virtualx-engine/modules/fbx/data/fbx_mesh_data.cpp
2024-02-08 20:34:11 +01:00

1447 lines
56 KiB
C++

/**************************************************************************/
/* fbx_mesh_data.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "fbx_mesh_data.h"
#include "core/local_vector.h"
#include "scene/resources/mesh.h"
#include "scene/resources/surface_tool.h"
#include "thirdparty/misc/triangulator.h"
template <class T>
T collect_first(const Vector<VertexData<T>> *p_data, T p_fall_back) {
if (p_data->empty()) {
return p_fall_back;
}
return (*p_data)[0].data;
}
template <class T>
HashMap<int, T> collect_all(const Vector<VertexData<T>> *p_data, HashMap<int, T> p_fall_back) {
if (p_data->empty()) {
return p_fall_back;
}
HashMap<int, T> collection;
for (int i = 0; i < p_data->size(); i += 1) {
const VertexData<T> &vd = (*p_data)[i];
collection[vd.polygon_index] = vd.data;
}
return collection;
}
template <class T>
T collect_average(const Vector<VertexData<T>> *p_data, T p_fall_back) {
if (p_data->empty()) {
return p_fall_back;
}
T combined = (*p_data)[0].data; // Make sure the data is always correctly initialized.
print_verbose("size of data: " + itos(p_data->size()));
for (int i = 1; i < p_data->size(); i += 1) {
combined += (*p_data)[i].data;
}
combined = combined / real_t(p_data->size());
return combined.normalized();
}
HashMap<int, Vector3> collect_normal(const Vector<VertexData<Vector3>> *p_data, HashMap<int, Vector3> p_fall_back) {
if (p_data->empty()) {
return p_fall_back;
}
HashMap<int, Vector3> collection;
for (int i = 0; i < p_data->size(); i += 1) {
const VertexData<Vector3> &vd = (*p_data)[i];
collection[vd.polygon_index] = vd.data;
}
return collection;
}
HashMap<int, Vector2> collect_uv(const Vector<VertexData<Vector2>> *p_data, HashMap<int, Vector2> p_fall_back) {
if (p_data->empty()) {
return p_fall_back;
}
HashMap<int, Vector2> collection;
for (int i = 0; i < p_data->size(); i += 1) {
const VertexData<Vector2> &vd = (*p_data)[i];
collection[vd.polygon_index] = vd.data;
}
return collection;
}
typedef int Vertex;
typedef int SurfaceId;
typedef int PolygonId;
typedef int DataIndex;
struct SurfaceData {
Ref<SurfaceTool> surface_tool;
OrderedHashMap<Vertex, int> lookup_table; // proposed fix is to replace lookup_table[vertex_id] to give the position of the vertices_map[int] index.
LocalVector<Vertex> vertices_map; // this must be ordered the same as insertion <-- slow to do find() operation.
Ref<Material3D> material;
HashMap<PolygonId, Vector<DataIndex>> surface_polygon_vertex;
Array morphs;
};
MeshInstance *FBXMeshData::create_fbx_mesh(const ImportState &state, const FBXDocParser::MeshGeometry *p_mesh_geometry, const FBXDocParser::Model *model, uint32_t p_compress_flags) {
mesh_geometry = p_mesh_geometry;
// todo: make this just use a uint64_t FBX ID this is a copy of our original materials unfortunately.
const std::vector<const FBXDocParser::Material *> &material_lookup = model->GetMaterials();
std::vector<int> polygon_indices = mesh_geometry->get_polygon_indices();
std::vector<Vector3> vertices = mesh_geometry->get_vertices();
// Phase 1. Parse all FBX data.
