/*************************************************************************/ /* rasterizer_canvas_gles2.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "rasterizer_canvas_gles2.h" #include "os/os.h" #include "project_settings.h" #include "rasterizer_scene_gles2.h" #include "servers/visual/visual_server_raster.h" #ifndef GLES_OVER_GL #define glClearDepth glClearDepthf #endif RID RasterizerCanvasGLES2::light_internal_create() { return RID(); } void RasterizerCanvasGLES2::light_internal_update(RID p_rid, Light *p_light) { } void RasterizerCanvasGLES2::light_internal_free(RID p_rid) { } void RasterizerCanvasGLES2::_set_uniforms() { state.canvas_shader.set_uniform(CanvasShaderGLES2::PROJECTION_MATRIX, state.uniforms.projection_matrix); state.canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX, state.uniforms.modelview_matrix); state.canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX, state.uniforms.extra_matrix); state.canvas_shader.set_uniform(CanvasShaderGLES2::FINAL_MODULATE, state.uniforms.final_modulate); state.canvas_shader.set_uniform(CanvasShaderGLES2::TIME, storage->frame.time[0]); if (storage->frame.current_rt) { Vector2 screen_pixel_size; screen_pixel_size.x = 1.0 / storage->frame.current_rt->width; screen_pixel_size.y = 1.0 / storage->frame.current_rt->height; state.canvas_shader.set_uniform(CanvasShaderGLES2::SCREEN_PIXEL_SIZE, screen_pixel_size); } state.canvas_shader.set_uniform(CanvasShaderGLES2::COLOR_TEXPIXEL_SIZE, state.uniforms.texpixel_size); } void RasterizerCanvasGLES2::canvas_begin() { data.primitive = GL_TRIANGLES; data.texture = GL_NONE; state.canvas_shader.bind(); if (storage->frame.current_rt) { glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); glColorMask(1, 1, 1, 1); } if (storage->frame.clear_request) { glColorMask(true, true, true, true); glClearColor(storage->frame.clear_request_color.r, storage->frame.clear_request_color.g, storage->frame.clear_request_color.b, storage->frame.clear_request_color.a); glClear(GL_COLOR_BUFFER_BIT); storage->frame.clear_request = false; } /* if (storage->frame.current_rt) { glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); glColorMask(1, 1, 1, 1); } */ reset_canvas(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->resources.white_tex); data.texture = storage->resources.white_tex; glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1); glDisableVertexAttribArray(VS::ARRAY_COLOR); // set up default uniforms Transform canvas_transform; if (storage->frame.current_rt) { float csy = 1.0; if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) { csy = -1.0; } canvas_transform.translate(-(storage->frame.current_rt->width / 2.0f), -(storage->frame.current_rt->height / 2.0f), 0.0f); canvas_transform.scale(Vector3(2.0f / storage->frame.current_rt->width, csy * -2.0f / storage->frame.current_rt->height, 1.0f)); } else { Vector2 ssize = OS::get_singleton()->get_window_size(); canvas_transform.translate(-(ssize.width / 2.0f), -(ssize.height / 2.0f), 0.0f); canvas_transform.scale(Vector3(2.0f / ssize.width, -2.0f / ssize.height, 1.0f)); } state.uniforms.projection_matrix = canvas_transform; state.uniforms.final_modulate = Color(1, 1, 1, 1); state.uniforms.modelview_matrix = Transform2D(); state.uniforms.extra_matrix = Transform2D(); _set_uniforms(); state.prev_uniforms = state.uniforms; } void RasterizerCanvasGLES2::canvas_end() { glBindBuffer(GL_ARRAY_BUFFER, 0); for (int i = 0; i < VS::ARRAY_MAX; i++) { glDisableVertexAttribArray(i); } state.using_texture_rect = false; state.using_ninepatch = false; } RasterizerStorageGLES2::Texture *RasterizerCanvasGLES2::_bind_canvas_texture(const RID &p_texture, const RID &p_normal_map) { RasterizerStorageGLES2::Texture *tex_return = NULL; GLuint newtexid; if (p_texture.is_valid()) { RasterizerStorageGLES2::Texture *texture = storage->texture_owner.getornull(p_texture); if (!texture) { state.current_tex = RID(); state.current_tex_ptr = NULL; newtexid = storage->resources.white_tex; } else { texture = texture->get_ptr(); if (texture->redraw_if_visible) { VisualServerRaster::redraw_request(); } if (texture->render_target) { texture->render_target->used_in_frame = true; } newtexid = texture->tex_id; state.current_tex = p_texture; state.current_tex_ptr = texture; tex_return = texture; } } else { state.current_tex = RID(); state.current_tex_ptr = NULL; newtexid = storage->resources.white_tex; } if (data.texture != newtexid) { _flush(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, newtexid); data.texture = newtexid; } return tex_return; } void RasterizerCanvasGLES2::_set_texture_rect_mode(bool p_enable, bool p_ninepatch) { } void RasterizerCanvasGLES2::_draw_polygon(const int *p_indices, int p_index_count, int p_vertex_count, const Vector2 *p_vertices, const Vector2 *p_uvs, const Color *p_colors, bool p_singlecolor) { _begin(GL_TRIANGLES); _prepare(p_vertex_count, p_index_count); Vertex *v = data.mem_vertex_buffer + data.mem_vertex_buffer_offset; bool single; Color color; if (p_singlecolor) { single = true; color = *p_colors; } else if (!p_colors) { single = true; color = Color(1, 1, 1, 1); } else { single = false; } const bool use_single_color = single; const Color single_color = color; for (int i = 0; i < p_vertex_count; ++i) { v->v = p_vertices[i]; if (use_single_color) v->c = single_color; else v->c = p_colors[i]; if (p_uvs) v->uv = p_uvs[i]; else v->uv = Vector2(); ++v; } memcpy(data.mem_index_buffer + data.mem_index_buffer_offset, p_indices, p_index_count * sizeof(int)); _commit(p_vertex_count, p_index_count); } void RasterizerCanvasGLES2::_canvas_item_render_commands(Item *p_item, Item *current_clip, bool &reclip, RasterizerStorageGLES2::Material *p_material) { int command_count = p_item->commands.size(); Item::Command **commands = p_item->commands.ptrw(); for (int i = 0; i < command_count; i++) { Item::Command *command = commands[i]; if (command->type != Item::Command::TYPE_RECT && state.tiled) { _flush(); _untile(); } switch (command->type) { case Item::Command::TYPE_LINE: { const Item::CommandLine *line = static_cast(command); if (line->width <= 1) { const int p_vertex_count = 2; const int p_index_count = 2; _begin(GL_LINES); _prepare(p_vertex_count, p_index_count); _bind_shader(p_material); _bind_canvas_texture(RID(), RID()); Vertex vertices[p_vertex_count]; vertices[0].v = Vector2(line->from.x, line->from.y); vertices[0].c = line->color; vertices[0].uv = Vector2(); vertices[1].v = Vector2(line->to.x, line->to.y); vertices[1].c = line->color; vertices[1].uv = Vector2(); memcpy(data.mem_vertex_buffer + data.mem_vertex_buffer_offset, vertices, sizeof(vertices)); const int indices[p_index_count] = { 0, 1 }; memcpy(data.mem_index_buffer + data.mem_index_buffer_offset, indices, sizeof(indices)); _commit(p_vertex_count, p_index_count); } else { const int p_vertex_count = 4; const int p_index_count = 6; _begin(GL_TRIANGLES); _prepare(p_vertex_count, p_index_count); _bind_shader(p_material); _bind_canvas_texture(RID(), RID()); Vertex *v = data.mem_vertex_buffer + data.mem_vertex_buffer_offset; Vector2 t = (line->from - line->to).normalized().tangent() * line->width * 0.5; v[0].v = line->from - t; v[0].c = line->color; v[0].uv = Vector2(); v[1].v = line->from + t; v[1].c = line->color; v[1].uv = Vector2(); v[2].v = line->to + t; v[2].c = line->color; v[2].uv = Vector2(); v[3].v = line->to - t; v[3].c = line->color; v[3].uv = Vector2(); const int indices[p_index_count] = { 0, 1, 2, 2, 3, 0 }; memcpy(data.mem_index_buffer + data.mem_index_buffer_offset, indices, sizeof(indices)); _commit(p_vertex_count, p_index_count); } } break; case Item::Command::TYPE_RECT: { const int p_vertex_count = 4; const int p_index_count = 6; _begin(GL_TRIANGLES); _prepare(p_vertex_count, p_index_count); Item::CommandRect *r = static_cast(command); _bind_shader(p_material); Rect2 src_rect; Rect2 dst_rect; RasterizerStorageGLES2::Texture *tex = _bind_canvas_texture(r->texture, r->normal_map); if (!tex) { dst_rect = Rect2(r->rect.position, r->rect.size); if (dst_rect.size.width < 0) { dst_rect.position.x += dst_rect.size.width; dst_rect.size.width *= -1; } if (dst_rect.size.height < 0) { dst_rect.position.y += dst_rect.size.height; dst_rect.size.height *= -1; } src_rect = Rect2(0, 0, 1, 1); } else { const bool tiled = r->flags & CANVAS_RECT_TILE && !