return mix(vec3(dielectric), albedo, vec3(metallic)); } #ifndef MODE_RENDER_DEPTH #if !defined(DISABLE_LIGHT_DIRECTIONAL) || !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT) || defined(USE_ADDITIVE_LIGHTING) float D_GGX(float cos_theta_m, float alpha) { float a = cos_theta_m * alpha; float k = alpha / (1.0 - cos_theta_m * cos_theta_m + a * a); return k * k * (1.0 / M_PI); } // From Earl Hammon, Jr. "PBR Diffuse Lighting for GGX+Smith Microsurfaces" https://www.gdcvault.com/play/1024478/PBR-Diffuse-Lighting-for-GGX float V_GGX(float NdotL, float NdotV, float alpha) { return 0.5 / mix(2.0 * NdotL * NdotV, NdotL + NdotV, alpha); } float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float alpha2 = alpha_x * alpha_y; highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * cos_theta_m); highp float v2 = dot(v, v); float w2 = alpha2 / v2; float D = alpha2 * w2 * w2 * (1.0 / M_PI); return D; } float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) { float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV)); float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL)); return 0.5 / (Lambda_V + Lambda_L); } float SchlickFresnel(float u) { float m = 1.0 - u; float m2 = m * m; return m2 * m2 * m; // pow(m,5) } void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, bool is_directional, float attenuation, vec3 f0, float roughness, float metallic, float specular_amount, vec3 albedo, inout float alpha, #ifdef LIGHT_BACKLIGHT_USED vec3 backlight, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_roughness, vec3 vertex_normal, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 B, vec3 T, float anisotropy, #endif inout vec3 diffuse_light, inout vec3 specular_light) { #if defined(LIGHT_CODE_USED) // light is written by the light shader highp mat4 model_matrix = world_transform; mat4 projection_matrix = scene_data.projection_matrix; mat4 inv_projection_matrix = scene_data.inv_projection_matrix; vec3 normal = N; vec3 light = L; vec3 view = V; /* clang-format off */ #CODE : LIGHT /* clang-format on */ #else float NdotL = min(A + dot(N, L), 1.0); float cNdotL = max(NdotL, 0.0); // clamped NdotL float NdotV = dot(N, V); float cNdotV = max(NdotV, 1e-4); #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) vec3 H = normalize(V + L); #endif #if defined(SPECULAR_SCHLICK_GGX) float cNdotH = clamp(A + dot(N, H), 0.0, 1.0); #endif #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) float cLdotH = clamp(A + dot(L, H), 0.0, 1.0); #endif if (metallic < 1.0) { float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance #if defined(DIFFUSE_LAMBERT_WRAP) // Energy conserving lambert wrap shader. // https://web.archive.org/web/20210228210901/http://blog.stevemcauley.com/2011/12/03/energy-conserving-wrapped-diffuse/ diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))) * (1.0 / M_PI); #elif defined(DIFFUSE_TOON) diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL) * (1.0 / M_PI); #elif defined(DIFFUSE_BURLEY) { float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5; float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV); float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL); diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; } #else // Lambert diffuse_brdf_NL = cNdotL * (1.0 / M_PI); #endif diffuse_light += light_color * diffuse_brdf_NL * attenuation; #if defined(LIGHT_BACKLIGHT_USED) diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation; #endif #if defined(LIGHT_RIM_USED) // Epsilon min to prevent pow(0, 0) singularity which results in undefined behavior. float rim_light = pow(max(1e-4, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); diffuse_light += rim_light * rim * mix(vec3(1.0), albedo, rim_tint) * light_color; #endif } if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely // D #if defined(SPECULAR_TOON) vec3 R = normalize(-reflect(L, N)); float RdotV = dot(R, V); float mid = 1.0 - roughness; mid *= mid; float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection #elif defined(SPECULAR_DISABLED) // none.. #elif defined(SPECULAR_SCHLICK_GGX) // shlick+ggx as default float alpha_ggx = roughness * roughness; #if defined(LIGHT_ANISOTROPY_USED) float aspect = sqrt(1.0 - anisotropy * 0.9); float ax = alpha_ggx / aspect; float ay = alpha_ggx * aspect; float XdotH = dot(T, H); float YdotH = dot(B, H); float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH); float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL); #else float D = D_GGX(cNdotH, alpha_ggx); float G = V_GGX(cNdotL, cNdotV, alpha_ggx); #endif // LIGHT_ANISOTROPY_USED // F float cLdotH5 = SchlickFresnel(cLdotH); // Calculate Fresnel using cheap approximate specular occlusion term from Filament: // https://google.github.io/filament/Filament.html#lighting/occlusion/specularocclusion float f90 = clamp(50.0 * f0.g, 0.0, 1.0); vec3 F = f0 + (f90 - f0) * cLdotH5; vec3 specular_brdf_NL = cNdotL * D * F * G; specular_light += specular_brdf_NL * light_color * attenuation * specular_amount; #endif #if defined(LIGHT_CLEARCOAT_USED) // Clearcoat ignores normal_map, use vertex normal instead float ccNdotL = max(min(A + dot(vertex_normal, L), 1.0), 0.0); float ccNdotH = clamp(A + dot(vertex_normal, H), 0.0, 1.0); float ccNdotV = max(dot(vertex_normal, V), 1e-4); #if !defined(SPECULAR_SCHLICK_GGX) float cLdotH5 = SchlickFresnel(cLdotH); #endif float Dr = D_GGX(ccNdotH, mix(0.001, 0.1, clearcoat_roughness)); float Gr = 0.25 / (cLdotH * cLdotH); float Fr = mix(.04, 1.0, cLdotH5); float clearcoat_specular_brdf_NL = clearcoat * Gr * Fr * Dr * cNdotL; specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount; // TODO: Clearcoat adds light to the scene right now (it is non-energy conserving), both diffuse and specular need to be scaled by (1.0 - FR) // but to do so we need to rearrange this entire function #endif // LIGHT_CLEARCOAT_USED } #ifdef USE_SHADOW_TO_OPACITY alpha = min(alpha, clamp(1.0 - attenuation, 0.0, 1.0)); #endif #endif // LIGHT_CODE_USED } float get_omni_spot_attenuation(float distance, float inv_range, float decay) { float nd = distance * inv_range; nd *= nd; nd *= nd; // nd^4 nd = max(1.0 - nd, 0.0); nd *= nd; // nd^2 return nd * pow(max(distance, 0.0001), -decay); } #if !defined(DISABLE_LIGHT_OMNI) || defined(ADDITIVE_OMNI) void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, float roughness, float metallic, float shadow, vec3 albedo, inout float alpha, #ifdef LIGHT_BACKLIGHT_USED vec3 backlight, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_roughness, vec3 vertex_normal, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 binormal, vec3 tangent, float anisotropy, #endif inout vec3 diffuse_light, inout vec3 specular_light) { vec3 light_rel_vec = omni_lights[idx].position - vertex; float light_length = length(light_rel_vec); float omni_attenuation = get_omni_spot_attenuation(light_length, omni_lights[idx].inv_radius, omni_lights[idx].attenuation); vec3 color = omni_lights[idx].color; float size_A = 0.0; if (omni_lights[idx].size > 0.0) { float t = omni_lights[idx].size / max(0.001, light_length); size_A = max(0.0, 1.0 - 1.0 / sqrt(1.0 + t * t)); } omni_attenuation *= shadow; light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, false, omni_attenuation, f0, roughness, metallic, omni_lights[idx].specular_amount, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_RIM_USED rim * omni_attenuation, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, vertex_normal, #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif diffuse_light, specular_light); } #endif // !DISABLE_LIGHT_OMNI #if !defined(DISABLE_LIGHT_SPOT) || defined(ADDITIVE_SPOT) void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, float roughness, float metallic, float shadow, vec3 albedo, inout float alpha, #ifdef LIGHT_BACKLIGHT_USED vec3 backlight, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_roughness, vec3 vertex_normal, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 binormal, vec3 tangent, float anisotropy, #endif inout vec3 diffuse_light, inout vec3 specular_light) { vec3 light_rel_vec = spot_lights[idx].position - vertex; float light_length = length(light_rel_vec); float spot_attenuation = get_omni_spot_attenuation(light_length, spot_lights[idx].inv_radius, spot_lights[idx].attenuation); vec3 spot_dir = spot_lights[idx].direction; float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights[idx].cone_angle); float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights[idx].cone_angle)); spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].cone_attenuation); vec3 color = spot_lights[idx].color; float size_A = 0.0; if (spot_lights[idx].size > 0.0) { float t = spot_lights[idx].size / max(0.001, light_length); size_A = max(0.0, 1.0 - 1.0 / sqrt(1.0 + t * t)); } spot_attenuation *= shadow; light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, false, spot_attenuation, f0, roughness, metallic, spot_lights[idx].specular_amount, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_RIM_USED rim * spot_attenuation, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, vertex_normal, #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif diffuse_light, specular_light); } #endif // !defined(DISABLE_LIGHT_SPOT) || defined(ADDITIVE_SPOT) #endif // !defined(DISABLE_LIGHT_DIRECTIONAL) || !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT) vec4 fog_process(vec3 vertex) { vec3 fog_color = scene_data.fog_light_color; #ifdef USE_RADIANCE_MAP /* if (scene_data.fog_aerial_perspective > 0.0) { vec3 sky_fog_color = vec3(0.0); vec3 cube_view = scene_data.radiance_inverse_xform * vertex; // mip_level always reads from the second mipmap and higher so the fog is always slightly blurred float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near)); sky_fog_color = textureLod(radiance_map, cube_view, mip_level * RADIANCE_MAX_LOD).rgb; fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective); } */ #endif #ifndef DISABLE_LIGHT_DIRECTIONAL if (scene_data.fog_sun_scatter > 0.001) { vec4 sun_scatter = vec4(0.0); float sun_total = 0.0; vec3 view = normalize(vertex); for (uint i = uint(0); i < scene_data.directional_light_count; i++) { vec3 light_color = directional_lights[i].color * directional_lights[i].energy; float light_amount = pow(max(dot(view, directional_lights[i].direction), 0.0), 8.0); fog_color += light_color * light_amount * scene_data.fog_sun_scatter; } } #endif // !DISABLE_LIGHT_DIRECTIONAL float fog_amount = 1.0 - exp(min(0.0, -length(vertex) * scene_data.fog_density)); if (abs(scene_data.fog_height_density) >= 0.0001) { float y = (scene_data.inv_view_matrix * vec4(vertex, 1.0)).y; float y_dist = y - scene_data.fog_height; float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data.fog_height_density)); fog_amount = max(vfog_amount, fog_amount); } return vec4(fog_color, fog_amount); } #endif // !MODE_RENDER_DEPTH void main() { //lay out everything, whatever is unused is optimized away anyway vec3 vertex = vertex_interp; #ifdef USE_MULTIVIEW vec3 eye_offset = multiview_data.eye_offset[ViewIndex].xyz; vec3 view = -normalize(vertex_interp - eye_offset); mat4 projection_matrix = multiview_data.projection_matrix_view[ViewIndex]; mat4 inv_projection_matrix = multiview_data.inv_projection_matrix_view[ViewIndex]; #else vec3 eye_offset = vec3(0.0, 0.0, 0.0); vec3 view = -normalize(vertex_interp); mat4 projection_matrix = scene_data.projection_matrix; mat4 inv_projection_matrix = scene_data.inv_projection_matrix; #endif highp mat4 model_matrix = world_transform; vec3 albedo = vec3(1.0); vec3 backlight = vec3(0.0); vec4 transmittance_color = vec4(0.0, 0.0, 0.0, 1.0); float transmittance_depth = 0.0; float transmittance_boost = 0.0; float metallic = 0.0; float specular = 0.5; vec3 emission = vec3(0.0); float roughness = 1.0; float rim = 0.0; float rim_tint = 0.0; float clearcoat = 0.0; float clearcoat_roughness = 0.0; float anisotropy = 0.0; vec2 anisotropy_flow = vec2(1.0, 0.0); #ifndef FOG_DISABLED vec4 fog = vec4(0.0); #endif // !FOG_DISABLED #if defined(CUSTOM_RADIANCE_USED) vec4 custom_radiance = vec4(0.0); #endif #if defined(CUSTOM_IRRADIANCE_USED) vec4 custom_irradiance = vec4(0.0); #endif float ao = 1.0; float ao_light_affect = 0.0; float alpha = 1.0; #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) vec3 binormal = normalize(binormal_interp); vec3 tangent = normalize(tangent_interp); #else vec3 binormal = vec3(0.0); vec3 tangent = vec3(0.0); #endif #ifdef NORMAL_USED vec3 normal = normalize(normal_interp); #if defined(DO_SIDE_CHECK) if (!gl_FrontFacing) { normal = -normal; } #endif #endif //NORMAL_USED #ifdef UV_USED vec2 uv = uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) vec2 uv2 = uv2_interp; #endif #if defined(COLOR_USED) vec4 color = color_interp; #endif #if defined(NORMAL_MAP_USED) vec3 normal_map = vec3(0.5); #endif float normal_map_depth = 1.0; vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size; float sss_strength = 0.0; #ifdef ALPHA_SCISSOR_USED float alpha_scissor_threshold = 1.0; #endif // ALPHA_SCISSOR_USED #ifdef ALPHA_HASH_USED float alpha_hash_scale = 1.0; #endif // ALPHA_HASH_USED #ifdef ALPHA_ANTIALIASING_EDGE_USED float alpha_antialiasing_edge = 0.0; vec2 alpha_texture_coordinate = vec2(0.0, 0.0); #endif // ALPHA_ANTIALIASING_EDGE_USED { #CODE : FRAGMENT } #ifndef USE_SHADOW_TO_OPACITY #if defined(ALPHA_SCISSOR_USED) if (alpha < alpha_scissor_threshold) { discard; } #else #ifdef MODE_RENDER_DEPTH #ifdef USE_OPAQUE_PREPASS if (alpha < opaque_prepass_threshold) { discard; } #endif // USE_OPAQUE_PREPASS #endif // MODE_RENDER_DEPTH #endif // !ALPHA_SCISSOR_USED #endif // !USE_SHADOW_TO_OPACITY #ifdef NORMAL_MAP_USED normal_map.xy = normal_map.xy * 2.0 - 1.0; normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth)); #endif #ifdef LIGHT_ANISOTROPY_USED if (anisotropy > 0.01) { //rotation matrix mat3 rot = mat3(tangent, binormal, normal); //make local to space tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0)); binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0)); } #endif #ifndef MODE_RENDER_DEPTH #ifndef FOG_DISABLED #ifndef CUSTOM_FOG_USED #ifndef DISABLE_FOG // fog must be processed as early as possible and then packed. // to maximize VGPR usage if (scene_data.fog_enabled) { fog = fog_process(vertex); } #endif // !DISABLE_FOG #endif // !CUSTOM_FOG_USED uint fog_rg = packHalf2x16(fog.rg); uint fog_ba = packHalf2x16(fog.ba); #endif // !FOG_DISABLED // Convert colors to linear albedo = srgb_to_linear(albedo); emission = srgb_to_linear(emission); // TODO Backlight and transmittance when used #ifndef MODE_UNSHADED vec3 f0 = F0(metallic, specular, albedo); vec3 specular_light = vec3(0.0, 0.0, 0.0); vec3 diffuse_light = vec3(0.0, 0.0, 0.0); vec3 ambient_light = vec3(0.0, 0.0, 0.0); #ifdef BASE_PASS /////////////////////// LIGHTING ////////////////////////////// // IBL precalculations float ndotv = clamp(dot(normal, view), 0.0, 1.0); vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0); #ifdef