HashMap<int, Vector3> normals;
HashMap<int, HashMap<int, Vector3>> normals_raw = extract_per_vertex_data(
vertices.size(),
mesh_geometry->get_edge_map(),
polygon_indices,
mesh_geometry->get_normals(),
&collect_all,
HashMap<int, Vector3>());
HashMap<int, Vector2> uvs_0;
HashMap<int, HashMap<int, Vector2>> uvs_0_raw = extract_per_vertex_data(
vertices.size(),
mesh_geometry->get_edge_map(),
polygon_indices,
mesh_geometry->get_uv_0(),
&collect_all,
HashMap<int, Vector2>());
HashMap<int, Vector2> uvs_1;
HashMap<int, HashMap<int, Vector2>> uvs_1_raw = extract_per_vertex_data(
vertices.size(),
mesh_geometry->get_edge_map(),
polygon_indices,
mesh_geometry->get_uv_1(),
&collect_all,
HashMap<int, Vector2>());
HashMap<int, Color> colors;
HashMap<int, HashMap<int, Color>> colors_raw = extract_per_vertex_data(
vertices.size(),
mesh_geometry->get_edge_map(),
polygon_indices,
mesh_geometry->get_colors(),
&collect_all,
HashMap<int, Color>());
// TODO what about tangents?
// TODO what about bi-nomials?
// TODO there is other?
HashMap<int, SurfaceId> polygon_surfaces = extract_per_polygon(
vertices.size(),
polygon_indices,
mesh_geometry->get_material_allocation_id(),
-1);
HashMap<String, MorphVertexData> morphs;
extract_morphs(mesh_geometry, morphs);
// TODO please add skinning.
//mesh_id = mesh_geometry->ID();
sanitize_vertex_weights(state);
// Re organize polygon vertices to to correctly take into account strange
// UVs.
reorganize_vertices(
polygon_indices,
vertices,
normals,
uvs_0,
uvs_1,
colors,
morphs,
normals_raw,
colors_raw,
uvs_0_raw,
uvs_1_raw);
const int color_count = colors.size();
print_verbose("Vertex color count: " + itos(color_count));
// Make sure that from this moment on the mesh_geometry is no used anymore.
// This is a safety step, because the mesh_geometry data are no more valid
// at this point.
const int vertex_count = vertices.size();
print_verbose("Vertex count: " + itos(vertex_count));
// The map key is the material allocator id that is also used as surface id.
HashMap<SurfaceId, SurfaceData> surfaces;
// Phase 2. For each material create a surface tool (So a different mesh).
{
if (polygon_surfaces.empty()) {
// No material, just use the default one with index -1.
// Set -1 to all polygons.
const int polygon_count = count_polygons(polygon_indices);
for (int p = 0; p < polygon_count; p += 1) {
polygon_surfaces[p] = -1;
}
}
// Create the surface now.
for (const int *polygon_id = polygon_surfaces.next(nullptr); polygon_id != nullptr; polygon_id = polygon_surfaces.next(polygon_id)) {
const int surface_id = polygon_surfaces[*polygon_id];
if (surfaces.has(surface_id) == false) {
SurfaceData sd;
sd.surface_tool.instance();
sd.surface_tool->begin(Mesh::PRIMITIVE_TRIANGLES);
if (surface_id < 0) {
// nothing to do
} else if (surface_id < (int)material_lookup.size()) {
const FBXDocParser::Material *mat_mapping = material_lookup.at(surface_id);
const uint64_t mapping_id = mat_mapping->ID();
if (state.cached_materials.has(mapping_id)) {
sd.material = state.cached_materials[mapping_id];
}
} else {
WARN_PRINT("out of bounds surface detected, FBX file has corrupt material data");
}
surfaces.set(surface_id, sd);
}
}
}
// Phase 3. Map the vertices relative to each surface, in this way we can
// just insert the vertices that we need per each surface.