(tex->flags & VS::TEXTURE_FLAG_REPEAT); if (tiled != state.tiled) { _flush(); if (tiled) { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); state.tiled = true; } else { _untile(); } } Size2 texpixel_size(1.0 / tex->width, 1.0 / tex->height); src_rect = (r->flags & CANVAS_RECT_REGION) ? Rect2(r->source.position * texpixel_size, r->source.size * texpixel_size) : Rect2(0, 0, 1, 1); dst_rect = Rect2(r->rect.position, r->rect.size); if (dst_rect.size.width < 0) { dst_rect.position.x += dst_rect.size.width; dst_rect.size.width *= -1; } if (dst_rect.size.height < 0) { dst_rect.position.y += dst_rect.size.height; dst_rect.size.height *= -1; } if (r->flags & CANVAS_RECT_FLIP_H) { src_rect.size.x *= -1; src_rect.position.x -= src_rect.size.width; } if (r->flags & CANVAS_RECT_FLIP_V) { src_rect.size.y *= -1; src_rect.position.y -= src_rect.size.height; } if (r->flags & CANVAS_RECT_TRANSPOSE) { dst_rect.size.x *= -1; // Encoding in the dst_rect.z uniform } state.uniforms.texpixel_size = texpixel_size; } Vertex *v = data.mem_vertex_buffer + data.mem_vertex_buffer_offset; // 0,0 v[0].v = dst_rect.position; v[0].c = r->modulate; v[0].uv = src_rect.position; // 0,1 v[1].v = Vector2(dst_rect.position.x, dst_rect.position.y + dst_rect.size.y); v[1].c = r->modulate; v[1].uv = Vector2(src_rect.position.x, src_rect.position.y + src_rect.size.y); // 1,1 v[2].v = Vector2(dst_rect.position.x + dst_rect.size.x, dst_rect.position.y + dst_rect.size.y); v[2].c = r->modulate; v[2].uv = Vector2(src_rect.position.x + src_rect.size.x, src_rect.position.y + src_rect.size.y); // 1,0 v[3].v = Vector2(dst_rect.position.x + dst_rect.size.x, dst_rect.position.y); v[3].c = r->modulate; v[3].uv = Vector2(src_rect.position.x + src_rect.size.x, src_rect.position.y); const int indices[p_index_count] = { 0, 1, 2, 2, 3, 0 }; memcpy(data.mem_index_buffer + data.mem_index_buffer_offset, indices, sizeof(int) * p_index_count); _commit(p_vertex_count, p_index_count); } break; case Item::Command::TYPE_NINEPATCH: { const int p_vertex_count = 16; const int p_index_count = 54; _begin(GL_TRIANGLES); _prepare(p_vertex_count, p_index_count); Item::CommandNinePatch *np = static_cast(command); _bind_shader(p_material); RasterizerStorageGLES2::Texture *tex = _bind_canvas_texture(np->texture, np->normal_map); if (!tex) { print_line("TODO: ninepatch without texture"); continue; } Size2 texpixel_size(1.0 / tex->width, 1.0 / tex->height); state.uniforms.texpixel_size = texpixel_size; Rect2 source = np->source; if (source.size.x == 0 && source.size.y == 0) { source.size.x = tex->width; source.size.y = tex->height; } // prepare vertex buffer // this buffer contains [ POS POS UV UV ] * Vertex *v = data.mem_vertex_buffer + data.mem_vertex_buffer_offset; v[0].v = np->rect.position; v[0].c = np->color; v[0].uv = source.position * texpixel_size; v[1].v = np->rect.position + Vector2(np->margin[MARGIN_LEFT], 0); v[1].c = np->color; v[1].uv = (source.position + Vector2(np->margin[MARGIN_LEFT], 0)) * texpixel_size; v[2].v = np->rect.position + Vector2(np->rect.size.x - np->margin[MARGIN_RIGHT], 0); v[2].c = np->color; v[2].uv = (source.position + Vector2(source.size.x - np->margin[MARGIN_RIGHT], 0)) * texpixel_size; v[3].v = np->rect.position + Vector2(np->rect.size.x, 0); v[3].c = np->color; v[3].uv = (source.position + Vector2(source.size.x, 0)) * texpixel_size; v[4].v = np->rect.position + Vector2(0, np->margin[MARGIN_TOP]); v[4].c = np->color; v[4].uv = (source.position + Vector2(0, np->margin[MARGIN_TOP])) * texpixel_size; v[5].v = np->rect.position + Vector2(np->margin[MARGIN_LEFT], np->margin[MARGIN_TOP]); v[5].c = np->color; v[5].uv = (source.position + Vector2(np->margin[MARGIN_LEFT], np->margin[MARGIN_TOP])) * texpixel_size; v[6].v = np->rect.position + Vector2(np->rect.size.x - np->margin[MARGIN_RIGHT], np->margin[MARGIN_TOP]); v[6].c = np->color; v[6].uv = (source.position + Vector2(source.size.x - np->margin[MARGIN_RIGHT], np->margin[MARGIN_TOP])) * texpixel_size; v[7].v = np->rect.position + Vector2(np->rect.size.x, np->margin[MARGIN_TOP]); v[7].c = np->color; v[7].uv = (source.position + Vector2(source.size.x, np->margin[MARGIN_TOP])) * texpixel_size; v[8].v = np->rect.position + Vector2(0, np->rect.size.y - np->margin[MARGIN_BOTTOM]); v[8].c = np->color; v[8].uv = (source.position + Vector2(0, source.size.y - np->margin[MARGIN_BOTTOM])) * texpixel_size; v[9].v = np->rect.position + Vector2(np->margin[MARGIN_LEFT], np->rect.size.y - np->margin[MARGIN_BOTTOM]); v[9].c = np->color; v[9].uv = (source.position + Vector2(np->margin[MARGIN_LEFT], source.size.y - np->margin[MARGIN_BOTTOM])) * texpixel_size; v[10].v = np->rect.position + np->rect.size - Vector2(np->margin[MARGIN_RIGHT], np->margin[MARGIN_BOTTOM]); v[10].c = np->color; v[10].uv = (source.position + source.size - Vector2(np->margin[MARGIN_RIGHT], np->margin[MARGIN_BOTTOM])) * texpixel_size; v[11].v = np->rect.position + np->rect.size - Vector2(0, np->margin[MARGIN_BOTTOM]); v[11].c = np->color; v[11].uv = (source.position + source.size - Vector2(0, np->margin[MARGIN_BOTTOM])) * texpixel_size; v[12].v = np->rect.position + Vector2(0, np->rect.size.y); v[12].c = np->color; v[12].uv = (source.position + Vector2(0, source.size.y)) * texpixel_size; v[13].v = np->rect.position + Vector2(np->margin[MARGIN_LEFT], np->rect.size.y); v[13].c = np->color; v[13].uv = (source.position + Vector2(np->margin[MARGIN_LEFT], source.size.y)) * texpixel_size; v[14].v = np->rect.position + np->rect.size - Vector2(np->margin[MARGIN_RIGHT], 0); v[14].c = np->color; v[14].uv = (source.position + source.size - Vector2(np->margin[MARGIN_RIGHT], 0)) * texpixel_size; v[15].v = np->rect.position + np->rect.size; v[15].c = np->color; v[15].uv = (source.position + source.size) * texpixel_size; memcpy(data.mem_index_buffer + data.mem_index_buffer_offset, data.ninepatch_elements, sizeof(data.ninepatch_elements)); _commit(p_vertex_count, p_index_count - (np->draw_center ? 0 : 6)); } break; case Item::Command::TYPE_CIRCLE: { Item::CommandCircle *circle = static_cast(command); _bind_shader(p_material); const int num_points = 32; Vector2 points[num_points + 1]; points[num_points] = circle->pos; int indices[num_points * 3]; for (int i = 0; i < num_points; i++) { points[i] = circle->pos + Vector2(Math::sin(i * Math_PI * 2.0 / num_points), Math::cos(i * Math_PI * 2.0 / num_points)) * circle->radius; indices[i * 3 + 0] = i; indices[i * 3 + 1] = (i + 1) % num_points; indices[i * 3 + 2] = num_points; } _bind_canvas_texture(RID(), RID()); _draw_polygon(indices, num_points * 3, num_points + 1, points, NULL, &circle->color, true); } break; case Item::Command::TYPE_POLYGON: { Item::CommandPolygon *polygon = static_cast(command); const int *indices = polygon->indices.ptr(); if (!indices) // self-intersecting polygon break; _bind_shader(p_material); RasterizerStorageGLES2::Texture *texture = _bind_canvas_texture(polygon->texture, polygon->normal_map); if (texture) { Size2 texpixel_size(1.0 / texture->width, 1.0 / texture->height); state.uniforms.texpixel_size = texpixel_size; } _draw_polygon(indices, polygon->count, polygon->points.size(), polygon->points.ptr(), polygon->uvs.ptr(), polygon->colors.ptr(), polygon->colors.size() == 1); } break; case Item::Command::TYPE_POLYLINE: { Item::CommandPolyLine *pline = static_cast(command); if (pline->triangles.size()) { const int p_vertex_count = pline->triangles.size(); const int p_triangle_count = p_vertex_count - 2; const int p_index_count = p_triangle_count * 3; _begin(GL_TRIANGLES); _prepare(p_vertex_count, p_index_count); _bind_shader(p_material); _bind_canvas_texture(RID(), RID()); const Vector2 *t = pline->triangles.ptr(); Vertex *v = data.mem_vertex_buffer + data.mem_vertex_buffer_offset; const bool p_singlecolor = pline->triangle_colors.size() == 1; const Color *p_colors = pline->triangle_colors.ptr(); bool single; Color color; if (pline->triangle_colors.size() == 1) { single = true; color = *p_colors; } else if (!p_colors) { single = true; color = Color(1, 1, 1, 1); } else { single = false; } const bool use_single_color = single; const Color single_color = color; for (int i = 0; i < p_vertex_count; ++i) { if (use_single_color) v->c = single_color; else v->c = p_colors[i]; v->uv = Vector2(); v->v = t[i]; ++v; } for (int i = 0; i < p_triangle_count; ++i) { const int indices[3] = { i, i + 1, i + 2 }; memcpy(data.mem_index_buffer + data.mem_index_buffer_offset + i * 3, indices, sizeof(indices)); } _commit(p_vertex_count, p_index_count); } else { _begin(GL_LINES); _bind_shader(p_material); _bind_canvas_texture(RID(), RID()); const Color *p_colors = pline->line_colors.ptr(); bool single; Color color; if (pline->line_colors.size() == 1) { single = true; color = *p_colors; } else if (!p_colors) { single = true; color = Color(1, 