USE_RADIANCE_MAP if (scene_data.use_reflection_cubemap) { #ifdef LIGHT_ANISOTROPY_USED // https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent; vec3 anisotropic_tangent = cross(anisotropic_direction, view); vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction); vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0))); vec3 ref_vec = reflect(-view, bent_normal); #else vec3 ref_vec = reflect(-view, normal); #endif ref_vec = mix(ref_vec, normal, roughness * roughness); float horizon = min(1.0 + dot(ref_vec, normal), 1.0); ref_vec = scene_data.radiance_inverse_xform * ref_vec; specular_light = textureLod(radiance_map, ref_vec, sqrt(roughness) * RADIANCE_MAX_LOD).rgb; specular_light = srgb_to_linear(specular_light); specular_light *= horizon * horizon; specular_light *= scene_data.ambient_light_color_energy.a; } #endif // Calculate Reflection probes #if defined(CUSTOM_RADIANCE_USED) specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a); #endif // CUSTOM_RADIANCE_USED #ifndef USE_LIGHTMAP //lightmap overrides everything if (scene_data.use_ambient_light) { ambient_light = scene_data.ambient_light_color_energy.rgb; #ifdef USE_RADIANCE_MAP if (scene_data.use_ambient_cubemap) { vec3 ambient_dir = scene_data.radiance_inverse_xform * normal; vec3 cubemap_ambient = textureLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).rgb; cubemap_ambient = srgb_to_linear(cubemap_ambient); ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix); } #endif } #endif // USE_LIGHTMAP #if defined(CUSTOM_IRRADIANCE_USED) ambient_light = mix(ambient_light, custom_irradiance.rgb, custom_irradiance.a); #endif // CUSTOM_IRRADIANCE_USED #ifndef DISABLE_LIGHTMAP #ifdef USE_LIGHTMAP_CAPTURE { vec3 wnormal = mat3(scene_data.inv_view_matrix) * normal; const float c1 = 0.429043; const float c2 = 0.511664; const float c3 = 0.743125; const float c4 = 0.886227; const float c5 = 0.247708; ambient_light += (c1 * lightmap_captures[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) + c3 * lightmap_captures[6].rgb * wnormal.z * wnormal.z + c4 * lightmap_captures[0].rgb - c5 * lightmap_captures[6].rgb + 2.0 * c1 * lightmap_captures[4].rgb * wnormal.x * wnormal.y + 2.0 * c1 * lightmap_captures[7].rgb * wnormal.x * wnormal.z + 2.0 * c1 * lightmap_captures[5].rgb * wnormal.y * wnormal.z + 2.0 * c2 * lightmap_captures[3].rgb * wnormal.x + 2.0 * c2 * lightmap_captures[1].rgb * wnormal.y + 2.0 * c2 * lightmap_captures[2].rgb * wnormal.z) * scene_data.emissive_exposure_normalization; } #else #ifdef USE_LIGHTMAP { vec3 uvw; uvw.xy = uv2 * lightmap_uv_scale.zw + lightmap_uv_scale.xy; uvw.z = float(lightmap_slice); #ifdef USE_SH_LIGHTMAP uvw.z *= 4.0; // SH textures use 4 times more data. vec3 lm_light_l0 = textureLod(lightmap_textures, uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb; vec3 lm_light_l1n1 = textureLod(lightmap_textures, uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb; vec3 lm_light_l1_0 = textureLod(lightmap_textures, uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb; vec3 lm_light_l1p1 = textureLod(lightmap_textures, uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb; vec3 n = normalize(lightmap_normal_xform * normal); ambient_light += lm_light_l0 * 0.282095f; ambient_light += lm_light_l1n1 * 0.32573 * n.y * lightmap_exposure_normalization; ambient_light += lm_light_l1_0 * 0.32573 * n.z * lightmap_exposure_normalization; ambient_light += lm_light_l1p1 * 0.32573 * n.x * lightmap_exposure_normalization; if (metallic > 0.01) { // Since the more direct bounced light is lost, we can kind of fake it with this trick. vec3 r = reflect(normalize(-vertex), normal); specular_light += lm_light_l1n1 * 0.32573 * r.y * lightmap_exposure_normalization; specular_light += lm_light_l1_0 * 0.32573 * r.z * lightmap_exposure_normalization; specular_light += lm_light_l1p1 * 0.32573 * r.x * lightmap_exposure_normalization; } #else ambient_light += textureLod(lightmap_textures, uvw, 0.0).rgb * lightmap_exposure_normalization; #endif } #endif // USE_LIGHTMAP #endif // USE_LIGHTMAP_CAPTURE #endif // !DISABLE_LIGHTMAP { #if defined(AMBIENT_LIGHT_DISABLED) ambient_light = vec3(0.0, 0.0, 0.0); #else ambient_light *= albedo.rgb; ambient_light *= ao; #endif // AMBIENT_LIGHT_DISABLED } // convert ao to direct light ao ao = mix(1.0, ao, ao_light_affect); { #if defined(DIFFUSE_TOON) //simplify for toon, as specular_light *= specular * metallic * albedo * 2.0; #else // scales the specular reflections, needs to be be computed before lighting happens, // but after environment, GI, and reflection probes are added // Environment brdf approximation (Lazarov 2013) // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); vec4 r = roughness * c0 + c1; float ndotv = clamp(dot(normal, view), 0.0, 1.0); float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; vec2 env = vec2(-1.04, 1.04) * a004 + r.zw; specular_light *= env.x * f0 + env.y * clamp(50.0 * f0.g, metallic, 1.0); #endif } #ifndef DISABLE_LIGHT_DIRECTIONAL for (uint i = uint(0); i < scene_data.directional_light_count; i++) { #if defined(USE_LIGHTMAP) && !defined(DISABLE_LIGHTMAP) if (directional_lights[i].bake_mode == LIGHT_BAKE_STATIC) { continue; } #endif light_compute(normal, normalize(directional_lights[i].direction), normalize(view), directional_lights[i].size, directional_lights[i].color * directional_lights[i].energy, true, 1.0, f0, roughness, metallic, 1.0, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, normalize(normal_interp), #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif diffuse_light, specular_light); } #endif // !DISABLE_LIGHT_DIRECTIONAL #ifndef DISABLE_LIGHT_OMNI for (uint i = 0u; i < MAX_FORWARD_LIGHTS; i++) { if (i >= omni_light_count) { break; } #if defined(USE_LIGHTMAP) && !defined(DISABLE_LIGHTMAP) if (omni_lights[omni_light_indices[i]].bake_mode == LIGHT_BAKE_STATIC) { continue; } #endif light_process_omni(omni_light_indices[i], vertex, view, normal, f0, roughness, metallic, 1.0, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, normalize(normal_interp), #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif diffuse_light, specular_light); } #endif // !DISABLE_LIGHT_OMNI #ifndef DISABLE_LIGHT_SPOT for (uint i = 0u; i < MAX_FORWARD_LIGHTS; i++) { if (i >= spot_light_count) { break; } #if defined(USE_LIGHTMAP) && !defined(DISABLE_LIGHTMAP) if (spot_lights[spot_light_indices[i]].bake_mode == LIGHT_BAKE_STATIC) { continue; } #endif light_process_spot(spot_light_indices[i], vertex, view, normal, f0, roughness, metallic, 1.0, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, normalize(normal_interp), #endif #ifdef LIGHT_ANISOTROPY_USED tangent, binormal, anisotropy, #endif diffuse_light, specular_light); } #endif // !DISABLE_LIGHT_SPOT #endif // BASE_PASS #endif // !MODE_UNSHADED #endif // !MODE_RENDER_DEPTH #if defined(USE_SHADOW_TO_OPACITY) alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0)); #if defined(ALPHA_SCISSOR_USED) if (alpha < alpha_scissor) { discard; } #else #ifdef MODE_RENDER_DEPTH #ifdef USE_OPAQUE_PREPASS if (alpha < opaque_prepass_threshold) { discard; } #endif // USE_OPAQUE_PREPASS #endif // MODE_RENDER_DEPTH #endif // !ALPHA_SCISSOR_USED #endif // USE_SHADOW_TO_OPACITY #ifdef MODE_RENDER_DEPTH #ifdef RENDER_SHADOWS_LINEAR // Linearize the depth buffer if rendering cubemap shadows. gl_FragDepth = (length(vertex) + scene_data.shadow_bias) / scene_data.z_far; #endif // Nothing happens, so a tree-ssa optimizer will result in no fragment shader :) #else // !MODE_RENDER_DEPTH #ifdef RENDER_MATERIAL albedo_output_buffer.rgb = albedo; albedo_output_buffer.a = alpha; normal_output_buffer.rgb = normal * 0.5 + 0.5; normal_output_buffer.a = 0.0; orm_output_buffer.r = ao; orm_output_buffer.g = roughness; orm_output_buffer.b = metallic; orm_output_buffer.a = 1.0; emission_output_buffer.rgb = emission; emission_output_buffer.a = 0.0; #else // !RENDER_MATERIAL #ifdef BASE_PASS #ifdef MODE_UNSHADED frag_color = vec4(albedo, alpha); #else diffuse_light *= albedo; diffuse_light *= 1.0 - metallic; ambient_light *= 1.0 - metallic; frag_color = vec4(diffuse_light + specular_light, alpha); frag_color.rgb += emission + ambient_light; #endif //!MODE_UNSHADED #ifndef FOG_DISABLED fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba)); #ifndef DISABLE_FOG if (scene_data.fog_enabled) { frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a); } #endif // !DISABLE_FOG #endif // !FOG_DISABLED // Tonemap before writing as we are writing to an sRGB framebuffer frag_color.rgb *= exposure; frag_color.rgb = apply_tonemapping(frag_color.rgb, white); frag_color.rgb = linear_to_srgb(frag_color.rgb); #ifdef USE_BCS frag_color.rgb = apply_bcs(frag_color.rgb, bcs); #endif #ifdef USE_COLOR_CORRECTION frag_color.rgb = apply_color_correction(frag_color.rgb, color_correction); #endif #else // !BASE_PASS frag_color = vec4(0.0, 0.0, 0.0, alpha); #endif // !BASE_PASS /* ADDITIVE LIGHTING PASS */ #ifdef USE_ADDITIVE_LIGHTING diffuse_light = vec3(0.0); specular_light = vec3(0.0); #if !defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT) #ifndef SHADOWS_DISABLED // Orthogonal shadows #if !defined(LIGHT_USE_PSSM2) && !defined(LIGHT_USE_PSSM4) float directional_shadow = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord); #endif // !defined(LIGHT_USE_PSSM2) && !defined(LIGHT_USE_PSSM4) // PSSM2 shadows #ifdef LIGHT_USE_PSSM2 float depth_z = -vertex.z; vec4 light_split_offsets = directional_shadows[directional_shadow_index].shadow_split_offsets; //take advantage of prefetch float shadow1 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord); float shadow2 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord2); float directional_shadow = 1.0; if (depth_z < light_split_offsets.y) { #ifdef LIGHT_USE_PSSM_BLEND float directional_shadow2 = 1.0; float pssm_blend = 0.0; bool use_blend = true; #endif if (depth_z < light_split_offsets.x) { directional_shadow = shadow1; #ifdef LIGHT_USE_PSSM_BLEND directional_shadow2 = shadow2; pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); #endif } else { directional_shadow = shadow2; #ifdef LIGHT_USE_PSSM_BLEND use_blend = false; #endif } #ifdef LIGHT_USE_PSSM_BLEND if (use_blend) { directional_shadow = mix(directional_shadow, directional_shadow2, pssm_blend); } #endif } #endif //LIGHT_USE_PSSM2 // PSSM4 shadows #ifdef LIGHT_USE_PSSM4 float depth_z = -vertex.z; vec4 light_split_offsets = directional_shadows[directional_shadow_index].shadow_split_offsets; float shadow1 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord); float shadow2 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord2); float shadow3 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord3); float shadow4 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord4); float directional_shadow = 1.0; if (depth_z < light_split_offsets.w) { #ifdef LIGHT_USE_PSSM_BLEND float directional_shadow2 = 1.0; float pssm_blend = 0.0; bool use_blend = true; #endif if (depth_z < light_split_offsets.y) { if (depth_z < light_split_offsets.x) { directional_shadow = shadow1; #ifdef LIGHT_USE_PSSM_BLEND directional_shadow2 = shadow2; pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); #endif } else { directional_shadow = shadow2; #ifdef