/* ssl/t1_enc.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include <stdio.h> #include "ssl_locl.h" #ifndef OPENSSL_NO_COMP # include <openssl/comp.h> #endif #include <openssl/evp.h> #include <openssl/hmac.h> #include <openssl/md5.h> #include <openssl/rand.h> #ifdef KSSL_DEBUG # include <openssl/des.h> #endif /* seed1 through seed5 are virtually concatenated */ static int tls1_P_hash(const EVP_MD *md, const unsigned char *sec, int sec_len, const void *seed1, int seed1_len, const void *seed2, int seed2_len, const void *seed3, int seed3_len, const void *seed4, int seed4_len, const void *seed5, int seed5_len, unsigned char *out, int olen) { int chunk; size_t j; EVP_MD_CTX ctx, ctx_tmp, ctx_init; EVP_PKEY *mac_key; unsigned char A1[EVP_MAX_MD_SIZE]; size_t A1_len; int ret = 0; chunk = EVP_MD_size(md); OPENSSL_assert(chunk >= 0); EVP_MD_CTX_init(&ctx); EVP_MD_CTX_init(&ctx_tmp); EVP_MD_CTX_init(&ctx_init); EVP_MD_CTX_set_flags(&ctx_init, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len); if (!mac_key) goto err; if (!EVP_DigestSignInit(&ctx_init, NULL, md, NULL, mac_key)) goto err; if (!EVP_MD_CTX_copy_ex(&ctx, &ctx_init)) goto err; if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len)) goto err; if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len)) goto err; if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len)) goto err; if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len)) goto err; if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len)) goto err; if (!EVP_DigestSignFinal(&ctx, A1, &A1_len)) goto err; for (;;) { /* Reinit mac contexts */ if (!EVP_MD_CTX_copy_ex(&ctx, &ctx_init)) goto err; if (!EVP_DigestSignUpdate(&ctx, A1, A1_len)) goto err; if (olen > chunk && !EVP_MD_CTX_copy_ex(&ctx_tmp, &ctx)) goto err; if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len)) goto err; if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len)) goto err; if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len)) goto err; if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len)) goto err; if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len)) goto err; if (olen > chunk) { if (!EVP_DigestSignFinal(&ctx, out, &j)) goto err; out += j; olen -= j; /* calc the next A1 value */ if (!EVP_DigestSignFinal(&ctx_tmp, A1, &A1_len)) goto err; } else { /* last one */ if (!EVP_DigestSignFinal(&ctx, A1, &A1_len)) goto err; memcpy(out, A1, olen); break; } } ret = 1; err: EVP_PKEY_free(mac_key); EVP_MD_CTX_cleanup(&ctx); EVP_MD_CTX_cleanup(&ctx_tmp); EVP_MD_CTX_cleanup(&ctx_init); OPENSSL_cleanse(A1, sizeof(A1)); return ret; } /* seed1 through seed5 are virtually concatenated */ static int tls1_PRF(long digest_mask, const void *seed1, int seed1_len, const void *seed2, int seed2_len, const void *seed3, int seed3_len, const void *seed4, int seed4_len, const void *seed5, int seed5_len, const unsigned char *sec, int slen, unsigned char *out1, unsigned char *out2, int olen) { int len, i, idx, count; const unsigned char *S1; long m; const EVP_MD *md; int ret = 0; /* Count number of digests and partition sec evenly */ count = 0; for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) { if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) count++; } if (!count) { /* Should never happen */ SSLerr(SSL_F_TLS1_PRF, ERR_R_INTERNAL_ERROR); goto err; } len = slen / count; if (count == 1) slen = 0; S1 = sec; memset(out1, 0, olen); for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) { if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) { if (!md) { SSLerr(SSL_F_TLS1_PRF, SSL_R_UNSUPPORTED_DIGEST_TYPE); goto err; } if (!tls1_P_hash(md, S1, len + (slen & 1), seed1, seed1_len, seed2, seed2_len, seed3, seed3_len, seed4, seed4_len, seed5, seed5_len, out2, olen)) goto err; S1 += len; for (i = 0; i < olen; i++) { out1[i] ^= out2[i]; } } } ret = 1; err: return ret; } static int tls1_generate_key_block(SSL *s, unsigned char *km, unsigned char *tmp, int num) { int ret; ret = tls1_PRF(ssl_get_algorithm2(s), TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE, s->s3->server_random, SSL3_RANDOM_SIZE, s->s3->client_random, SSL3_RANDOM_SIZE, NULL, 0, NULL, 0, s->session->master_key, s->session->master_key_length, km, tmp, num); #ifdef KSSL_DEBUG fprintf(stderr, "tls1_generate_key_block() ==> %d byte master_key =\n\t", s->session->master_key_length); { int i; for (i = 0; i < s->session->master_key_length; i++) { fprintf(stderr, "%02X", s->session->master_key[i]); } fprintf(stderr, "\n"); } #endif /* KSSL_DEBUG */ return ret; } int tls1_change_cipher_state(SSL *s, int which) { static const unsigned char empty[] = ""; unsigned char *p, *mac_secret; unsigned char *exp_label; unsigned char tmp1[EVP_MAX_KEY_LENGTH]; unsigned char tmp2[EVP_MAX_KEY_LENGTH]; unsigned char iv1[EVP_MAX_IV_LENGTH * 2]; unsigned char iv2[EVP_MAX_IV_LENGTH * 2]; unsigned char *ms, *key, *iv; int client_write; EVP_CIPHER_CTX *dd; const EVP_CIPHER *c; #ifndef OPENSSL_NO_COMP const SSL_COMP *comp; #endif const EVP_MD *m; int mac_type; int *mac_secret_size; EVP_MD_CTX *mac_ctx; EVP_PKEY *mac_key; int is_export, n, i, j, k, exp_label_len, cl; int reuse_dd = 0; is_export = SSL_C_IS_EXPORT(s->s3->tmp.new_cipher); c = s->s3->tmp.new_sym_enc; m = s->s3->tmp.new_hash; mac_type = s->s3->tmp.new_mac_pkey_type; #ifndef OPENSSL_NO_COMP comp = s->s3->tmp.new_compression; #endif #ifdef KSSL_DEBUG fprintf(stderr, "tls1_change_cipher_state(which= %d) w/\n", which); fprintf(stderr, "\talg= %ld/%ld, comp= %p\n", s->s3->tmp.new_cipher->algorithm_mkey, s->s3->tmp.new_cipher->algorithm_auth, comp); fprintf(stderr, "\tevp_cipher == %p ==? &d_cbc_ede_cipher3\n", c); fprintf(stderr, "\tevp_cipher: nid, blksz= %d, %d, keylen=%d, ivlen=%d\n", c->nid, c->block_size, c->key_len, c->iv_len); fprintf(stderr, "\tkey_block: len= %d, data= ", s->s3->tmp.key_block_length); { int i; for (i = 0; i < s->s3->tmp.key_block_length; i++) fprintf(stderr, "%02x", s->s3->tmp.key_block[i]); fprintf(stderr, "\n"); } #endif /* KSSL_DEBUG */ if (which & SSL3_CC_READ) { if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM; else s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM; if (s->enc_read_ctx != NULL) reuse_dd = 1; else if ((s->enc_read_ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL) goto err; else /* * make sure it's intialized in case we exit later with an error */ EVP_CIPHER_CTX_init(s->enc_read_ctx); dd = s->enc_read_ctx; mac_ctx = ssl_replace_hash(&s->read_hash, NULL); if (mac_ctx == NULL) goto err; #ifndef OPENSSL_NO_COMP if (s->expand != NULL) { COMP_CTX_free(s->expand); s->expand = NULL; } if (comp != NULL) { s->expand = COMP_CTX_new(comp->method); if (s->expand == NULL) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, SSL_R_COMPRESSION_LIBRARY_ERROR); goto err2; } if (s->s3->rrec.comp == NULL) s->s3->rrec.comp = (unsigned char *) OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH); if (s->s3->rrec.comp == NULL) goto err; } #endif /* * this is done by dtls1_reset_seq_numbers for DTLS */ if (!SSL_IS_DTLS(s)) memset(&(s->s3->read_sequence[0]), 0, 8); mac_secret = &(s->s3->read_mac_secret[0]); mac_secret_size = &(s->s3->read_mac_secret_size); } else { if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM; else s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM; if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s)) reuse_dd = 1; else if ((s->enc_write_ctx = EVP_CIPHER_CTX_new()) == NULL) goto err; dd = s->enc_write_ctx; if (SSL_IS_DTLS(s)) { mac_ctx = EVP_MD_CTX_create(); if (mac_ctx == NULL) goto err; s->write_hash = mac_ctx; } else { mac_ctx = ssl_replace_hash(&s->write_hash, NULL); if (mac_ctx == NULL) goto err; } #ifndef