/* * Copyright © 2017 Google, Inc. * Copyright © 2019 Facebook, Inc. * * This is part of HarfBuzz, a text shaping library. * * Permission is hereby granted, without written agreement and without * license or royalty fees, to use, copy, modify, and distribute this * software and its documentation for any purpose, provided that the * above copyright notice and the following two paragraphs appear in * all copies of this software. * * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. * * Google Author(s): Behdad Esfahbod * Facebook Author(s): Behdad Esfahbod */ #ifndef HB_ALGS_HH #define HB_ALGS_HH #include "hb.hh" #include "hb-meta.hh" #include "hb-null.hh" #include "hb-number.hh" #include #include #include #include /* * Flags */ /* Enable bitwise ops on enums marked as flags_t */ /* To my surprise, looks like the function resolver is happy to silently cast * one enum to another... So this doesn't provide the type-checking that I * originally had in mind... :(. * * For MSVC warnings, see: https://github.com/harfbuzz/harfbuzz/pull/163 */ #ifdef _MSC_VER # pragma warning(disable:4200) # pragma warning(disable:4800) #endif #define HB_MARK_AS_FLAG_T(T) \ extern "C++" { \ static inline constexpr T operator | (T l, T r) { return T ((unsigned) l | (unsigned) r); } \ static inline constexpr T operator & (T l, T r) { return T ((unsigned) l & (unsigned) r); } \ static inline constexpr T operator ^ (T l, T r) { return T ((unsigned) l ^ (unsigned) r); } \ static inline constexpr unsigned operator ~ (T r) { return (~(unsigned) r); } \ static inline T& operator |= (T &l, T r) { l = l | r; return l; } \ static inline T& operator &= (T& l, T r) { l = l & r; return l; } \ static inline T& operator ^= (T& l, T r) { l = l ^ r; return l; } \ } \ static_assert (true, "") /* Useful for set-operations on small enums. * For example, for testing "x ∈ {x1, x2, x3}" use: * (FLAG_UNSAFE(x) & (FLAG(x1) | FLAG(x2) | FLAG(x3))) */ #define FLAG(x) (static_assert_expr ((unsigned)(x) < 32) + (((uint32_t) 1U) << (unsigned)(x))) #define FLAG_UNSAFE(x) ((unsigned)(x) < 32 ? (((uint32_t) 1U) << (unsigned)(x)) : 0) #define FLAG_RANGE(x,y) (static_assert_expr ((x) < (y)) + FLAG(y+1) - FLAG(x)) #define FLAG64(x) (static_assert_expr ((unsigned)(x) < 64) + (((uint64_t) 1ULL) << (unsigned)(x))) #define FLAG64_UNSAFE(x) ((unsigned)(x) < 64 ? (((uint64_t) 1ULL) << (unsigned)(x)) : 0) /* * Big-endian integers. */ /* Endian swap, used in Windows related backends */ static inline constexpr uint16_t hb_uint16_swap (uint16_t v) { return (v >> 8) | (v << 8); } static inline constexpr uint32_t hb_uint32_swap (uint32_t v) { return (hb_uint16_swap (v) << 16) | hb_uint16_swap (v >> 16); } #ifndef HB_FAST_INT_ACCESS #if defined(__OPTIMIZE__) && \ defined(__BYTE_ORDER) && \ (__BYTE_ORDER == __BIG_ENDIAN || \ (__BYTE_ORDER == __LITTLE_ENDIAN && \ hb_has_builtin(__builtin_bswap16) && \ hb_has_builtin(__builtin_bswap32))) #define HB_FAST_INT_ACCESS 1 #else #define HB_FAST_INT_ACCESS 0 #endif #endif template struct BEInt; template struct BEInt { public: BEInt () = default; constexpr BEInt (Type V) : v {uint8_t (V)} {} constexpr operator Type () const { return v; } private: uint8_t v; }; template struct BEInt { struct __attribute__((packed)) packed_uint16_t { uint16_t v; }; public: BEInt () = default; BEInt (Type V) #if HB_FAST_INT_ACCESS #if __BYTE_ORDER == __LITTLE_ENDIAN { ((packed_uint16_t *) v)->v = __builtin_bswap16 (V); } #else /* __BYTE_ORDER == __BIG_ENDIAN */ { ((packed_uint16_t *) v)->v = V; } #endif #else : v {uint8_t ((V >> 8) & 0xFF), uint8_t ((V ) & 0xFF)} {} #endif constexpr operator Type () const { #if HB_FAST_INT_ACCESS #if __BYTE_ORDER == __LITTLE_ENDIAN return __builtin_bswap16 (((packed_uint16_t *) v)->v); #else /* __BYTE_ORDER == __BIG_ENDIAN */ return ((packed_uint16_t *) v)->v; #endif #else return (v[0] << 8) + (v[1] ); #endif } private: uint8_t v[2]; }; template struct BEInt { static_assert (!std::is_signed::value, ""); public: BEInt () = default; constexpr BEInt (Type V) : v {uint8_t ((V >> 16) & 0xFF), uint8_t ((V >> 8) & 0xFF), uint8_t ((V ) & 0xFF)} {} constexpr operator Type () const { return (v[0] << 16) + (v[1] << 8) + (v[2] ); } private: uint8_t v[3]; }; template struct BEInt { struct __attribute__((packed)) packed_uint32_t { uint32_t v; }; public: BEInt () = default; BEInt (Type V) #if HB_FAST_INT_ACCESS #if __BYTE_ORDER == __LITTLE_ENDIAN { ((packed_uint32_t *) v)->v = __builtin_bswap32 (V); } #else /* __BYTE_ORDER == __BIG_ENDIAN */ { ((packed_uint32_t *) v)->v = V; } #endif #else : v {uint8_t ((V >> 24) & 0xFF), uint8_t ((V >> 16) & 0xFF), uint8_t ((V >> 8) & 0xFF), uint8_t ((V ) & 0xFF)} {} #endif constexpr operator Type () const { #if HB_FAST_INT_ACCESS #if __BYTE_ORDER == __LITTLE_ENDIAN return __builtin_bswap32 (((packed_uint32_t *) v)->v); #else /* __BYTE_ORDER == __BIG_ENDIAN */ return ((packed_uint32_t *) v)->v; #endif #else return (v[0] << 24) + (v[1] << 16) + (v[2] << 8) + (v[3] ); #endif } private: uint8_t v[4]; }; /* Floats. */ /* We want our rounding towards +infinity. */ static inline float _hb_roundf (float x) { return floorf (x + .5f); } #define roundf(x) _hb_roundf(x) /* Encodes three unsigned integers in one 64-bit number. If the inputs have more than 21 bits, * values will be truncated / overlap, and might not decode exactly. */ #define HB_CODEPOINT_ENCODE3(x,y,z) (((uint64_t) (x) << 42) | ((uint64_t) (y) << 21) | (uint64_t) (z)) #define HB_CODEPOINT_DECODE3_1(v) ((hb_codepoint_t) ((v) >> 42)) #define HB_CODEPOINT_DECODE3_2(v) ((hb_codepoint_t) ((v) >> 21) & 0x1FFFFFu) #define HB_CODEPOINT_DECODE3_3(v) ((hb_codepoint_t) (v) & 0x1FFFFFu) /* Custom encoding used by hb-ucd. */ #define HB_CODEPOINT_ENCODE3_11_7_14(x,y,z) (((uint32_t) ((x) & 0x07FFu) << 21) | (((uint32_t) (y) & 0x007Fu) << 14) | (uint32_t) ((z) & 0x3FFFu)) #define HB_CODEPOINT_DECODE3_11_7_14_1(v) ((hb_codepoint_t) ((v) >> 21)) #define HB_CODEPOINT_DECODE3_11_7_14_2(v) ((hb_codepoint_t) (((v) >> 14) & 0x007Fu) | 0x0300) #define HB_CODEPOINT_DECODE3_11_7_14_3(v) ((hb_codepoint_t) (v) & 0x3FFFu) struct { /* Note. This is dangerous in that if it's passed an rvalue, it returns rvalue-reference. */ template constexpr auto operator () (T&& v) const HB_AUTO_RETURN ( std::forward (v) ) } HB_FUNCOBJ (hb_identity); struct { /* Like identity(), but only retains lvalue-references. Rvalues are returned as rvalues. */ template constexpr T& operator () (T& v) const { return v; } template constexpr hb_remove_reference operator () (T&& v) const { return v; } } HB_FUNCOBJ (hb_lidentity); struct { /* Like identity(), but always returns rvalue. */ template constexpr hb_remove_reference operator () (T&& v) const { return v; } } HB_FUNCOBJ (hb_ridentity); struct { template constexpr bool operator () (T&& v) const { return bool (std::forward (v)); } } HB_FUNCOBJ (hb_bool); /* The MIT License Copyright (C) 2012 Zilong Tan (eric.zltan@gmail.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Compression function for Merkle-Damgard construction. // This function is generated using the framework provided. #define mix(h) ( \ (void) ((h) ^= (h) >> 23), \ (void) ((h) *= 0x2127599bf4325c37ULL), \ (h) ^= (h) >> 47) static inline uint64_t fasthash64(const void *buf, size_t len, uint64_t seed) { struct __attribute__((packed)) packed_uint64_t { uint64_t v; }; const uint64_t m = 0x880355f21e6d1965ULL; const packed_uint64_t *pos = (const packed_uint64_t *)buf; const packed_uint64_t *end = pos + (len / 8); const unsigned char *pos2; uint64_t h = seed ^ (len * m); uint64_t v; #ifndef HB_OPTIMIZE_SIZE if (((uintptr_t) pos & 7) == 0) { while (pos != end) { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-align" v = * (const uint64_t *) (pos++); #pragma GCC diagnostic pop h ^= mix(v); h *= m; } } else #endif { while (pos != end) { v = pos++->v; h ^= mix(v); h *= m; } } pos2 = (const unsigned char*)pos; v = 0; switch (len & 7) { case 7: v ^= (uint64_t)pos2[6] << 48; HB_FALLTHROUGH; case 6: v ^= (uint64_t)pos2[5] << 40; HB_FALLTHROUGH; case 5: v ^= (uint64_t)pos2[4] << 32; HB_FALLTHROUGH; case 4: v ^= (uint64_t)pos2[3] << 24; HB_FALLTHROUGH; case 3: v ^= (uint64_t)pos2[2] << 16; HB_FALLTHROUGH; case 2: v ^= (uint64_t)pos2[1] << 8; HB_FALLTHROUGH; case 1: v ^= (uint64_t)pos2[0]; h ^= mix(v); h *= m; } return mix(h); } static inline uint32_t fasthash32(const void *buf, size_t len, uint32_t seed) { // the following trick converts the 64-bit hashcode to Fermat // residue, which shall retain information from both the higher // and lower parts of hashcode. uint64_t h = fasthash64(buf, len, seed); return h - (h >> 32); } struct { private: template constexpr auto impl (const T& v, hb_priority<2>) const HB_RETURN (uint32_t, hb_deref (v).hash ()) // Horrible: std:hash() of integers seems to be identity in gcc / clang?! // https://github.com/harfbuzz/harfbuzz/pull/4228 // // For performance characteristics see: // https://github.com/harfbuzz/harfbuzz/pull/4228#issuecomment-1565079537 