{
PolygonId polygon_index = -1;
SurfaceId surface_id = -1;
SurfaceData *surface_data = nullptr;
for (size_t polygon_vertex = 0; polygon_vertex < polygon_indices.size(); polygon_vertex += 1) {
if (is_start_of_polygon(polygon_indices, polygon_vertex)) {
polygon_index += 1;
ERR_FAIL_COND_V_MSG(polygon_surfaces.has(polygon_index) == false, nullptr, "The FBX file is corrupted, This surface_index is not expected.");
surface_id = polygon_surfaces[polygon_index];
surface_data = surfaces.getptr(surface_id);
CRASH_COND(surface_data == nullptr); // Can't be null.
}
const int vertex = get_vertex_from_polygon_vertex(polygon_indices, polygon_vertex);
// The vertex position in the surface
// Uses a lookup table for speed with large scenes
bool has_polygon_vertex_index = surface_data->lookup_table.has(vertex);
int surface_polygon_vertex_index = -1;
if (has_polygon_vertex_index) {
surface_polygon_vertex_index = surface_data->lookup_table[vertex];
} else {
surface_polygon_vertex_index = surface_data->vertices_map.size();
surface_data->lookup_table[vertex] = surface_polygon_vertex_index;
surface_data->vertices_map.push_back(vertex);
}
surface_data->surface_polygon_vertex[polygon_index].push_back(surface_polygon_vertex_index);
}
}
//print_verbose("[debug UV 1] UV1: " + itos(uvs_0.size()));
//print_verbose("[debug UV 2] UV2: " + itos(uvs_1.size()));
// Phase 4. Per each surface just insert the vertices and add the indices.
for (const SurfaceId *surface_id = surfaces.next(nullptr); surface_id != nullptr; surface_id = surfaces.next(surface_id)) {
SurfaceData *surface = surfaces.getptr(*surface_id);
// Just add the vertices data.
for (unsigned int i = 0; i < surface->vertices_map.size(); i += 1) {
const Vertex vertex = surface->vertices_map[i];
// This must be done before add_vertex because the surface tool is
// expecting this before the st->add_vertex() call
add_vertex(state,
surface->surface_tool,
state.scale,
vertex,
vertices,
normals,
uvs_0,
uvs_1,
colors);
}
// Triangulate the various polygons and add the indices.
for (const PolygonId *polygon_id = surface->surface_polygon_vertex.next(nullptr); polygon_id != nullptr; polygon_id = surface->surface_polygon_vertex.next(polygon_id)) {
const Vector<DataIndex> *indices = surface->surface_polygon_vertex.getptr(*polygon_id);
triangulate_polygon(
surface->surface_tool,
*indices,
surface->vertices_map,
vertices);
}
}
// Phase 5. Compose the morphs if any.
for (const SurfaceId *surface_id = surfaces.next(nullptr); surface_id != nullptr; surface_id = surfaces.next(surface_id)) {
SurfaceData *surface = surfaces.getptr(*surface_id);
for (const String *morph_name = morphs.next(nullptr); morph_name != nullptr; morph_name = morphs.next(morph_name)) {
MorphVertexData *morph_data = morphs.getptr(*morph_name);
// As said by the docs, this is not supposed to be different than
// vertex_count.
CRASH_COND(morph_data->vertices.size() != vertex_count);
CRASH_COND(morph_data->normals.size() != vertex_count);
Vector3 *vertices_ptr = morph_data->vertices.ptrw();
Vector3 *normals_ptr = morph_data->normals.ptrw();
Ref<SurfaceTool> morph_st;
morph_st.instance();
morph_st->begin(Mesh::PRIMITIVE_TRIANGLES);
for (unsigned int vi = 0; vi < surface->vertices_map.size(); vi += 1) {
const Vertex vertex = surface->vertices_map[vi];
add_vertex(
state,
morph_st,
state.scale,
vertex,
vertices,
normals,
uvs_0,
uvs_1,
colors,
vertices_ptr[vertex],
normals_ptr[vertex]);
}
if (state.is_blender_fbx) {
morph_st->generate_normals();
}
morph_st->generate_tangents();
surface->morphs.push_back(morph_st->commit_to_arrays());
}
}
// Phase 6. Compose the mesh and return it.