OPENSSL_NO_COMP if (s->compress != NULL) { COMP_CTX_free(s->compress); s->compress = NULL; } if (comp != NULL) { s->compress = COMP_CTX_new(comp->method); if (s->compress == NULL) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, SSL_R_COMPRESSION_LIBRARY_ERROR); goto err2; } } #endif /* * this is done by dtls1_reset_seq_numbers for DTLS */ if (!SSL_IS_DTLS(s)) memset(&(s->s3->write_sequence[0]), 0, 8); mac_secret = &(s->s3->write_mac_secret[0]); mac_secret_size = &(s->s3->write_mac_secret_size); } if (reuse_dd) EVP_CIPHER_CTX_cleanup(dd); p = s->s3->tmp.key_block; i = *mac_secret_size = s->s3->tmp.new_mac_secret_size; cl = EVP_CIPHER_key_length(c); j = is_export ? (cl < SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher) ? cl : SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher)) : cl; /* Was j=(exp)?5:EVP_CIPHER_key_length(c); */ /* If GCM mode only part of IV comes from PRF */ if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) k = EVP_GCM_TLS_FIXED_IV_LEN; else k = EVP_CIPHER_iv_length(c); if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) || (which == SSL3_CHANGE_CIPHER_SERVER_READ)) { ms = &(p[0]); n = i + i; key = &(p[n]); n += j + j; iv = &(p[n]); n += k + k; exp_label = (unsigned char *)TLS_MD_CLIENT_WRITE_KEY_CONST; exp_label_len = TLS_MD_CLIENT_WRITE_KEY_CONST_SIZE; client_write = 1; } else { n = i; ms = &(p[n]); n += i + j; key = &(p[n]); n += j + k; iv = &(p[n]); n += k; exp_label = (unsigned char *)TLS_MD_SERVER_WRITE_KEY_CONST; exp_label_len = TLS_MD_SERVER_WRITE_KEY_CONST_SIZE; client_write = 0; } if (n > s->s3->tmp.key_block_length) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } memcpy(mac_secret, ms, i); if (!(EVP_CIPHER_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER)) { mac_key = EVP_PKEY_new_mac_key(mac_type, NULL, mac_secret, *mac_secret_size); if (mac_key == NULL || EVP_DigestSignInit(mac_ctx, NULL, m, NULL, mac_key) <= 0) { EVP_PKEY_free(mac_key); SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } EVP_PKEY_free(mac_key); } #ifdef TLS_DEBUG printf("which = %04X\nmac key=", which); { int z; for (z = 0; z < i; z++) printf("%02X%c", ms[z], ((z + 1) % 16) ? ' ' : '\n'); } #endif if (is_export) { /* * In here I set both the read and write key/iv to the same value * since only the correct one will be used :-). */ if (!tls1_PRF(ssl_get_algorithm2(s), exp_label, exp_label_len, s->s3->client_random, SSL3_RANDOM_SIZE, s->s3->server_random, SSL3_RANDOM_SIZE, NULL, 0, NULL, 0, key, j, tmp1, tmp2, EVP_CIPHER_key_length(c))) goto err2; key = tmp1; if (k > 0) { if (!tls1_PRF(ssl_get_algorithm2(s), TLS_MD_IV_BLOCK_CONST, TLS_MD_IV_BLOCK_CONST_SIZE, s->s3->client_random, SSL3_RANDOM_SIZE, s->s3->server_random, SSL3_RANDOM_SIZE, NULL, 0, NULL, 0, empty, 0, iv1, iv2, k * 2)) goto err2; if (client_write) iv = iv1; else iv = &(iv1[k]); } } s->session->key_arg_length = 0; #ifdef KSSL_DEBUG { int i; fprintf(stderr, "EVP_CipherInit_ex(dd,c,key=,iv=,which)\n"); fprintf(stderr, "\tkey= "); for (i = 0; i < c->key_len; i++) fprintf(stderr, "%02x", key[i]); fprintf(stderr, "\n"); fprintf(stderr, "\t iv= "); for (i = 0; i < c->iv_len; i++) fprintf(stderr, "%02x", iv[i]); fprintf(stderr, "\n"); } #endif /* KSSL_DEBUG */ if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) { if (!EVP_CipherInit_ex(dd, c, NULL, key, NULL, (which & SSL3_CC_WRITE)) || !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_GCM_SET_IV_FIXED, k, iv)) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } } else { if (!EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE))) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } } /* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */ if ((EVP_CIPHER_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER) && *mac_secret_size && !