template ::value && sizeof (T) <= sizeof (uint32_t))> constexpr auto impl (const T& v, hb_priority<1>) const HB_RETURN (uint32_t, (uint32_t) v * 2654435761u /* Knuh's multiplicative hash */) template ::value && sizeof (T) > sizeof (uint32_t))> constexpr auto impl (const T& v, hb_priority<1>) const HB_RETURN (uint32_t, (uint32_t) (v ^ (v >> 32)) * 2654435761u /* Knuth's multiplicative hash */) template constexpr auto impl (const T& v, hb_priority<0>) const HB_RETURN (uint32_t, std::hash>{} (hb_deref (v))) public: template constexpr auto operator () (const T& v) const HB_RETURN (uint32_t, impl (v, hb_prioritize)) } HB_FUNCOBJ (hb_hash); struct { private: /* Pointer-to-member-function. */ template auto impl (Appl&& a, hb_priority<2>, T &&v, Ts&&... ds) const HB_AUTO_RETURN ((hb_deref (std::forward (v)).*std::forward (a)) (std::forward (ds)...)) /* Pointer-to-member. */ template auto impl (Appl&& a, hb_priority<1>, T &&v) const HB_AUTO_RETURN ((hb_deref (std::forward (v))).*std::forward (a)) /* Operator(). */ template auto impl (Appl&& a, hb_priority<0>, Ts&&... ds) const HB_AUTO_RETURN (hb_deref (std::forward (a)) (std::forward (ds)...)) public: template auto operator () (Appl&& a, Ts&&... ds) const HB_AUTO_RETURN ( impl (std::forward (a), hb_prioritize, std::forward (ds)...) ) } HB_FUNCOBJ (hb_invoke); template struct hb_partial_t { hb_partial_t (Appl a, V v) : a (a), v (v) {} static_assert (Pos > 0, ""); template auto operator () (Ts&& ...ds) -> decltype (hb_invoke (hb_declval (Appl), hb_declval (V), hb_declval (Ts)...)) { return hb_invoke (std::forward (a), std::forward (v), std::forward (ds)...); } template auto operator () (T0&& d0, Ts&& ...ds) -> decltype (hb_invoke (hb_declval (Appl), hb_declval (T0), hb_declval (V), hb_declval (Ts)...)) { return hb_invoke (std::forward (a), std::forward (d0), std::forward (v), std::forward (ds)...); } private: hb_reference_wrapper a; V v; }; template auto hb_partial (Appl&& a, V&& v) HB_AUTO_RETURN (( hb_partial_t (a, v) )) /* The following, HB_PARTIALIZE, macro uses a particular corner-case * of C++11 that is not particularly well-supported by all compilers. * What's happening is that it's using "this" in a trailing return-type * via decltype(). Broken compilers deduce the type of "this" pointer * in that context differently from what it resolves to in the body * of the function. * * One probable cause of this is that at the time of trailing return * type declaration, "this" points to an incomplete type, whereas in * the function body the type is complete. That doesn't justify the * error in any way, but is probably what's happening. * * In the case of MSVC, we get around this by using C++14 "decltype(auto)" * which deduces the type from the actual return statement. For gcc 4.8 * we use "+this" instead of "this" which produces an rvalue that seems * to be deduced as the same type with this particular compiler, and seem * to be fine as default code path as well. */ #ifdef _MSC_VER /* https://github.com/harfbuzz/harfbuzz/issues/1730 */ \ #define HB_PARTIALIZE(Pos) \ template \ decltype(auto) operator () (_T&& _v) const \ { return hb_partial (this, std::forward<_T> (_v)); } \ static_assert (true, "") #else /* https://github.com/harfbuzz/harfbuzz/issues/1724 */ #define HB_PARTIALIZE(Pos) \ template \ auto operator () (_T&& _v) const HB_AUTO_RETURN \ (hb_partial (+this, std::forward<_T> (_v))) \ static_assert (true, "") #endif struct { private: template auto impl (Pred&& p, Val &&v, hb_priority<1>) const HB_AUTO_RETURN ( hb_deref (std::forward (p)).has (std::forward (v)) ) template auto impl (Pred&& p, Val &&v, hb_priority<0>) const HB_AUTO_RETURN ( hb_invoke (std::forward (p), std::forward (v)) ) public: template auto operator () (Pred&& p, Val &&v) const HB_RETURN (bool, impl (std::forward (p), std::forward (v), hb_prioritize) ) } HB_FUNCOBJ (hb_has); struct { private: template auto impl (Pred&& p, Val &&v, hb_priority<1>) const HB_AUTO_RETURN ( hb_has (std::forward (p), std::forward (v)) ) template auto impl (Pred&& p, Val &&v, hb_priority<0>) const HB_AUTO_RETURN ( std::forward (p) == std::forward (v) ) public: template auto operator () (Pred&& p, Val &&v) const HB_RETURN (bool, impl (std::forward (p), std::forward (v), hb_prioritize) ) } HB_FUNCOBJ (hb_match); struct { private: template auto impl (Proj&& f, Val &&v, hb_priority<2>) const HB_AUTO_RETURN ( hb_deref (std::forward (f)).get (std::forward (v)) ) template auto impl (Proj&& f, Val &&v, hb_priority<1>) const HB_AUTO_RETURN ( hb_invoke (std::forward (f), std::forward (v)) ) template auto impl (Proj&& f, Val &&v, hb_priority<0>) const HB_AUTO_RETURN ( std::forward (f)[std::forward (v)] ) public: template auto operator () (Proj&& f, Val &&v) const HB_AUTO_RETURN ( impl (std::forward (f), std::forward (v), hb_prioritize) ) } HB_FUNCOBJ (hb_get); struct { private: template auto impl (T1&& v1, T2 &&v2, hb_priority<3>) const HB_AUTO_RETURN ( std::forward (v2).cmp (std::forward (v1)) == 0 ) template auto impl (T1&& v1, T2 &&v2, hb_priority<2>) const HB_AUTO_RETURN ( std::forward (v1).cmp (std::forward (v2)) == 0 ) template auto impl (T1&& v1, T2 &&v2, hb_priority<1>) const HB_AUTO_RETURN ( std::forward (v1) == std::forward (v2) ) template auto impl (T1&& v1, T2 &&v2, hb_priority<0>) const HB_AUTO_RETURN ( std::forward (v2) == std::forward (v1) ) public: template auto operator () (T1&& v1, T2 &&v2) const HB_AUTO_RETURN ( impl (std::forward (v1), std::forward (v2), hb_prioritize) ) } HB_FUNCOBJ (hb_equal); struct { template void operator () (T& a, T& b) const { using std::swap; // allow ADL swap (a, b); } } HB_FUNCOBJ (hb_swap); template struct hb_pair_t { typedef T1 first_t; typedef T2 second_t; typedef hb_pair_t pair_t; template ::value && std::is_default_constructible::value)> hb_pair_t () : first (), second () {} hb_pair_t (T1 a, T2 b) : first (std::forward (a)), second (std::forward (b)) {} template operator hb_pair_t () { return hb_pair_t (first, second); } hb_pair_t reverse () const { return hb_pair_t (second, first); } bool operator == (const pair_t& o) const { return first == o.first && second == o.second; } bool operator != (const pair_t& o) const { return !(*this == o); } bool operator < (const pair_t& o) const { return first < o.first || (first == o.first && second < o.second); } bool operator >= (const pair_t& o) const { return !(*this < o); } bool operator > (const pair_t& o) const { return first > o.first || (first == o.first && second > o.second); } bool operator <= (const pair_t& o) const { return !(*this > o); } static int cmp (const void *pa, const void *pb) { pair_t *a = (pair_t *) pa; pair_t *b = (pair_t *) pb; if (a->first < b->first) return -1; if (a->first > b->first) return +1; if (a->second < b->second) return -1; if (a->second > b->second) return +1; return 0; } friend void swap (hb_pair_t& a, hb_pair_t& b) { hb_swap (a.first, b.first); hb_swap (a.second, b.second); } T1 first; T2 second; }; template static inline hb_pair_t hb_pair (T1&& a, T2&& b) { return hb_pair_t (a, b); } typedef hb_pair_t hb_codepoint_pair_t; struct { template constexpr typename Pair::first_t operator () (const Pair& pair) const { return pair.first; } } HB_FUNCOBJ (hb_first); struct { template constexpr typename Pair::second_t operator () (const Pair& pair) const { return pair.second; } } HB_FUNCOBJ (hb_second); /* Note. In min/max impl, we can use hb_type_identity for second argument. * However, that would silently convert between different-signedness integers. * Instead we accept two different types, such that compiler can err if * comparing integers of different signedness. */ struct { template constexpr auto operator () (T&& a, T2&& b) const HB_AUTO_RETURN (a <= b ? a : b) } HB_FUNCOBJ (hb_min); struct { template constexpr auto operator () (T&& a, T2&& b) const HB_AUTO_RETURN (a >= b ? a : b) } HB_FUNCOBJ (hb_max); struct { template constexpr auto operator () (T&& x, T2&& min, T3&& max) const HB_AUTO_RETURN (hb_min (hb_max (std::forward (x), std::forward (min)), std::forward (max))) } HB_FUNCOBJ (hb_clamp); /* * Bithacks. */ /* Return the number of 1 bits in v. */ template static inline unsigned int hb_popcount (T v) { #if hb_has_builtin(__builtin_popcount) if (sizeof (T) <= sizeof (unsigned int)) return __builtin_popcount (v); #endif #if hb_has_builtin(__builtin_popcountl) if (sizeof (T) <= sizeof (unsigned long)) return __builtin_popcountl (v); #endif #if hb_has_builtin(__builtin_popcountll) if (sizeof (T) <= sizeof (unsigned long long)) return __builtin_popcountll (v); #endif if (sizeof (T) <= 4) { /* "HACKMEM 169" */ uint32_t y; y = (v >> 1) &033333333333; y = v - y - ((y >>1) & 033333333333); return (((y + (y >> 3)) & 030707070707) % 077); } if (sizeof (T) == 8) { uint64_t y = (uint64_t) v; y -= ((y >> 1) & 0x5555555555555555ull); y = (y & 0x3333333333333333ull) + (y >> 2 & 0x3333333333333333ull); return ((y + (y >> 4)) & 0xf0f0f0f0f0f0f0full) * 0x101010101010101ull >> 56; } if (sizeof (T) == 16) { unsigned int shift = 64; return hb_popcount ((uint64_t) v) + hb_popcount ((uint64_t) (v >> shift)); } assert (0); return 0; /* Shut up stupid compiler. */ } /* Returns the number of bits needed to store number */ template static inline unsigned int hb_bit_storage (T v) { if (unlikely (!v)) return 0; #if hb_has_builtin(__builtin_clz) if (sizeof (T) <= sizeof (unsigned int)) return sizeof (unsigned int) * 8 - __builtin_clz (v); #endif #if hb_has_builtin(__builtin_clzl) if (sizeof (T) <= sizeof (unsigned long)) return sizeof (unsigned long) * 8 - __builtin_clzl (v); #endif #if hb_has_builtin(__builtin_clzll) if (sizeof (T) <= sizeof (unsigned long long)) return sizeof (unsigned long long) * 8 - __builtin_clzll (v); #endif #if (defined(_MSC_VER) && _MSC_VER >= 1500) || (defined(__MINGW32__) && (__GNUC__ < 4)) if (sizeof (T) <= sizeof (unsigned int)) { unsigned long where; _BitScanReverse (&where, v); return 1 + where; } # if defined(_WIN64) if (sizeof (T) <= 8) { unsigned long where; _BitScanReverse64 (&where, v); return 1 + where; } # endif #endif if (sizeof (T) <= 4) { /* "bithacks" */ const unsigned int b[] = {0x2, 0xC, 0xF0, 0xFF00, 0xFFFF0000}; const unsigned int S[] = {1, 2, 4, 8, 16}; unsigned int r = 0; for (int i = 4; i >= 0; i--) if (v & b[i]) { v >>= S[i]; r |= S[i]; } return r + 1; } if (sizeof (T) <= 8) { /* "bithacks" */ const uint64_t b[] = {0x2ULL, 0xCULL, 0xF0ULL, 0xFF00ULL, 0xFFFF0000ULL, 0xFFFFFFFF00000000ULL}; const unsigned int S[] = {1, 2, 4, 8, 16, 32}; unsigned int r = 0; for (int i = 5; i >= 0; i--) if (v & b[i]) { v >>= S[i]; r |= S[i]; } return r + 1; } if (sizeof (T) == 16) { unsigned int shift = 64; return (v >> shift) ? hb_bit_storage ((uint64_t) (v >> shift)) + shift : hb_bit_storage ((uint64_t) v); } assert (0); return 0; /* Shut up stupid compiler. */ } /* Returns the number of zero bits in the least significant side of v */ template static inline unsigned int hb_ctz (T v) { if (unlikely (!v)) return 8 * sizeof (T); #if hb_has_builtin(__builtin_ctz) if (sizeof (T) <= sizeof (unsigned int)) return __builtin_ctz (v); #endif #if hb_has_builtin(__builtin_ctzl) if (sizeof (T) <= sizeof (unsigned long)) return __builtin_ctzl (v); #endif #if hb_has_builtin(__builtin_ctzll) if (sizeof (T) <= sizeof (unsigned long long)) return __builtin_ctzll (v); #endif #if (defined(_MSC_VER) && _MSC_VER >= 1500) || (defined(__MINGW32__) && (__GNUC__ < 4)) if (sizeof (T) <= sizeof (unsigned int)) { unsigned long where; _BitScanForward (&where, v); return where; } # if defined(_WIN64) if (sizeof (T) <= 8) { unsigned long where; _BitScanForward64 (&where, v); return where; } # endif #endif if (sizeof (T) <= 4) { /* "bithacks" */ unsigned int c = 32; v &= - (int32_t) v; if (v) c--; if (v & 0x0000FFFF) c -= 16; if (v & 0x00FF00FF) c -= 8; if (v & 0x0F0F0F0F) c -= 4; if (v & 0x33333333) c -= 2; if (v & 0x55555555) c -= 1; return c; } if (sizeof (T) <= 8) { /* "bithacks" */ unsigned int c = 64; v &= - (int64_t) (v); if (v) c--; if (v & 0x00000000FFFFFFFFULL) c -= 32; if (v & 0x0000FFFF0000FFFFULL) c -= 16; if (v & 0x00FF00FF00FF00FFULL) c -= 8; if (v & 0x0F0F0F0F0F0F0F0FULL) c -= 4; if (v & 0x3333333333333333ULL) c -= 2; if (v & 0x5555555555555555ULL) c -= 1; return c; } if (sizeof (T) == 16) { unsigned int shift = 64; return (uint64_t) v ? hb_bit_storage ((uint64_t) v) : hb_bit_storage ((uint64_t) (v >> shift)) + shift; } assert (0); return 0; /* Shut up stupid compiler. */ } /* * Tiny stuff. */ /* ASCII tag/character handling */ static inline bool ISALPHA (unsigned char c) { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); } static inline bool ISALNUM (unsigned char c) { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9'); } static inline bool ISSPACE (unsigned char c) { return c == ' ' || c =='\f'|| c =='\n'|| c =='\r'|| c =='\t'|| c =='\v'; } static inline unsigned char TOUPPER (unsigned char c) { return (c >= 'a' && c <= 'z') ? c - 'a' + 'A' : c; } static inline unsigned char TOLOWER (unsigned char c) { return (c >= 'A' && c <= 'Z') ? c - 'A' + 'a' : c; } static inline bool ISHEX (unsigned char c) { return (c >= '0' && c <= '9') || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F'); } static inline unsigned char TOHEX (uint8_t c) { return (c & 0xF) <= 9 ? (c & 0xF) + '0' : (c & 0xF) + 'a' - 10; } static inline uint8_t FROMHEX (unsigned char c) { return (c >= '0' && c <= '9') ? c - '0' : TOLOWER (c) - 'a' + 10; } static inline unsigned int DIV_CEIL (const