Ref<ArrayMesh> mesh;
mesh.instance();
// Add blend shape info.
for (const String *morph_name = morphs.next(nullptr); morph_name != nullptr; morph_name = morphs.next(morph_name)) {
mesh->add_blend_shape(*morph_name);
}
// TODO always normalized, Why?
mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED);
// Add surfaces.
int in_mesh_surface_id = 0;
for (const SurfaceId *surface_id = surfaces.next(nullptr); surface_id != nullptr; surface_id = surfaces.next(surface_id)) {
SurfaceData *surface = surfaces.getptr(*surface_id);
if (state.is_blender_fbx) {
surface->surface_tool->generate_normals();
}
// you can't generate them without a valid uv map.
if (uvs_0_raw.size() > 0) {
surface->surface_tool->generate_tangents();
}
mesh->add_surface_from_arrays(
Mesh::PRIMITIVE_TRIANGLES,
surface->surface_tool->commit_to_arrays(),
surface->morphs,
p_compress_flags);
if (surface->material.is_valid()) {
mesh->surface_set_name(in_mesh_surface_id, surface->material->get_name());
mesh->surface_set_material(in_mesh_surface_id, surface->material);
}
in_mesh_surface_id += 1;
}
MeshInstance *godot_mesh = memnew(MeshInstance);
godot_mesh->set_mesh(mesh);
return godot_mesh;
}
void FBXMeshData::sanitize_vertex_weights(const ImportState &state) {
const int max_vertex_influence_count = VS::ARRAY_WEIGHTS_SIZE;
Map<int, int> skeleton_to_skin_bind_id;
// TODO: error's need added
const FBXDocParser::Skin *fbx_skin = mesh_geometry->DeformerSkin();
if (fbx_skin == nullptr || fbx_skin->Clusters().size() == 0) {
return; // do nothing
}
//
// Precalculate the skin cluster mapping
//
int bind_id = 0;
for (const FBXDocParser::Cluster *cluster : fbx_skin->Clusters()) {
ERR_CONTINUE_MSG(!state.fbx_bone_map.has(cluster->TargetNode()->ID()), "Missing bone map for cluster target node with id " + uitos(cluster->TargetNode()->ID()) + ".");
Ref<FBXBone> bone = state.fbx_bone_map[cluster->TargetNode()->ID()];
skeleton_to_skin_bind_id.insert(bone->godot_bone_id, bind_id);
bind_id++;
}
for (const Vertex *v = vertex_weights.next(nullptr); v != nullptr; v = vertex_weights.next(v)) {
VertexWeightMapping *vm = vertex_weights.getptr(*v);
ERR_CONTINUE(vm->bones.size() != vm->weights.size()); // No message, already checked.
ERR_CONTINUE(vm->bones_ref.size() != vm->weights.size()); // No message, already checked.
const int initial_size = vm->weights.size();
{
// Init bone id
int *bones_ptr = vm->bones.ptrw();
Ref<FBXBone> *bones_ref_ptr = vm->bones_ref.ptrw();
for (int i = 0; i < vm->weights.size(); i += 1) {
// At this point this is not possible because the skeleton is already initialized.
CRASH_COND(bones_ref_ptr[i]->godot_bone_id == -2);
bones_ptr[i] = skeleton_to_skin_bind_id[bones_ref_ptr[i]->godot_bone_id];
}
// From this point on the data is no more valid.