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_MAC_KEY, *mac_secret_size, mac_secret)) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } #ifdef OPENSSL_SSL_TRACE_CRYPTO if (s->msg_callback) { int wh = which & SSL3_CC_WRITE ? TLS1_RT_CRYPTO_WRITE : 0; if (*mac_secret_size) s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_MAC, mac_secret, *mac_secret_size, s, s->msg_callback_arg); if (c->key_len) s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_KEY, key, c->key_len, s, s->msg_callback_arg); if (k) { if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) wh |= TLS1_RT_CRYPTO_FIXED_IV; else wh |= TLS1_RT_CRYPTO_IV; s->msg_callback(2, s->version, wh, iv, k, s, s->msg_callback_arg); } } #endif #ifdef TLS_DEBUG printf("which = %04X\nkey=", which); { int z; for (z = 0; z < EVP_CIPHER_key_length(c); z++) printf("%02X%c", key[z], ((z + 1) % 16) ? ' ' : '\n'); } printf("\niv="); { int z; for (z = 0; z < k; z++) printf("%02X%c", iv[z], ((z + 1) % 16) ? ' ' : '\n'); } printf("\n"); #endif OPENSSL_cleanse(tmp1, sizeof(tmp1)); OPENSSL_cleanse(tmp2, sizeof(tmp1)); OPENSSL_cleanse(iv1, sizeof(iv1)); OPENSSL_cleanse(iv2, sizeof(iv2)); return (1); err: SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE); err2: return (0); } int tls1_setup_key_block(SSL *s) { unsigned char *p1, *p2 = NULL; const EVP_CIPHER *c; const EVP_MD *hash; int num; SSL_COMP *comp; int mac_type = NID_undef, mac_secret_size = 0; int ret = 0; #ifdef KSSL_DEBUG fprintf(stderr, "tls1_setup_key_block()\n"); #endif /* KSSL_DEBUG */ if (s->s3->tmp.key_block_length != 0) return (1); if (!ssl_cipher_get_evp (s->session, &c, &hash, &mac_type, &mac_secret_size, &comp)) { SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE); return (0); } s->s3->tmp.new_sym_enc = c; s->s3->tmp.new_hash = hash; s->s3->tmp.new_mac_pkey_type = mac_type; s->s3->tmp.new_mac_secret_size = mac_secret_size; num = EVP_CIPHER_key_length(c) + mac_secret_size + EVP_CIPHER_iv_length(c); num *= 2; ssl3_cleanup_key_block(s); if ((p1 = (unsigned char *)OPENSSL_malloc(num)) == NULL) { SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE); goto err; } s->s3->tmp.key_block_length = num; s->s3->tmp.key_block = p1; if ((p2 = (unsigned char *)OPENSSL_malloc(num)) == NULL) { SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE); goto err; } #ifdef TLS_DEBUG printf("client random\n"); { int z; for (z = 0; z < SSL3_RANDOM_SIZE; z++) printf("%02X%c", s->s3->client_random[z], ((z + 1) % 16) ? ' ' : '\n'); } printf("server random\n"); { int z; for (z = 0; z < SSL3_RANDOM_SIZE; z++) printf("%02X%c", s->s3->server_random[z], ((z + 1) % 16) ? ' ' : '\n'); } printf("pre-master\n"); { int z; for (z = 0; z < s->session->master_key_length; z++) printf("%02X%c", s->session->master_key[z], ((z + 1) % 16) ? ' ' : '\n'); } #endif if (!tls1_generate_key_block(s, p1, p2, num)) goto err; #ifdef TLS_DEBUG printf("\nkey block\n"); { int z; for (z = 0; z < num; z++) printf("%02X%c", p1[z], ((z + 1) % 16) ? ' ' : '\n'); } #endif if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) && s->method->version <= TLS1_VERSION) { /* * enable vulnerability countermeasure for CBC ciphers with known-IV * problem (http://www.openssl.org/~bodo/tls-cbc.txt) */ s->s3->need_empty_fragments = 1; if (s->session->cipher != NULL) { if (s->session->cipher->algorithm_enc == SSL_eNULL) s->s3->need_empty_fragments = 0; #ifndef OPENSSL_NO_RC4 if (s->session->cipher->algorithm_enc == SSL_RC4) s->s3->need_empty_fragments = 0; #endif } } ret = 1; err: if (p2) { OPENSSL_cleanse(p2, num); OPENSSL_free(p2); } return (ret); } /*- * tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively. * * Returns: * 0: (in non-constant time) if the record is publically invalid (i.e. too * short etc). * 1: if the record's padding is valid / the encryption was successful. * -1: if the record's padding/AEAD-authenticator is invalid