/**************************************************************************/ /* test_curve_3d.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef TEST_CURVE_3D_H #define TEST_CURVE_3D_H #include "core/math/math_funcs.h" #include "scene/resources/curve.h" #include "tests/test_macros.h" namespace TestCurve3D { void add_sample_curve_points(Ref &curve) { Vector3 p0 = Vector3(0, 0, 0); Vector3 p1 = Vector3(50, 0, 0); Vector3 p2 = Vector3(50, 50, 50); Vector3 p3 = Vector3(0, 50, 0); Vector3 control0 = p1 - p0; Vector3 control1 = p3 - p2; curve->add_point(p0, Vector3(), control0); curve->add_point(p3, control1, Vector3()); } TEST_CASE("[Curve3D] Default curve is empty") { const Ref curve = memnew(Curve3D); CHECK(curve->get_point_count() == 0); } TEST_CASE("[Curve3D] Point management") { Ref curve = memnew(Curve3D); SUBCASE("Functions for adding/removing points should behave as expected") { curve->set_point_count(2); CHECK(curve->get_point_count() == 2); curve->remove_point(0); CHECK(curve->get_point_count() == 1); curve->add_point(Vector3()); CHECK(curve->get_point_count() == 2); curve->clear_points(); CHECK(curve->get_point_count() == 0); } SUBCASE("Functions for changing single point properties should behave as expected") { Vector3 new_in = Vector3(1, 1, 1); Vector3 new_out = Vector3(1, 1, 1); Vector3 new_pos = Vector3(1, 1, 1); real_t new_tilt = 1; curve->add_point(Vector3()); CHECK(curve->get_point_in(0) != new_in); curve->set_point_in(0, new_in); CHECK(curve->get_point_in(0) == new_in); CHECK(curve->get_point_out(0) != new_out); curve->set_point_out(0, new_out); CHECK(curve->get_point_out(0) == new_out); CHECK(curve->get_point_position(0) != new_pos); curve->set_point_position(0, new_pos); CHECK(curve->get_point_position(0) == new_pos); CHECK(curve->get_point_tilt(0) != new_tilt); curve->set_point_tilt(0, new_tilt); CHECK(curve->get_point_tilt(0) == new_tilt); } } TEST_CASE("[Curve3D] Baked") { Ref curve = memnew(Curve3D); SUBCASE("Single Point") { curve->add_point(Vector3()); CHECK(curve->get_baked_length() == 0); CHECK(curve->get_baked_points().size() == 1); CHECK(curve->get_baked_tilts().size() == 1); CHECK(curve->get_baked_up_vectors().size() == 1); } SUBCASE("Straight line") { curve->add_point(Vector3()); curve->add_point(Vector3(0, 50, 0)); CHECK(Math::is_equal_approx(curve->get_baked_length(), 50)); CHECK(curve->get_baked_points().size() == 369); CHECK(curve->get_baked_tilts().size() == 369); CHECK(curve->get_baked_up_vectors().size() == 369); } SUBCASE("BeziƩr Curve") { add_sample_curve_points(curve); real_t len = curve->get_baked_length(); real_t n_points = curve->get_baked_points().size(); // Curve length should be bigger than a straight line between points CHECK(len > 50); SUBCASE("Increase bake interval") { curve->set_bake_interval(10.0); CHECK(curve->get_bake_interval() == 10.0); // Lower resolution should imply less points and smaller length CHECK(curve->get_baked_length() < len); CHECK(curve->get_baked_points().size() < n_points); CHECK(curve->get_baked_tilts().size() < n_points); CHECK(curve->get_baked_up_vectors().size() < n_points); } SUBCASE("Disable up vectors") { curve->set_up_vector_enabled(false); CHECK(curve->is_up_vector_enabled() == false); CHECK(curve->get_baked_up_vectors().size() == 0); } } } TEST_CASE("[Curve3D] Sampling") { // Sampling over a simple straight line to make assertions simpler Ref curve = memnew(Curve3D); curve->add_point(Vector3()); curve->add_point(Vector3(0, 50, 0)); SUBCASE("sample") { CHECK(curve->sample(0, 0) == Vector3(0, 0, 0)); CHECK(curve->sample(0, 0.5) == Vector3(0, 25, 0)); CHECK(curve->sample(0, 1) == Vector3(0, 50, 0)); } SUBCASE("samplef") { CHECK(curve->samplef(0) == Vector3(0, 0, 0)); CHECK(curve->samplef(0.5) == Vector3(0, 25, 0)); CHECK(curve->samplef(1) == Vector3(0, 50, 0)); } SUBCASE("sample_baked, cubic = false") { CHECK(curve->sample_baked(curve->get_closest_offset(Vector3(0, 0, 0))) == Vector3(0, 0, 0)); CHECK(curve->sample_baked(curve->get_closest_offset(Vector3(0, 25, 0))) == Vector3(0, 25, 0)); CHECK(curve->sample_baked(curve->get_closest_offset(Vector3(0, 