vm->bones_ref.clear();
}
{
// Sort
real_t *weights_ptr = vm->weights.ptrw();
int *bones_ptr = vm->bones.ptrw();
for (int i = 0; i < vm->weights.size(); i += 1) {
for (int x = i + 1; x < vm->weights.size(); x += 1) {
if (weights_ptr[i] < weights_ptr[x]) {
SWAP(weights_ptr[i], weights_ptr[x]);
SWAP(bones_ptr[i], bones_ptr[x]);
}
}
}
}
{
// Resize
vm->weights.resize(max_vertex_influence_count);
vm->bones.resize(max_vertex_influence_count);
real_t *weights_ptr = vm->weights.ptrw();
int *bones_ptr = vm->bones.ptrw();
for (int i = initial_size; i < max_vertex_influence_count; i += 1) {
weights_ptr[i] = 0.0;
bones_ptr[i] = 0;
}
// Normalize
real_t sum = 0.0;
for (int i = 0; i < max_vertex_influence_count; i += 1) {
sum += weights_ptr[i];
}
if (sum > 0.0) {
for (int i = 0; i < vm->weights.size(); i += 1) {
weights_ptr[i] = weights_ptr[i] / sum;
}
}
}
}
}
void FBXMeshData::reorganize_vertices(
std::vector<int> &r_polygon_indices,
std::vector<Vector3> &r_vertices,
HashMap<int, Vector3> &r_normals,
HashMap<int, Vector2> &r_uv_1,
HashMap<int, Vector2> &r_uv_2,
HashMap<int, Color> &r_color,
HashMap<String, MorphVertexData> &r_morphs,
HashMap<int, HashMap<int, Vector3>> &r_normals_raw,
HashMap<int, HashMap<int, Color>> &r_colors_raw,
HashMap<int, HashMap<int, Vector2>> &r_uv_1_raw,
HashMap<int, HashMap<int, Vector2>> &r_uv_2_raw) {
// Key: OldVertex; Value: [New vertices];
HashMap<int, Vector<int>> duplicated_vertices;
PolygonId polygon_index = -1;
for (int pv = 0; pv < (int)r_polygon_indices.size(); pv += 1) {
if (is_start_of_polygon(r_polygon_indices, pv)) {
polygon_index += 1;
}
const Vertex index = get_vertex_from_polygon_vertex(r_polygon_indices, pv);
bool need_duplication = false;
Vector2 this_vert_poly_uv1 = Vector2();
Vector2 this_vert_poly_uv2 = Vector2();
Vector3 this_vert_poly_normal = Vector3();
Color this_vert_poly_color = Color();
// Take the normal and see if we need to duplicate this polygon.
if (r_normals_raw.has(index)) {
const HashMap<PolygonId, Vector3> *nrml_arr = r_normals_raw.getptr(index);
if (nrml_arr->has(polygon_index)) {
this_vert_poly_normal = nrml_arr->get(polygon_index);
} else if (nrml_arr->has(-1)) {
this_vert_poly_normal = nrml_arr->get(-1);
} else {
print_error("invalid normal detected: " + itos(index) + " polygon index: " + itos(polygon_index));
for (const PolygonId *pid = nrml_arr->next(nullptr); pid != nullptr; pid = nrml_arr->next(pid)) {
print_verbose("debug contents key: " + itos(*pid));
if (nrml_arr->has(*pid)) {
print_verbose("contents valid: " + nrml_arr->get(*pid));
}
}
}
// Now, check if we need to duplicate it.
for (const PolygonId *pid = nrml_arr->next(nullptr); pid != nullptr; pid = nrml_arr->next(pid)) {
if (*pid == polygon_index) {
continue;
}
const Vector3 vert_poly_normal = *nrml_arr->getptr(*pid);
if ((this_vert_poly_normal - vert_poly_normal).length_squared() > CMP_EPSILON) {
// Yes this polygon need duplication.
need_duplication = true;
break;
}
}
}
// TODO: make me vertex color
// Take the normal and see if we need to duplicate this polygon.