or, if sending, * an internal error occured. */ int tls1_enc(SSL *s, int send) { SSL3_RECORD *rec; EVP_CIPHER_CTX *ds; unsigned long l; int bs, i, j, k, pad = 0, ret, mac_size = 0; const EVP_CIPHER *enc; if (send) { if (EVP_MD_CTX_md(s->write_hash)) { int n = EVP_MD_CTX_size(s->write_hash); OPENSSL_assert(n >= 0); } ds = s->enc_write_ctx; rec = &(s->s3->wrec); if (s->enc_write_ctx == NULL) enc = NULL; else { int ivlen; enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); /* For TLSv1.1 and later explicit IV */ if (SSL_USE_EXPLICIT_IV(s) && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE) ivlen = EVP_CIPHER_iv_length(enc); else ivlen = 0; if (ivlen > 1) { if (rec->data != rec->input) /* * we can't write into the input stream: Can this ever * happen?? (steve) */ fprintf(stderr, "%s:%d: rec->data != rec->input\n", __FILE__, __LINE__); else if (RAND_bytes(rec->input, ivlen) <= 0) return -1; } } } else { if (EVP_MD_CTX_md(s->read_hash)) { int n = EVP_MD_CTX_size(s->read_hash); OPENSSL_assert(n >= 0); } ds = s->enc_read_ctx; rec = &(s->s3->rrec); if (s->enc_read_ctx == NULL) enc = NULL; else enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); } #ifdef KSSL_DEBUG fprintf(stderr, "tls1_enc(%d)\n", send); #endif /* KSSL_DEBUG */ if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { memmove(rec->data, rec->input, rec->length); rec->input = rec->data; ret = 1; } else { l = rec->length; bs = EVP_CIPHER_block_size(ds->cipher); if (EVP_CIPHER_flags(ds->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) { unsigned char buf[EVP_AEAD_TLS1_AAD_LEN], *seq; seq = send ? s->s3->write_sequence : s->s3->read_sequence; if (SSL_IS_DTLS(s)) { unsigned char dtlsseq[9], *p = dtlsseq; s2n(send ? s->d1->w_epoch : s->d1->r_epoch, p); memcpy(p, &seq[2], 6); memcpy(buf, dtlsseq, 8); } else { memcpy(buf, seq, 8); for (i = 7; i >= 0; i--) { /* increment */ ++seq[i]; if (seq[i] != 0) break; } } buf[8] = rec->type; buf[9] = (unsigned char)(s->version >> 8); buf[10] = (unsigned char)(s->version); buf[11] = rec->length >> 8; buf[12] = rec->length & 0xff; pad = EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_AEAD_TLS1_AAD, EVP_AEAD_TLS1_AAD_LEN, buf); if (pad <= 0) return -1; if (send) { l += pad; rec->length += pad; } } else if ((bs != 1) && send) { i = bs - ((int)l % bs); /* Add weird padding of upto 256 bytes */ /* we need to add 'i' padding bytes of value j */ j = i - 1; if (s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) { if (s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) j++; } for (k = (int)l; k < (int)(l + i); k++) rec->input[k] = j; l += i; rec->length += i; } #ifdef KSSL_DEBUG { unsigned long ui; fprintf(stderr, "EVP_Cipher(ds=%p,rec->data=%p,rec->input=%p,l=%ld) ==>\n", ds, rec->data, rec->input, l); fprintf(stderr, "\tEVP_CIPHER_CTX: %d buf_len, %d key_len [%lu %lu], %d iv_len\n", ds->buf_len, ds->cipher->key_len, DES_KEY_SZ, DES_SCHEDULE_SZ, ds->cipher->iv_len); fprintf(stderr, "\t\tIV: "); for (i = 0; i < ds->cipher->iv_len; i++) fprintf(stderr, "%02X", ds->iv[i]); fprintf(stderr, "\n"); fprintf(stderr, "\trec->input="); for (ui = 0; ui < l; ui++) fprintf(stderr, " %02x", rec->input[ui]); fprintf(stderr, "\n"); } #endif /* KSSL_DEBUG */ if (!send) { if (l == 0 || l % bs != 0) return 0; } i = EVP_Cipher(ds, rec->data, rec->input, l); if ((EVP_CIPHER_flags(ds->cipher) & EVP_CIPH_FLAG_CUSTOM_CIPHER) ? (i < 0) : (i == 0)) return -1; /* AEAD can fail to verify MAC */ if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE && !send) { rec->data += EVP_GCM_TLS_EXPLICIT_IV_LEN; rec->input += EVP_GCM_TLS_EXPLICIT_IV_LEN; rec->length -= EVP_GCM_TLS_EXPLICIT_IV_LEN; } #ifdef KSSL_DEBUG { unsigned long i; fprintf(stderr, "\trec->data="); for (i = 0; i < l; i++) fprintf(stderr, " %02x", rec->data[i]); fprintf(stderr, "\n"); } #endif /* KSSL_DEBUG */ ret = 1; if (EVP_MD_CTX_md(s->read_hash) != NULL) mac_size = EVP_MD_CTX_size(s->read_hash); if ((bs != 1) && !send) ret = tls1_cbc_remove_padding(s, rec, bs, mac_size); if (pad && !send) rec->length -= pad; } return ret; } int tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out) { unsigned int ret; EVP_MD_CTX ctx, *d = NULL; int i; if (s->s3->handshake_buffer) if (!ssl3_digest_cached_records(s)) return 0; for (i = 0; i < SSL_MAX_DIGEST; i++) { if (s->s3->handshake_dgst[i] && EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) { d = s->s3->handshake_dgst[i]; break; } } if (!d) { SSLerr(SSL_F_TLS1_CERT_VERIFY_MAC, SSL_R_NO_REQUIRED_DIGEST); return 0; } EVP_MD_CTX_init(&ctx); if (EVP_MD_CTX_copy_ex(&ctx, d) <=0 || EVP_DigestFinal_ex(&ctx, out, &ret) <= 0) ret = 0; EVP_MD_CTX_cleanup(&ctx); return ((int)ret); } int tls1_final_finish_mac(SSL *s, const char *str, int slen, unsigned char *out) { unsigned int i; EVP_MD_CTX ctx; unsigned char buf[2 * EVP_MAX_MD_SIZE]; unsigned char *q, buf2[12]; int idx; long mask; int err = 0; const EVP_MD *md; q = buf; if (s->s3->handshake_buffer) if (!ssl3_digest_cached_records(s)) return 0; EVP_MD_CTX_init(&ctx); for (idx = 0; ssl_get_handshake_digest(idx, &mask, &md); idx++) { if (mask & ssl_get_algorithm2(s)) { int hashsize = EVP_MD_size(md); EVP_MD_CTX *hdgst = s->s3->handshake_dgst[idx]; if (!hdgst || hashsize < 0 || hashsize > (int)(sizeof buf - (size_t)(q - buf))) { /* * internal error: 'buf' is too small for this cipersuite! */ err = 1; } else { if (!EVP_MD_CTX_copy_ex(&ctx, hdgst) || !EVP_DigestFinal_ex(&ctx, q, &i) || (i != (unsigned int)hashsize)) err = 1; q += hashsize; } } } if (!tls1_PRF(ssl_get_algorithm2(s), str, slen, buf, (int)(q - buf), NULL, 0, NULL, 0, NULL, 0, s->session->master_key, s->session->master_key_length, out, buf2, sizeof buf2)) err = 1; EVP_MD_CTX_cleanup(&ctx); OPENSSL_cleanse(buf, (int)(q - buf)); OPENSSL_cleanse(buf2, sizeof(buf2)); if (err) return 0; else return sizeof buf2; } int tls1_mac(SSL *ssl, unsigned char *md, int send) { SSL3_RECORD *rec; unsigned char *seq; EVP_MD_CTX *hash; size_t md_size, orig_len; int i; EVP_MD_CTX hmac, *mac_ctx; unsigned char header[13]; int stream_mac = (send ? (ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) : (ssl->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM)); int t; if (send) { rec = &(ssl->s3->wrec); seq = &(ssl->s3->write_sequence[0]); hash = ssl->write_hash; } else { rec = &(ssl->s3->rrec); seq = &(ssl->s3->read_sequence[0]); hash = ssl->read_hash; } t = EVP_MD_CTX_size(hash); OPENSSL_assert(t >= 0); md_size = t; /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */ if (stream_mac) { mac_ctx = hash; } else { if (!EVP_MD_CTX_copy(&hmac, hash)) return -1; mac_ctx = &hmac; } if (SSL_IS_DTLS(ssl)) { unsigned char dtlsseq[8], *p = dtlsseq; s2n(send ? ssl->d1->w_epoch : ssl->d1->r_epoch, p); memcpy(p, &seq[2], 6); memcpy(header, dtlsseq, 8); } else memcpy(header, seq, 8); /* * kludge: tls1_cbc_remove_padding passes padding length in rec->type */ orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8); rec->type &= 0xff; header[8] = rec->type; header[9] = (unsigned char)(ssl->version >> 8); header[10] = (unsigned char)(ssl->version); header[11] = (rec->length) >> 8; header[12] = (rec->length) & 0xff; if (!send && EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && ssl3_cbc_record_digest_supported(mac_ctx)) { /* * This is a CBC-encrypted record. We must avoid leaking any * timing-side channel information about how many blocks of data we * are hashing because that gives an attacker a timing-oracle. */ /* Final param == not SSLv3 */ if (ssl3_cbc_digest_record(mac_ctx, md, &md_size, header, rec->input, rec->length + md_size, orig_len, ssl->s3->read_mac_secret, ssl->s3->read_mac_secret_size, 0) <= 0) { if (!stream_mac) EVP_MD_CTX_cleanup(&hmac); return -1; } } else { if (EVP_DigestSignUpdate(mac_ctx, header, sizeof(header)) <= 0 || EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length) <= 0 || EVP_DigestSignFinal(mac_ctx, md, &md_size) <= 0) { if (!stream_mac) EVP_MD_CTX_cleanup(&hmac); return -1; } #ifdef OPENSSL_FIPS if (!send && FIPS_mode()) tls_fips_digest_extra(ssl->enc_read_ctx, mac_ctx, rec->input, rec->length, orig_len); #endif } if (!stream_mac) EVP_MD_CTX_cleanup(&hmac); #ifdef TLS_DEBUG fprintf(stderr, "seq="); { int z; for (z = 0; z < 8; z++) fprintf(stderr, "%02X ", seq[z]); fprintf(stderr, "\n"); } fprintf(stderr, "rec="); { unsigned int z; for (z = 0; z < rec->length; z++) fprintf(stderr, "%02X ", rec->data[z]); fprintf(stderr, "\n"); } #endif if (!SSL_IS_DTLS(ssl)) { for (i = 7; i >= 0; i--) { ++seq[i]; if (seq[i] != 0) break; } } #ifdef TLS_DEBUG { unsigned int z; for (z = 0; z < md_size; z++) fprintf(stderr, "%02X ", md[z]); fprintf(stderr, "\n"); } #endif return (md_size); } int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p, int len) { unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH]; const void *co = NULL, *so = NULL; int col = 0, sol = 0; #ifdef KSSL_DEBUG fprintf(stderr, "tls1_generate_master_secret(%p,%p, %p, %d)\n", s, out, p, len); #endif /* KSSL_DEBUG */ #ifdef TLSEXT_TYPE_opaque_prf_input if (s->s3->client_opaque_prf_input != NULL && s->s3->server_opaque_prf_input != NULL && s->s3->client_opaque_prf_input_len > 0 && s->s3->client_opaque_prf_input_len == s->s3->server_opaque_prf_input_len) { co = s->s3->client_opaque_prf_input; col = s->s3->server_opaque_prf_input_len; so = s->s3->server_opaque_prf_input; /* * must be same as col (see * draft-rescorla-tls-opaque-prf-input-00.txt, section 3.1) */ sol = s->s3->client_opaque_prf_input_len; } #endif tls1_PRF(ssl_get_algorithm2(s), TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE, s->s3->client_random, SSL3_RANDOM_SIZE, co, col, s->s3->server_random, SSL3_RANDOM_SIZE, so, sol, p, len, s->session->master_key, buff, sizeof buff); OPENSSL_cleanse(buff, sizeof buff); #ifdef SSL_DEBUG fprintf(stderr, "Premaster Secret:\n"); BIO_dump_fp(stderr, (char *)p, len); fprintf(stderr, "Client Random:\n"); BIO_dump_fp(stderr, (char *)s->s3->client_random, SSL3_RANDOM_SIZE); fprintf(stderr, "Server Random:\n"); BIO_dump_fp(stderr, (char *)s->s3->server_random, SSL3_RANDOM_SIZE); fprintf(stderr, "Master Secret:\n"); BIO_dump_fp(stderr, (char *)s->session->master_key, SSL3_MASTER_SECRET_SIZE); #endif #ifdef OPENSSL_SSL_TRACE_CRYPTO if (s->msg_callback) { s->msg_callback(2, s->version, TLS1_RT_CRYPTO_PREMASTER, p, len, s, s->msg_callback_arg); s->msg_callback(2, s->version, TLS1_RT_CRYPTO_CLIENT_RANDOM, s->s3->client_random, SSL3_RANDOM_SIZE, s, s->msg_callback_arg); s->msg_callback(2, s->version, TLS1_RT_CRYPTO_SERVER_RANDOM, s->s3->server_random, SSL3_RANDOM_SIZE, s, s->msg_callback_arg); s->msg_callback(2, s->version, TLS1_RT_CRYPTO_MASTER, s->session->master_key, SSL3_MASTER_SECRET_SIZE, s, s->msg_callback_arg); } #endif #ifdef KSSL_DEBUG fprintf(stderr, "tls1_generate_master_secret() complete\n"); #endif /* KSSL_DEBUG */ return (SSL3_MASTER_SECRET_SIZE); } int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen, const char *label, size_t llen, const unsigned char *context, size_t contextlen, int use_context) { unsigned char *buff; unsigned char *val = NULL; size_t vallen, currentvalpos; int rv; #ifdef KSSL_DEBUG fprintf(stderr, "tls1_export_keying_material(%p,%p,%lu,%s,%lu,%p,%lu)\n", s, out, olen, label, llen, context, contextlen); #endif /* KSSL_DEBUG */ buff = OPENSSL_malloc(olen); if (buff == NULL) goto err2; /* * construct PRF arguments we construct the PRF argument ourself rather * than passing separate values into the TLS PRF to ensure that the * concatenation of values does