50, 0))) == Vector3(0, 50, 0)); } SUBCASE("sample_baked, cubic = true") { CHECK(curve->sample_baked(curve->get_closest_offset(Vector3(0, 0, 0)), true) == Vector3(0, 0, 0)); CHECK(curve->sample_baked(curve->get_closest_offset(Vector3(0, 25, 0)), true) == Vector3(0, 25, 0)); CHECK(curve->sample_baked(curve->get_closest_offset(Vector3(0, 50, 0)), true) == Vector3(0, 50, 0)); } SUBCASE("sample_baked_with_rotation") { CHECK(curve->sample_baked_with_rotation(curve->get_closest_offset(Vector3(0, 0, 0))) == Transform3D(Basis(Vector3(0, 0, -1), Vector3(1, 0, 0), Vector3(0, -1, 0)), Vector3(0, 0, 0))); CHECK(curve->sample_baked_with_rotation(curve->get_closest_offset(Vector3(0, 25, 0))) == Transform3D(Basis(Vector3(0, 0, -1), Vector3(1, 0, 0), Vector3(0, -1, 0)), Vector3(0, 25, 0))); CHECK(curve->sample_baked_with_rotation(curve->get_closest_offset(Vector3(0, 50, 0))) == Transform3D(Basis(Vector3(0, 0, -1), Vector3(1, 0, 0), Vector3(0, -1, 0)), Vector3(0, 50, 0))); } SUBCASE("sample_baked_tilt") { CHECK(curve->sample_baked_tilt(curve->get_closest_offset(Vector3(0, 0, 0))) == 0); CHECK(curve->sample_baked_tilt(curve->get_closest_offset(Vector3(0, 25, 0))) == 0); CHECK(curve->sample_baked_tilt(curve->get_closest_offset(Vector3(0, 50, 0))) == 0); } SUBCASE("sample_baked_up_vector, p_apply_tilt = false") { CHECK(curve->sample_baked_up_vector(curve->get_closest_offset(Vector3(0, 0, 0))) == Vector3(1, 0, 0)); CHECK(curve->sample_baked_up_vector(curve->get_closest_offset(Vector3(0, 25, 0))) == Vector3(1, 0, 0)); CHECK(curve->sample_baked_up_vector(curve->get_closest_offset(Vector3(0, 50, 0))) == Vector3(1, 0, 0)); } SUBCASE("sample_baked_up_vector, p_apply_tilt = true") { CHECK(curve->sample_baked_up_vector(curve->get_closest_offset(Vector3(0, 0, 0)), true) == Vector3(1, 0, 0)); CHECK(curve->sample_baked_up_vector(curve->get_closest_offset(Vector3(0, 25, 0)), true) == Vector3(1, 0, 0)); CHECK(curve->sample_baked_up_vector(curve->get_closest_offset(Vector3(0, 50, 0)), true) == Vector3(1, 0, 0)); } SUBCASE("get_closest_point") { CHECK(curve->get_closest_point(Vector3(0, 0, 0)) == Vector3(0, 0, 0)); CHECK(curve->get_closest_point(Vector3(0, 25, 0)) == Vector3(0, 25, 0)); CHECK(curve->get_closest_point(Vector3(50, 25, 0)) == Vector3(0, 25, 0)); CHECK(curve->get_closest_point(Vector3(0, 50, 0)) == Vector3(0, 50, 0)); CHECK(curve->get_closest_point(Vector3(50, 50, 0)) == Vector3(0, 50, 0)); CHECK(curve->get_closest_point(Vector3(0, 100, 0)) == Vector3(0, 50, 0)); } } TEST_CASE("[Curve3D] Tessellation") { Ref curve = memnew(Curve3D); add_sample_curve_points(curve); const int default_size = curve->tessellate().size(); SUBCASE("Increase to max stages should increase num of points") { CHECK(curve->tessellate(6).size() > default_size); } SUBCASE("Decrease to max stages should decrease num of points") { CHECK(curve->tessellate(4).size() < default_size); } SUBCASE("Increase to tolerance should decrease num of points") { CHECK(curve->tessellate(5, 5).size() < default_size); } SUBCASE("Decrease to tolerance should increase num of points") { CHECK(curve->tessellate(5, 3).size() > default_size); } SUBCASE("Adding a straight segment should only add the last point to tessellate return array") { curve->add_point(Vector3(0, 100, 0)); PackedVector3Array tes = curve->tessellate(); CHECK(tes.size() == default_size + 1); CHECK(tes[tes.size() - 1] == Vector3(0, 100, 0)); CHECK(tes[tes.size() - 2] == Vector3(0, 50, 0)); } } TEST_CASE("[Curve3D] Even length tessellation") { Ref curve = memnew(Curve3D); add_sample_curve_points(curve); const int default_size = curve->tessellate_even_length().size(); // Default tessellate_even_length tolerance_length is 20.0, by adding a 100 units // straight, we expect the total size to be increased by more than 5, // that is, the algo will pick a length < 20.0 and will divide the straight as // well as the curve as opposed to tessellate() which only adds the final point. curve->add_point(Vector3(0, 150, 0)); CHECK(curve->tessellate_even_length().size() > default_size + 5); } } // namespace TestCurve3D #endif // TEST_CURVE_3D_H