unsigned int a, unsigned int b) { return (a + (b - 1)) / b; } #undef ARRAY_LENGTH template static inline unsigned int ARRAY_LENGTH (const Type (&)[n]) { return n; } /* A const version, but does not detect erratically being called on pointers. */ #define ARRAY_LENGTH_CONST(__array) ((signed int) (sizeof (__array) / sizeof (__array[0]))) static inline void * hb_memcpy (void *__restrict dst, const void *__restrict src, size_t len) { /* It's illegal to pass 0 as size to memcpy. */ if (unlikely (!len)) return dst; return memcpy (dst, src, len); } static inline int hb_memcmp (const void *a, const void *b, unsigned int len) { /* It's illegal to pass NULL to memcmp(), even if len is zero. * So, wrap it. * https://sourceware.org/bugzilla/show_bug.cgi?id=23878 */ if (unlikely (!len)) return 0; return memcmp (a, b, len); } static inline void * hb_memset (void *s, int c, unsigned int n) { /* It's illegal to pass NULL to memset(), even if n is zero. */ if (unlikely (!n)) return s; return memset (s, c, n); } static inline unsigned int hb_ceil_to_4 (unsigned int v) { return ((v - 1) | 3) + 1; } template static inline bool hb_in_range (T u, T lo, T hi) { static_assert (!std::is_signed::value, ""); /* The casts below are important as if T is smaller than int, * the subtract results will become a signed int! */ return (T)(u - lo) <= (T)(hi - lo); } template static inline bool hb_in_ranges (T u, T lo1, T hi1) { return hb_in_range (u, lo1, hi1); } template static inline bool hb_in_ranges (T u, T lo1, T hi1, Ts... ds) { return hb_in_range (u, lo1, hi1) || hb_in_ranges (u, ds...); } /* * Overflow checking. */ static inline bool hb_unsigned_mul_overflows (unsigned int count, unsigned int size, unsigned *result = nullptr) { #if hb_has_builtin(__builtin_mul_overflow) unsigned stack_result; if (!result) result = &stack_result; return __builtin_mul_overflow (count, size, result); #endif if (result) *result = count * size; return (size > 0) && (count >= ((unsigned int) -1) / size); } /* * Sort and search. */ template static int _hb_cmp_method (const void *pkey, const void *pval, Ts... ds) { const K& key = * (const K*) pkey; const V& val = * (const V*) pval; return val.cmp (key, ds...); } template static inline bool hb_bsearch_impl (unsigned *pos, /* Out */ const K& key, V* base, size_t nmemb, size_t stride, int (*compar)(const void *_key, const void *_item, Ts... _ds), Ts... ds) { /* This is our *only* bsearch implementation. */ int min = 0, max = (int) nmemb - 1; while (min <= max) { int mid = ((unsigned int) min + (unsigned int) max) / 2; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-align" V* p = (V*) (((const char *) base) + (mid * stride)); #pragma GCC diagnostic pop int c = compar ((const void *) std::addressof (key), (const void *) p, ds...); if (c < 0) max = mid - 1; else if (c > 0) min = mid + 1; else { *pos = mid; return true; } } *pos = min; return false; } template static inline V* hb_bsearch (const K& key, V* base, size_t nmemb, size_t stride = sizeof (V), int (*compar)(const void *_key, const void *_item) = _hb_cmp_method) { unsigned pos; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-align" return hb_bsearch_impl (&pos, key, base, nmemb, stride, compar) ? (V*) (((const char *) base) + (pos * stride)) : nullptr; #pragma GCC diagnostic pop } template static inline V* hb_bsearch (const K& key, V* base, size_t nmemb, size_t stride, int (*compar)(const void *_key, const void *_item, Ts... _ds), Ts... ds) { unsigned pos; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-align" return hb_bsearch_impl (&pos, key, base, nmemb, stride, compar, ds...) ? (V*) (((const char *) base) + (pos * stride)) : nullptr; #pragma GCC diagnostic pop } /* From https://github.com/noporpoise/sort_r Feb 5, 2019 (c8c65c1e) Modified to support optional argument using templates */ /* Isaac Turner 29 April 2014 Public Domain */ /* hb_qsort function to be exported. Parameters: base is the array to be sorted nel is the number of elements in the array width is the size in bytes of each element of the array compar is the comparison function arg (optional) is a pointer to be passed to the comparison function void hb_qsort(void *base, size_t nel, size_t width, int (*compar)(const void *_a, const void *_b, [void *_arg]), [void *arg]); */ #define SORT_R_SWAP(a,b,tmp) ((void) ((tmp) = (a)), (void) ((a) = (b)), (b) = (tmp)) /* swap a and b */ /* a and b must not be equal! */ static inline void sort_r_swap(char *__restrict a, char *__restrict b, size_t w) { char tmp, *end = a+w; for(; a < end; a++, b++) { SORT_R_SWAP(*a, *b, tmp); } } /* swap a, b iff a>b */ /* a and b must not be equal! */ /* __restrict is same as restrict but better support on old machines */ template static inline int sort_r_cmpswap(char *__restrict a, char *__restrict b, size_t w, int (*compar)(const void *_a, const void *_b, Ts... _ds), Ts... ds) { if(compar(a, b, ds...) > 0) { sort_r_swap(a, b, w); return 1; } return 0; } /* Swap consecutive blocks of bytes of size na and nb starting at memory addr ptr, with the smallest swap so that the blocks are in the opposite order. Blocks may be internally re-ordered e.g. 12345ab -> ab34512 123abc -> abc123 12abcde -> deabc12 */ static inline void sort_r_swap_blocks(char *ptr, size_t na, size_t nb) { if(na > 0 && nb > 0) { if(na > nb) { sort_r_swap(ptr, ptr+na, nb); } else { sort_r_swap(ptr, ptr+nb, na); } } } /* Implement recursive quicksort ourselves */ /* Note: quicksort is not stable, equivalent values may be swapped */ template static inline void sort_r_simple(void *base, size_t nel, size_t w, int (*compar)(const void *_a, const void *_b, Ts... _ds), Ts... ds) { char *b = (char *)base, *end = b + nel*w; /* for(size_t i=0; i b && sort_r_cmpswap(pj-w,pj,w,compar,ds...); pj -= w) {} } } else { /* nel > 9; Quicksort */ int cmp; char *pl, *ple, *pr, *pre, *pivot; char *last = b+w*(nel-1), *tmp; /* Use median of second, middle and second-last items as pivot. First and last may have been swapped with pivot and therefore be extreme */ char *l[3]; l[0] = b + w; l[1] = b+w*(nel/2); l[2] = last - w; /* printf("pivots: %i, %i, %i\n", *(int*)l[0], *(int*)l[1], *(int*)l[2]); */ if(compar(l[0],l[1],ds...) > 0) { SORT_R_SWAP(l[0], l[1], tmp); } if(compar(l[1],l[2],ds...) > 0) { SORT_R_SWAP(l[1], l[2], tmp); if(compar(l[0],l[1],ds...) > 0) { SORT_R_SWAP(l[0], l[1], tmp); } } /* swap mid value (l[1]), and last element to put pivot as last element */ if(l[1] != last) { sort_r_swap(l[1], last, w); } /* pl is the next item on the left to be compared to the pivot pr is the last item on the right that was compared to the pivot ple is the left position to put the next item that equals the pivot ple is the last right position where we put an item that equals the pivot v- end (beyond the array) EEEEEELLLLLLLLuuuuuuuuGGGGGGGEEEEEEEE. ^- b ^- ple ^- pl ^- pr ^- pre ^- last (where the pivot is) Pivot comparison key: E = equal, L = less than, u = unknown, G = greater than, E = equal */ pivot = last; ple = pl = b; pre = pr = last; /* Strategy: Loop into the list from the left and right at the same time to find: - an item on the left that is greater than the pivot - an item on the right that is less than the pivot Once found, they are swapped and the loop continues. Meanwhile items that are equal to the pivot are moved to the edges of the array. */ while(pl < pr) { /* Move left hand items which are equal to the pivot to the far left. break when we find an item that is greater than the pivot */ for(; pl < pr; pl += w) { cmp = compar(pl, pivot, ds...); if(cmp > 0) { break; } else if(cmp == 0) { if(ple < pl) { sort_r_swap(ple, pl, w); } ple += w; } } /* break if last batch of left hand items were equal to pivot */ if(pl >= pr) { break; } /* Move right hand items which are equal to the pivot to the far right. break when we find an item that is less than the pivot */ for(; pl < pr; ) { pr -= w; /* Move right pointer onto an unprocessed item */ cmp = compar(pr, pivot, ds...); if(cmp == 0) { pre -= w; if(pr < pre) { sort_r_swap(pr, pre, w); } } else if(cmp < 0) { if(pl < pr) { sort_r_swap(pl, pr, w); } pl += w; break; } } } pl = pr; /* pr may have gone below pl */ /* Now we need to go from: EEELLLGGGGEEEE to: LLLEEEEEEEGGGG Pivot comparison key: E = equal, L = less than, u = unknown, G = greater than, E = equal */ sort_r_swap_blocks(b, ple-b, pl-ple); sort_r_swap_blocks(pr, pre-pr, end-pre); /*for(size_t i=0; i static inline void hb_stable_sort (T *array, unsigned int len, int(*compar)(const T2 *, const T2 *), T3 *array2 = nullptr) { static_assert (hb_is_trivially_copy_assignable (T), ""); static_assert (hb_is_trivially_copy_assignable (T3), ""); for (unsigned int i = 1; i < len; i++) { unsigned int j = i; while (j && compar (&array[j - 1], &array[i]) > 0) j--; if (i == j) continue; /* Move item i to occupy place for item j, shift what's in between. */ { T t = array[i]; memmove (&array[j + 1], &array[j], (i - j) * sizeof (T)); array[j] = t; } if (array2) { T3 t = array2[i]; memmove (&array2[j + 1], &array2[j], (i - j) * sizeof (T3)); array2[j] = t; } } } static inline hb_bool_t hb_codepoint_parse (const char *s, unsigned int len, int base, hb_codepoint_t *out) { unsigned int v; const char *p = s; const char *end = p + len; if (unlikely (!hb_parse_uint (&p, end, &v, true/* whole buffer */, base))) return false; *out = v; return true; } /* Operators. */ struct { HB_PARTIALIZE(2); template constexpr auto operator () (const T &a, const T &b) const HB_AUTO_RETURN (a & b) } HB_FUNCOBJ (hb_bitwise_and); struct { HB_PARTIALIZE(2); template constexpr auto operator () (const T &a, const T &b) const HB_AUTO_RETURN (a | b) } HB_FUNCOBJ (hb_bitwise_or); struct { HB_PARTIALIZE(2); template constexpr auto operator () (const T &a, const T &b) const HB_AUTO_RETURN (a ^ b) } HB_FUNCOBJ (hb_bitwise_xor); struct { HB_PARTIALIZE(2); template constexpr auto operator () (const T &a, const T &b) const HB_AUTO_RETURN (~a & b) } HB_FUNCOBJ (hb_bitwise_lt); struct { HB_PARTIALIZE(2); template constexpr auto operator () (const T &a, const T &b) const HB_AUTO_RETURN (a & ~b) } HB_FUNCOBJ (hb_bitwise_gt); // aka sub struct { HB_PARTIALIZE(2); template constexpr auto operator () (const T &a, const T &b) const HB_AUTO_RETURN (~a | b) } HB_FUNCOBJ (hb_bitwise_le); struct { HB_PARTIALIZE(2); template constexpr auto operator () (const T &a, const T &b) const HB_AUTO_RETURN (a | ~b) } HB_FUNCOBJ (hb_bitwise_ge); struct { template constexpr auto operator () (const T &a) const HB_AUTO_RETURN (~a) } HB_FUNCOBJ (hb_bitwise_neg); struct { HB_PARTIALIZE(2); template constexpr auto operator () (const T &a, const T2 &b) const HB_AUTO_RETURN (a + b) } HB_FUNCOBJ (hb_add); struct { HB_PARTIALIZE(2); template constexpr auto operator () (const T &a, const T2 &b) const HB_AUTO_RETURN (a - b) } HB_FUNCOBJ (hb_sub); struct { HB_PARTIALIZE(2); template constexpr auto operator () (const T &a, const T2 &b) const HB_AUTO_RETURN (b - a) } HB_FUNCOBJ (hb_rsub); struct { HB_PARTIALIZE(2); template constexpr auto operator () (const T &a, const T2 &b) const HB_AUTO_RETURN (a * b) } HB_FUNCOBJ (hb_mul); struct { HB_PARTIALIZE(2); template constexpr auto operator () (const T &a, const T2 &b) const HB_AUTO_RETURN (a / b) } HB_FUNCOBJ (hb_div); struct { HB_PARTIALIZE(2); template constexpr auto operator () (const T &a, const T2 &b) const HB_AUTO_RETURN (a % b) } HB_FUNCOBJ (hb_mod); struct { template constexpr auto operator () (const T &a) const HB_AUTO_RETURN (+a) } HB_FUNCOBJ (hb_pos); struct { template constexpr auto operator () (const T &a) const HB_AUTO_RETURN (-a) } HB_FUNCOBJ (hb_neg); struct { template constexpr auto operator () (T &a) const HB_AUTO_RETURN (++a) } HB_FUNCOBJ (hb_inc); struct { template constexpr auto operator () (T &a) const HB_AUTO_RETURN (--a) } HB_FUNCOBJ (hb_dec); /* Adapted from kurbo implementation with extra parameters added, * and finding for a particular range instead of 0. * * For documentation and implementation see: * * [ITP method]: https://en.wikipedia.org/wiki/ITP_Method * [An Enhancement of the Bisection Method Average Performance Preserving Minmax Optimality]: https://dl.acm.org/doi/10.1145/3423597 * https://docs.rs/kurbo/0.8.1/kurbo/common/fn.solve_itp.html * https://github.com/linebender/kurbo/blob/fd839c25ea0c98576c7ce5789305822675a89938/src/common.rs#L162-L248 */ template double solve_itp (func_t f, double a, double b, double epsilon, double min_y, double max_y, double &ya, double &yb, double &y) { unsigned n1_2 = (unsigned) (hb_max (ceil (log2 ((b - a) / epsilon)) - 1.0, 0.0)); const unsigned n0 = 1; // Hardwired const double k1 = 0.2 / (b - a); // Hardwired. unsigned nmax = n0 + n1_2; double scaled_epsilon = epsilon * double (1llu << nmax); double _2_epsilon = 2.0 * epsilon; while (b - a > _2_epsilon) { double x1_2 = 0.5 * (a + b); double r = scaled_epsilon - 0.5 * (b - a); double xf = (yb * a - ya * b) / (yb - ya); double sigma = x1_2 - xf; double b_a = b - a; // This has k2 = 2 hardwired for efficiency. double b_a_k2 = b_a * b_a; double delta = k1 * b_a_k2; int sigma_sign = sigma >= 0 ? +1 : -1; double xt = delta <= fabs (x1_2 - xf) ? xf + delta * sigma_sign : x1_2; double xitp = fabs (xt - x1_2) <= r ? xt : x1_2 - r * sigma_sign; double yitp = f (xitp); if (yitp > max_y) { b = xitp; yb = yitp; } else if (yitp < min_y) { a = xitp; ya = yitp; } else { y = yitp; return xitp; } scaled_epsilon *= 0.5; } return 0.5 * (a + b); } #endif /* HB_ALGS_HH */