not create a prohibited label. */ vallen = llen + SSL3_RANDOM_SIZE * 2; if (use_context) { vallen += 2 + contextlen; } val = OPENSSL_malloc(vallen); if (val == NULL) goto err2; currentvalpos = 0; memcpy(val + currentvalpos, (unsigned char *)label, llen); currentvalpos += llen; memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE); currentvalpos += SSL3_RANDOM_SIZE; memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE); currentvalpos += SSL3_RANDOM_SIZE; if (use_context) { val[currentvalpos] = (contextlen >> 8) & 0xff; currentvalpos++; val[currentvalpos] = contextlen & 0xff; currentvalpos++; if ((contextlen > 0) || (context != NULL)) { memcpy(val + currentvalpos, context, contextlen); } } /* * disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited * label len) = 15, so size of val > max(prohibited label len) = 15 and * the comparisons won't have buffer overflow */ if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) goto err1; rv = tls1_PRF(ssl_get_algorithm2(s), val, vallen, NULL, 0, NULL, 0, NULL, 0, NULL, 0, s->session->master_key, s->session->master_key_length, out, buff, olen); OPENSSL_cleanse(val, vallen); OPENSSL_cleanse(buff, olen); #ifdef KSSL_DEBUG fprintf(stderr, "tls1_export_keying_material() complete\n"); #endif /* KSSL_DEBUG */ goto ret; err1: SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL); rv = 0; goto ret; err2: SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, ERR_R_MALLOC_FAILURE); rv = 0; ret: if (buff != NULL) OPENSSL_free(buff); if (val != NULL) OPENSSL_free(val); return (rv); } int tls1_alert_code(int code) { switch (code) { case SSL_AD_CLOSE_NOTIFY: return (SSL3_AD_CLOSE_NOTIFY); case SSL_AD_UNEXPECTED_MESSAGE: return (SSL3_AD_UNEXPECTED_MESSAGE); case SSL_AD_BAD_RECORD_MAC: return (SSL3_AD_BAD_RECORD_MAC); case SSL_AD_DECRYPTION_FAILED: return (TLS1_AD_DECRYPTION_FAILED); case SSL_AD_RECORD_OVERFLOW: return (TLS1_AD_RECORD_OVERFLOW); case SSL_AD_DECOMPRESSION_FAILURE: return (SSL3_AD_DECOMPRESSION_FAILURE); case SSL_AD_HANDSHAKE_FAILURE: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_NO_CERTIFICATE: return (-1); case SSL_AD_BAD_CERTIFICATE: return (SSL3_AD_BAD_CERTIFICATE); case SSL_AD_UNSUPPORTED_CERTIFICATE: return (SSL3_AD_UNSUPPORTED_CERTIFICATE); case SSL_AD_CERTIFICATE_REVOKED: return (SSL3_AD_CERTIFICATE_REVOKED); case SSL_AD_CERTIFICATE_EXPIRED: return (SSL3_AD_CERTIFICATE_EXPIRED); case SSL_AD_CERTIFICATE_UNKNOWN: return (SSL3_AD_CERTIFICATE_UNKNOWN); case SSL_AD_ILLEGAL_PARAMETER: return (SSL3_AD_ILLEGAL_PARAMETER); case SSL_AD_UNKNOWN_CA: return (TLS1_AD_UNKNOWN_CA); case SSL_AD_ACCESS_DENIED: return (TLS1_AD_ACCESS_DENIED); case SSL_AD_DECODE_ERROR: return (TLS1_AD_DECODE_ERROR); case SSL_AD_DECRYPT_ERROR: return (TLS1_AD_DECRYPT_ERROR); case SSL_AD_EXPORT_RESTRICTION: return (TLS1_AD_EXPORT_RESTRICTION); case SSL_AD_PROTOCOL_VERSION: return (TLS1_AD_PROTOCOL_VERSION); case SSL_AD_INSUFFICIENT_SECURITY: return (TLS1_AD_INSUFFICIENT_SECURITY); case SSL_AD_INTERNAL_ERROR: return (TLS1_AD_INTERNAL_ERROR); case SSL_AD_USER_CANCELLED: return (TLS1_AD_USER_CANCELLED); case SSL_AD_NO_RENEGOTIATION: return (TLS1_AD_NO_RENEGOTIATION); case SSL_AD_UNSUPPORTED_EXTENSION: return (TLS1_AD_UNSUPPORTED_EXTENSION); case SSL_AD_CERTIFICATE_UNOBTAINABLE: return (TLS1_AD_CERTIFICATE_UNOBTAINABLE); case SSL_AD_UNRECOGNIZED_NAME: return (TLS1_AD_UNRECOGNIZED_NAME); case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE); case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE); case SSL_AD_UNKNOWN_PSK_IDENTITY: return (TLS1_AD_UNKNOWN_PSK_IDENTITY); case SSL_AD_INAPPROPRIATE_FALLBACK: return (TLS1_AD_INAPPROPRIATE_FALLBACK); #if 0 /* not appropriate for TLS, not used for DTLS */ case DTLS1_AD_MISSING_HANDSHAKE_MESSAGE: return (DTLS1_AD_MISSING_HANDSHAKE_MESSAGE); #endif default: return (-1); } }