if (r_colors_raw.has(index)) {
const HashMap<PolygonId, Color> *color_arr = r_colors_raw.getptr(index);
if (color_arr->has(polygon_index)) {
this_vert_poly_color = color_arr->get(polygon_index);
} else if (color_arr->has(-1)) {
this_vert_poly_color = color_arr->get(-1);
} else {
print_error("invalid color detected: " + itos(index) + " polygon index: " + itos(polygon_index));
for (const PolygonId *pid = color_arr->next(nullptr); pid != nullptr; pid = color_arr->next(pid)) {
print_verbose("debug contents key: " + itos(*pid));
if (color_arr->has(*pid)) {
print_verbose("contents valid: " + color_arr->get(*pid));
}
}
}
// Now, check if we need to duplicate it.
for (const PolygonId *pid = color_arr->next(nullptr); pid != nullptr; pid = color_arr->next(pid)) {
if (*pid == polygon_index) {
continue;
}
const Color vert_poly_color = *color_arr->getptr(*pid);
if (!this_vert_poly_color.is_equal_approx(vert_poly_color)) {
// Yes this polygon need duplication.
need_duplication = true;
break;
}
}
}
// Take the UV1 and UV2 and see if we need to duplicate this polygon.
{
HashMap<int, HashMap<int, Vector2>> *uv_raw = &r_uv_1_raw;
Vector2 *this_vert_poly_uv = &this_vert_poly_uv1;
for (int kk = 0; kk < 2; kk++) {
if (uv_raw->has(index)) {
const HashMap<PolygonId, Vector2> *uvs = uv_raw->getptr(index);
if (uvs->has(polygon_index)) {
// This Polygon has its own uv.
(*this_vert_poly_uv) = *uvs->getptr(polygon_index);
// Check if we need to duplicate it.
for (const PolygonId *pid = uvs->next(nullptr); pid != nullptr; pid = uvs->next(pid)) {
if (*pid == polygon_index) {
continue;
}
const Vector2 vert_poly_uv = *uvs->getptr(*pid);
if (((*this_vert_poly_uv) - vert_poly_uv).length_squared() > CMP_EPSILON) {
// Yes this polygon need duplication.
need_duplication = true;
break;
}
}
} else if (uvs->has(-1)) {
// It has the default UV.
(*this_vert_poly_uv) = *uvs->getptr(-1);
} else if (uvs->size() > 0) {
// No uv, this is strange, just take the first and duplicate.
(*this_vert_poly_uv) = *uvs->getptr(*uvs->next(nullptr));
WARN_PRINT("No UVs for this polygon, while there is no default and some other polygons have it. This FBX file may be corrupted.");
}
}
uv_raw = &r_uv_2_raw;
this_vert_poly_uv = &this_vert_poly_uv2;
}
}
// If we want to duplicate it, Let's see if we already duplicated this
// vertex.
if (need_duplication) {
if (duplicated_vertices.has(index)) {
Vertex similar_vertex = -1;
// Let's see if one of the new vertices has the same data of this.
const Vector<int> *new_vertices = duplicated_vertices.getptr(index);
for (int j = 0; j < new_vertices->size(); j += 1) {
const Vertex new_vertex = (*new_vertices)[j];
bool same_uv1 = false;
bool same_uv2 = false;
bool same_normal = false;
bool same_color = false;
if (r_uv_1.has(new_vertex)) {
if ((this_vert_poly_uv1 - (*r_uv_1.getptr(new_vertex))).length_squared() <= CMP_EPSILON) {
same_uv1 = true;
}
}
if (r_uv_2.has(new_vertex)) {
if ((this_vert_poly_uv2 - (*r_uv_2.getptr(new_vertex))).length_squared() <= CMP_EPSILON) {
same_uv2 = true;
}
}
if (r_color.has(new_vertex)) {
if (this_vert_poly_color.is_equal_approx((*r_color.getptr(new_vertex)))) {
same_color = true;
}
}
if (r_normals.has(new_vertex)) {
if ((this_vert_poly_normal - (*r_normals.getptr(new_vertex))).length_squared() <= CMP_EPSILON) {
same_uv2 = true;
}
}
if (same_uv1 && same_uv2 && same_normal && same_color) {
similar_vertex = new_vertex;
break;
}
}
if (similar_vertex != -1) {
// Update polygon.