LIGHT_USE_PSSM_BLEND directional_shadow2 = shadow3; pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); #endif } } else { if (depth_z < light_split_offsets.z) { directional_shadow = shadow3; #if defined(LIGHT_USE_PSSM_BLEND) directional_shadow2 = shadow4; pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z); #endif } else { directional_shadow = shadow4; #if defined(LIGHT_USE_PSSM_BLEND) use_blend = false; #endif } } #if defined(LIGHT_USE_PSSM_BLEND) if (use_blend) { directional_shadow = mix(directional_shadow, directional_shadow2, pssm_blend); } #endif } #endif //LIGHT_USE_PSSM4 directional_shadow = mix(directional_shadow, 1.0, smoothstep(directional_shadows[directional_shadow_index].fade_from, directional_shadows[directional_shadow_index].fade_to, vertex.z)); directional_shadow = mix(1.0, directional_shadow, directional_lights[directional_shadow_index].shadow_opacity); #else float directional_shadow = 1.0f; #endif // SHADOWS_DISABLED light_compute(normal, normalize(directional_lights[directional_shadow_index].direction), normalize(view), directional_lights[directional_shadow_index].size, directional_lights[directional_shadow_index].color * directional_lights[directional_shadow_index].energy, true, directional_shadow, f0, roughness, metallic, 1.0, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, normalize(normal_interp), #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif diffuse_light, specular_light); #endif // !defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT) #ifdef ADDITIVE_OMNI float omni_shadow = 1.0f; #ifndef SHADOWS_DISABLED vec3 light_ray = ((positional_shadows[positional_shadow_index].shadow_matrix * vec4(shadow_coord.xyz, 1.0))).xyz; omni_shadow = texture(omni_shadow_texture, vec4(light_ray, length(light_ray) * omni_lights[omni_light_index].inv_radius)); omni_shadow = mix(1.0, omni_shadow, omni_lights[omni_light_index].shadow_opacity); #endif // SHADOWS_DISABLED light_process_omni(omni_light_index, vertex, view, normal, f0, roughness, metallic, omni_shadow, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, normalize(normal_interp), #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif diffuse_light, specular_light); #endif // ADDITIVE_OMNI #ifdef ADDITIVE_SPOT float spot_shadow = 1.0f; #ifndef SHADOWS_DISABLED spot_shadow = sample_shadow(spot_shadow_texture, positional_shadows[positional_shadow_index].shadow_atlas_pixel_size, shadow_coord); spot_shadow = mix(1.0, spot_shadow, spot_lights[spot_light_index].shadow_opacity); #endif // SHADOWS_DISABLED light_process_spot(spot_light_index, vertex, view, normal, f0, roughness, metallic, spot_shadow, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, normalize(normal_interp), #endif #ifdef LIGHT_ANISOTROPY_USED tangent, binormal, anisotropy, #endif diffuse_light, specular_light); #endif // ADDITIVE_SPOT diffuse_light *= albedo; diffuse_light *= 1.0 - metallic; vec3 additive_light_color = diffuse_light + specular_light; #ifndef FOG_DISABLED fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba)); #ifndef DISABLE_FOG if (scene_data.fog_enabled) { additive_light_color *= (1.0 - fog.a); } #endif // !DISABLE_FOG #endif // !FOG_DISABLED // Tonemap before writing as we are writing to an sRGB framebuffer additive_light_color *= exposure; additive_light_color = apply_tonemapping(additive_light_color, white); additive_light_color = linear_to_srgb(additive_light_color); #ifdef USE_BCS additive_light_color = apply_bcs(additive_light_color, bcs); #endif #ifdef USE_COLOR_CORRECTION additive_light_color = apply_color_correction(additive_light_color, color_correction); #endif frag_color.rgb += additive_light_color; #endif // USE_ADDITIVE_LIGHTING #endif // !RENDER_MATERIAL #endif //!MODE_RENDER_DEPTH }