1, 1, 1); } else { single = false; } const bool use_single_color = single; const Color single_color = color; const Vector2 *p_lines = pline->lines.ptr(); if (pline->multiline) { const int p_lines_count = pline->lines.size() / 2; for (int i = 0; i < p_lines_count; ++i) { const int p_vertex_count = 2; const int p_index_count = 2; _prepare(p_vertex_count, p_index_count); Vertex *v = data.mem_vertex_buffer + data.mem_vertex_buffer_offset; for (int j = 0; j < 2; ++j) { if (use_single_color) v->c = single_color; else v->c = p_colors[i]; v->uv = Vector2(); v->v = p_lines[i * 2 + j]; ++v; } const int indices[p_index_count] = { 0, 1 }; memcpy(data.mem_index_buffer + data.mem_index_buffer_offset, indices, sizeof(indices)); _commit(p_vertex_count, p_index_count); } } else { const int p_vertex_count = pline->lines.size(); const int p_lines_count = p_vertex_count - 1; const int p_index_count = p_lines_count * 2; _prepare(p_vertex_count, p_index_count); _bind_shader(p_material); _bind_canvas_texture(RID(), RID()); Vertex *v = data.mem_vertex_buffer + data.mem_vertex_buffer_offset; for (int i = 0; i < p_vertex_count; ++i) { if (use_single_color) v->c = single_color; else v->c = p_colors[i]; v->uv = Vector2(); v->v = p_lines[i]; ++v; } for (int i = 0; i < p_lines_count; ++i) { const int indices[2] = { i, i + 1 }; memcpy(data.mem_index_buffer + data.mem_index_buffer_offset + i * 2, indices, sizeof(indices)); } _commit(p_vertex_count, p_index_count); } } } break; case Item::Command::TYPE_PRIMITIVE: { Item::CommandPrimitive *primitive = static_cast(command); const GLenum prim[5] = { GL_POINTS, GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLE_FAN }; ERR_CONTINUE(primitive->points.size() < 1); _bind_shader(p_material); RasterizerStorageGLES2::Texture *texture = _bind_canvas_texture(primitive->texture, primitive->normal_map); if (texture) { Size2 texpixel_size(1.0 / texture->width, 1.0 / texture->height); state.uniforms.texpixel_size = texpixel_size; } const int p_vertex_count = primitive->points.size(); const int p_index_count = p_vertex_count; _begin(prim[p_vertex_count]); _prepare(p_vertex_count, p_index_count); Vertex *v = data.mem_vertex_buffer + data.mem_vertex_buffer_offset; int *index = data.mem_index_buffer + data.mem_index_buffer_offset; Color c; bool p_single_color; const Color *p_colors = primitive->colors.ptr(); const Vector2 *p_uvs = primitive->uvs.ptr(); const Vector2 *p_points = primitive->points.ptr(); if (primitive->colors.size() == 1 && primitive->points.size() > 1) { p_single_color = true; c = primitive->colors[0]; } else if (primitive->colors.empty()) { p_single_color = true; c = Color(1, 1, 1, 1); } else { p_single_color = false; } const bool use_single_color = p_single_color; const Color single_color = c; for (int i = 0; i < p_vertex_count; ++i) { if (use_single_color) v->c = single_color; else v->c = p_colors[i]; if (p_uvs) v->uv = p_uvs[i]; else v->uv = Vector2(); v->v = p_points[i]; index[i] = i; ++v; } _commit(p_vertex_count, p_index_count); } break; case Item::Command::TYPE_TRANSFORM: { Item::CommandTransform *transform = static_cast(command); state.uniforms.extra_matrix = transform->xform; } break; case Item::Command::TYPE_PARTICLES: { } break; case Item::Command::TYPE_CLIP_IGNORE: { Item::CommandClipIgnore *ci = static_cast(command); if (current_clip) { if (ci->ignore != reclip) { if (ci->ignore) { glDisable(GL_SCISSOR_TEST); reclip = true; } else { glEnable(GL_SCISSOR_TEST); int x = current_clip->final_clip_rect.position.x; int y = storage->frame.current_rt->height - (current_clip->final_clip_rect.position.y + current_clip->final_clip_rect.size.y); int w = current_clip->final_clip_rect.size.x; int h = current_clip->final_clip_rect.size.y; if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) y = current_clip->final_clip_rect.position.y; glScissor(x, y, w, h); reclip = false; } } } } break; default: { print_line("other"); } break; } } } void RasterizerCanvasGLES2::_copy_texscreen(const Rect2 &p_rect) { // This isn't really working yet, so disabling for now. } void RasterizerCanvasGLES2::canvas_render_items(Item *p_item_list, int p_z, const Color &p_modulate, Light *p_light, const Transform2D &p_base_transform) { Item *current_clip = NULL; RasterizerStorageGLES2::Shader *shader_cache = NULL; bool rebind_shader = true; Size2 rt_size = Size2(storage->frame.current_rt->width, storage->frame.current_rt->height); state.current_tex = RID(); state.current_tex_ptr = NULL; state.current_normal = RID(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->resources.white_tex); data.texture = storage->resources.white_tex; int last_blend_mode = -1; RID canvas_last_material = RID(); while (p_item_list) { Item *ci = p_item_list; Item *material_owner = ci->material_owner ? ci->material_owner : ci; if (current_clip != ci->final_clip_owner) { current_clip = ci->final_clip_owner; if (current_clip) { glEnable(GL_SCISSOR_TEST); int y = storage->frame.current_rt->height - (current_clip->final_clip_rect.position.y + current_clip->final_clip_rect.size.y); if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) y = current_clip->final_clip_rect.position.y; glScissor(current_clip->final_clip_rect.position.x, y, current_clip->final_clip_rect.size.width, current_clip->final_clip_rect.size.height); } else { glDisable(GL_SCISSOR_TEST); } } // TODO: copy back buffer if (ci->copy_back_buffer) { if (ci->copy_back_buffer->full) { _copy_texscreen(Rect2()); } else { _copy_texscreen(ci->copy_back_buffer->rect); } } RID material = material_owner->material; RasterizerStorageGLES2::Material *material_ptr = storage->material_owner.getornull(material); if (material != canvas_last_material || rebind_shader) { RasterizerStorageGLES2::Shader *shader_ptr = NULL; if (material_ptr) { shader_ptr = material_ptr->shader; if (shader_ptr && shader_ptr->mode != VS::SHADER_CANVAS_ITEM) { shader_ptr = NULL; // not a canvas item shader, don't use. } } if (shader_ptr) { if (shader_ptr->canvas_item.uses_screen_texture) { _copy_texscreen(Rect2()); } if (shader_ptr != shader_cache) { if (shader_ptr->canvas_item.uses_time) { VisualServerRaster::redraw_request(); } state.canvas_shader.set_custom_shader(shader_ptr->custom_code_id); state.canvas_shader.bind(); } int tc = material_ptr->textures.size(); Pair *textures = material_ptr->textures.ptrw(); ShaderLanguage::ShaderNode::Uniform::Hint *texture_hints = shader_ptr->texture_hints.ptrw(); for (int i = 0; i < tc; i++) { glActiveTexture(GL_TEXTURE2 + i); RasterizerStorageGLES2::Texture *t = storage->texture_owner.getornull(textures[i].second); if (!t) { switch (texture_hints[i]) { case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO: case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: { glBindTexture(GL_TEXTURE_2D, storage->resources.black_tex); } break; case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: { glBindTexture(GL_TEXTURE_2D, storage->resources.aniso_tex); } break; case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: { glBindTexture(GL_TEXTURE_2D, storage->resources.normal_tex); } break; default: { glBindTexture(GL_TEXTURE_2D, storage->resources.white_tex); } break; } continue; } t = t->get_ptr(); if (t->redraw_if_visible) { VisualServerRaster::redraw_request(); } glBindTexture(t->target, t->tex_id); } } else { state.canvas_shader.set_custom_shader(0); state.canvas_shader.bind(); } state.canvas_shader.use_material((void *)material_ptr); shader_cache = shader_ptr; canvas_last_material = material; rebind_shader = false; } int blend_mode = shader_cache ? shader_cache->canvas_item.blend_mode : RasterizerStorageGLES2::Shader::CanvasItem::BLEND_MODE_MIX; bool unshaded = true || (shader_cache && blend_mode != RasterizerStorageGLES2::Shader::CanvasItem::BLEND_MODE_MIX); bool reclip = false; if (last_blend_mode != blend_mode) { switch (blend_mode) { case RasterizerStorageGLES2::Shader::CanvasItem::BLEND_MODE_MIX: { glBlendEquation(GL_FUNC_ADD); if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } } break; case RasterizerStorageGLES2::Shader::CanvasItem::BLEND_MODE_ADD: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA, GL_ONE); } break; case RasterizerStorageGLES2::Shader::CanvasItem::BLEND_MODE_SUB: { glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); glBlendFunc(GL_SRC_ALPHA, GL_ONE); } break; case RasterizerStorageGLES2::Shader::CanvasItem::BLEND_MODE_MUL: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_DST_COLOR, GL_ZERO); } break; case RasterizerStorageGLES2::Shader::CanvasItem::BLEND_MODE_PMALPHA: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } break; } } state.uniforms.final_modulate = unshaded ? ci->final_modulate : Color(ci->final_modulate.r * p_modulate.r, ci->final_modulate.g * p_modulate.g, ci->final_modulate.b * p_modulate.b, ci->final_modulate.a * p_modulate.a); state.uniforms.modelview_matrix = ci->final_transform; state.uniforms.extra_matrix = Transform2D(); _set_uniforms(); _canvas_item_render_commands(p_item_list, NULL, reclip, material_ptr); // TODO: figure out when to _flush to get better batching results _flush(); rebind_shader = true; // hacked in for now. if (reclip) { glEnable(GL_SCISSOR_TEST); int y = storage->frame.current_rt->height - (current_clip->final_clip_rect.position.y + current_clip->final_clip_rect.size.y); if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) y = current_clip->final_clip_rect.position.y; glScissor(current_clip->final_clip_rect.position.x, y, current_clip->final_clip_rect.size.width, current_clip->final_clip_rect.size.height); } p_item_list = p_item_list->next; } _flush(); if (current_clip) { glDisable(GL_SCISSOR_TEST); } } void RasterizerCanvasGLES2::canvas_debug_viewport_shadows(Light *p_lights_with_shadow) { } void RasterizerCanvasGLES2::canvas_light_shadow_buffer_update(RID p_buffer, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, LightOccluderInstance *p_occluders, CameraMatrix *p_xform_cache) { } void RasterizerCanvasGLES2::reset_canvas() { glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); glDisable(GL_DITHER); glEnable(GL_BLEND); if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } // bind the back buffer to a texture so shaders can use it. // It should probably use texture unit -3 (as GLES3 does as well) but currently that's buggy. // keeping this for now as there's nothing else that uses texture unit 2 // TODO ^ if (storage->frame.current_rt) { glActiveTexture(GL_TEXTURE0 + 2); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->copy_screen_effect.color); } glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } void RasterizerCanvasGLES2::draw_generic_textured_rect(const Rect2 &dst_rect, const Rect2 &src_rect) { const int p_index_count = 6; const int p_vertex_count = 4; Vertex v[p_vertex_count]; Color c(1, 1, 1, 1); // 0,0 v[0].v = dst_rect.position; v[0].c = c; v[0].uv = src_rect.position; // 0,1 v[1].v = Vector2(dst_rect.position.x, dst_rect.position.y + dst_rect.size.y); v[1].c = c; v[1].uv = Vector2(src_rect.position.x, src_rect.position.y + src_rect.size.y); // 1,1 v[2].v = Vector2(dst_rect.position.x + dst_rect.size.x, dst_rect.position.y + dst_rect.size.y); v[2].c = c; v[2].uv = Vector2(src_rect.position.x + src_rect.size.x, src_rect.position.y + src_rect.size.y); // 1,0 v[3].v = Vector2(dst_rect.position.x + dst_rect.size.x, dst_rect.position.y); v[3].c = c; v[3].uv = Vector2(src_rect.position.x + src_rect.size.x, src_rect.position.y); const int indices[p_index_count] = { 0, 1, 2, 2, 3, 0 }; _draw(GL_TRIANGLES, p_vertex_count, v, p_index_count, indices); } void RasterizerCanvasGLES2::draw_window_margins(int *black_margin, RID *black_image) { } void RasterizerCanvasGLES2::initialize() { // polygon buffer { uint32_t poly_size = GLOBAL_DEF("rendering/limits/buffers/canvas_polygon_buffer_size_kb", 128); poly_size *= 1024; poly_size = MAX(poly_size, (2 + 2 + 4) * 4 * sizeof(float)); glGenBuffers(1, &data.vertex_buffer); glBindBuffer(GL_ARRAY_BUFFER, data.vertex_buffer); glBufferData(GL_ARRAY_BUFFER, poly_size, NULL, GL_DYNAMIC_DRAW); data.vertex_buffer_size = poly_size; glBindBuffer(GL_ARRAY_BUFFER, 0); uint32_t index_size = GLOBAL_DEF("rendering/limits/buffers/canvas_polygon_index_size_kb", 128); index_size *= 1024; // kb glGenBuffers(1, &data.index_buffer); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.index_buffer); glBufferData(GL_ELEMENT_ARRAY_BUFFER, index_size, NULL, GL_DYNAMIC_DRAW); data.index_buffer_size = index_size; glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } // ninepatch buffers { // array buffer #define _EIDX(y, x) (y * 4 + x) const int elems[3 * 2 * 9] = { // first row _EIDX(0, 0), _EIDX(0, 1), _EIDX(1, 1), _EIDX(1, 1), _EIDX(1, 0), _EIDX(0, 0), _EIDX(0, 1), _EIDX(0, 2), _EIDX(1, 2), _EIDX(1, 2), _EIDX(1, 1), _EIDX(0, 1), _EIDX(0, 2), _EIDX(0, 3), _EIDX(1, 3), _EIDX(1, 3), _EIDX(1, 2), _EIDX(0, 