if (is_end_of_polygon(r_polygon_indices, pv)) {
r_polygon_indices[pv] = ~similar_vertex;
} else {
r_polygon_indices[pv] = similar_vertex;
}
need_duplication = false;
}
}
}
if (need_duplication) {
const Vertex old_index = index;
const Vertex new_index = r_vertices.size();
// Polygon index.
if (is_end_of_polygon(r_polygon_indices, pv)) {
r_polygon_indices[pv] = ~new_index;
} else {
r_polygon_indices[pv] = new_index;
}
// Vertex position.
r_vertices.push_back(r_vertices[old_index]);
// Normals
if (r_normals_raw.has(old_index)) {
r_normals.set(new_index, this_vert_poly_normal);
r_normals_raw.getptr(old_index)->erase(polygon_index);
r_normals_raw[new_index][polygon_index] = this_vert_poly_normal;
}
// Vertex Color
if (r_colors_raw.has(old_index)) {
r_color.set(new_index, this_vert_poly_color);
r_colors_raw.getptr(old_index)->erase(polygon_index);
r_colors_raw[new_index][polygon_index] = this_vert_poly_color;
}
// UV 0
if (r_uv_1_raw.has(old_index)) {
r_uv_1.set(new_index, this_vert_poly_uv1);
r_uv_1_raw.getptr(old_index)->erase(polygon_index);
r_uv_1_raw[new_index][polygon_index] = this_vert_poly_uv1;
}
// UV 1
if (r_uv_2_raw.has(old_index)) {
r_uv_2.set(new_index, this_vert_poly_uv2);
r_uv_2_raw.getptr(old_index)->erase(polygon_index);
r_uv_2_raw[new_index][polygon_index] = this_vert_poly_uv2;
}
// Morphs
for (const String *mname = r_morphs.next(nullptr); mname != nullptr; mname = r_morphs.next(mname)) {
MorphVertexData *d = r_morphs.getptr(*mname);
// This can't never happen.
CRASH_COND(d == nullptr);
if (d->vertices.size() > old_index) {
d->vertices.push_back(d->vertices[old_index]);
}
if (d->normals.size() > old_index) {
d->normals.push_back(d->normals[old_index]);
}
}
if (vertex_weights.has(old_index)) {
vertex_weights.set(new_index, vertex_weights[old_index]);
}
duplicated_vertices[old_index].push_back(new_index);
} else {
if (r_normals_raw.has(index) &&
r_normals.has(index) == false) {
r_normals.set(index, this_vert_poly_normal);
}
if (r_colors_raw.has(index) && r_color.has(index) == false) {
r_color.set(index, this_vert_poly_color);
}
if (r_uv_1_raw.has(index) &&
r_uv_1.has(index) == false) {
r_uv_1.set(index, this_vert_poly_uv1);
}
if (r_uv_2_raw.has(index) &&
r_uv_2.has(index) == false) {
r_uv_2.set(index, this_vert_poly_uv2);
}
}
}
}
void FBXMeshData::add_vertex(
const ImportState &state,
Ref<SurfaceTool> p_surface_tool,
real_t p_scale,
Vertex p_vertex,
const std::vector<Vector3> &p_vertices_position,
const HashMap<int, Vector3> &p_normals,
const HashMap<int, Vector2> &p_uvs_0,
const HashMap<int, Vector2> &p_uvs_1,
const HashMap<int, Color> &p_colors,
const Vector3 &p_morph_value,
const Vector3 &p_morph_normal) {
ERR_FAIL_INDEX_MSG(p_vertex, (Vertex)p_vertices_position.size(), "FBX file is corrupted, the position of the vertex can't be retrieved.");
if (p_normals.has(p_vertex) && !state.is_blender_fbx) {
p_surface_tool->add_normal(p_normals[p_vertex] + p_morph_normal);
}
if (p_uvs_0.has(p_vertex)) {
//print_verbose("uv1: [" + itos(p_vertex) + "] " + p_uvs_0[p_vertex]);
// Inverts Y UV.