2), // second row _EIDX(1, 0), _EIDX(1, 1), _EIDX(2, 1), _EIDX(2, 1), _EIDX(2, 0), _EIDX(1, 0), // the center one would be here, but we'll put it at the end // so it's easier to disable the center and be able to use // one draw call for both _EIDX(1, 2), _EIDX(1, 3), _EIDX(2, 3), _EIDX(2, 3), _EIDX(2, 2), _EIDX(1, 2), // third row _EIDX(2, 0), _EIDX(2, 1), _EIDX(3, 1), _EIDX(3, 1), _EIDX(3, 0), _EIDX(2, 0), _EIDX(2, 1), _EIDX(2, 2), _EIDX(3, 2), _EIDX(3, 2), _EIDX(3, 1), _EIDX(2, 1), _EIDX(2, 2), _EIDX(2, 3), _EIDX(3, 3), _EIDX(3, 3), _EIDX(3, 2), _EIDX(2, 2), // center field _EIDX(1, 1), _EIDX(1, 2), _EIDX(2, 2), _EIDX(2, 2), _EIDX(2, 1), _EIDX(1, 1) }; ; #undef _EIDX memcpy(data.ninepatch_elements, elems, sizeof(elems)); } { const uint32_t size = data.vertex_buffer_size / sizeof(Vertex); data.mem_vertex_buffer = (Vertex *)memalloc(sizeof(Vertex) * size); data.mem_vertex_buffer_offset = 0; data.mem_vertex_buffer_size = size; } { const uint32_t size = data.index_buffer_size / sizeof(int); data.mem_index_buffer = (int *)memalloc(sizeof(int) * size); data.mem_index_buffer_offset = 0; data.mem_index_buffer_size = size; } state.canvas_shader.init(); state.canvas_shader.bind(); } void RasterizerCanvasGLES2::finalize() { } RasterizerCanvasGLES2::RasterizerCanvasGLES2() { } void RasterizerCanvasGLES2::_begin(const GLuint p_primitive) { if (data.primitive != p_primitive) { _flush(); data.primitive = p_primitive; } } void RasterizerCanvasGLES2::_prepare(const int p_vertex_count, const int p_index_count) { if (data.mem_vertex_buffer_size - data.mem_vertex_buffer_offset < p_vertex_count || data.mem_index_buffer_size - data.mem_index_buffer_offset < p_index_count) { _flush(); } } void RasterizerCanvasGLES2::_draw(const GLuint p_primitive, const int p_vertex_count, const Vertex *p_vertices, const int p_index_count, const int *p_indices) { glBindBuffer(GL_ARRAY_BUFFER, data.vertex_buffer); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(Vertex) * p_vertex_count, p_vertices); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.index_buffer); glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, sizeof(int) * p_index_count, p_indices); glEnableVertexAttribArray(VS::ARRAY_VERTEX); glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), NULL); glEnableVertexAttribArray(VS::ARRAY_COLOR); glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, GL_FALSE, sizeof(Vertex), ((uint8_t *)0) + sizeof(Vector2)); glEnableVertexAttribArray(VS::ARRAY_TEX_UV); glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), ((uint8_t *)0) + sizeof(Vector2) + sizeof(Color)); glDrawElements(p_primitive, p_index_count, GL_UNSIGNED_INT, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } void RasterizerCanvasGLES2::_flush() { if (data.mem_vertex_buffer_offset) { _draw(data.primitive, data.mem_vertex_buffer_offset, data.mem_vertex_buffer, data.mem_index_buffer_offset, data.mem_index_buffer); } data.mem_vertex_buffer_offset = 0; data.mem_index_buffer_offset = 0; } void RasterizerCanvasGLES2::_commit(const int p_vertex_count, const int p_index_count) { ERR_FAIL_COND(!p_vertex_count); ERR_FAIL_COND(!p_index_count); if (state.uniforms.extra_matrix != state.prev_uniforms.extra_matrix || state.uniforms.final_modulate != state.prev_uniforms.final_modulate || state.uniforms.modelview_matrix != state.prev_uniforms.modelview_matrix || state.uniforms.projection_matrix != state.prev_uniforms.projection_matrix || state.uniforms.texpixel_size != state.prev_uniforms.texpixel_size || state.uniforms.time != state.prev_uniforms.time) { _set_uniforms(); state.prev_uniforms = state.uniforms; _flush(); } const int new_index_offset = data.mem_index_buffer_offset + p_index_count; for (int i = data.mem_index_buffer_offset; i < new_index_offset; ++i) data.mem_index_buffer[i] += data.mem_vertex_buffer_offset; data.mem_vertex_buffer_offset += p_vertex_count; data.mem_index_buffer_offset = new_index_offset; } void RasterizerCanvasGLES2::_untile() { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); state.tiled = false; } void RasterizerCanvasGLES2::_bind_shader(RasterizerStorageGLES2::Material *p_material) { if (!state.canvas_shader.is_dirty()) { return; } _flush(); if (state.canvas_shader.bind()) { state.canvas_shader.use_material((void *)p_material); } }