p_surface_tool->add_uv(Vector2(p_uvs_0[p_vertex].x, 1 - p_uvs_0[p_vertex].y));
}
if (p_uvs_1.has(p_vertex)) {
//print_verbose("uv2: [" + itos(p_vertex) + "] " + p_uvs_1[p_vertex]);
// Inverts Y UV.
p_surface_tool->add_uv2(Vector2(p_uvs_1[p_vertex].x, 1 - p_uvs_1[p_vertex].y));
}
if (p_colors.has(p_vertex)) {
p_surface_tool->add_color(p_colors[p_vertex]);
}
// TODO what about binormals?
// TODO there is other?
if (vertex_weights.has(p_vertex)) {
// Let's extract the weight info.
const VertexWeightMapping *vm = vertex_weights.getptr(p_vertex);
const Vector<int> &bones = vm->bones;
// the bug is that the bone idx is wrong because it is not ref'ing the skin.
if (bones.size() > VS::ARRAY_WEIGHTS_SIZE) {
print_error("[weight overflow detected]");
}
p_surface_tool->add_weights(vm->weights);
// 0 1 2 3 4 5 6 7 < local skeleton / skin for mesh
// 0 1 2 3 4 5 6 7 8 9 10 < actual skeleton with all joints
p_surface_tool->add_bones(bones);
}
// The surface tool want the vertex position as last thing.
p_surface_tool->add_vertex((p_vertices_position[p_vertex] + p_morph_value) * p_scale);
}
void FBXMeshData::triangulate_polygon(Ref<SurfaceTool> st, Vector<int> p_polygon_vertex, const Vector<Vertex> p_surface_vertex_map, const std::vector<Vector3> &p_vertices) const {
const int polygon_vertex_count = p_polygon_vertex.size();
if (polygon_vertex_count == 1) {
// point to triangle
st->add_index(p_polygon_vertex[0]);
st->add_index(p_polygon_vertex[0]);
st->add_index(p_polygon_vertex[0]);
return;
} else if (polygon_vertex_count == 2) {
// line to triangle
st->add_index(p_polygon_vertex[1]);
st->add_index(p_polygon_vertex[1]);
st->add_index(p_polygon_vertex[0]);
return;
} else if (polygon_vertex_count == 3) {
// triangle to triangle
st->add_index(p_polygon_vertex[0]);
st->add_index(p_polygon_vertex[2]);
st->add_index(p_polygon_vertex[1]);
return;
} else if (polygon_vertex_count == 4) {
// quad to triangle - this code is awesome for import times
// it prevents triangles being generated slowly
st->add_index(p_polygon_vertex[0]);
st->add_index(p_polygon_vertex[2]);
st->add_index(p_polygon_vertex[1]);
st->add_index(p_polygon_vertex[2]);
st->add_index(p_polygon_vertex[0]);
st->add_index(p_polygon_vertex[3]);
return;
} else {
// non triangulated - we must run the triangulation algorithm
bool is_simple_convex = false;
// this code is 'slow' but required it triangulates all the unsupported geometry.
// Doesn't allow for bigger polygons because those are unlikely be convex
if (polygon_vertex_count <= 6) {
// Start from true, check if it's false.
is_simple_convex = true;
Vector3 first_vec;
for (int i = 0; i < polygon_vertex_count; i += 1) {
const Vector3 p1 = p_vertices[p_surface_vertex_map[p_polygon_vertex[i]]];
const Vector3 p2 = p_vertices[p_surface_vertex_map[p_polygon_vertex[(i + 1) % polygon_vertex_count]]];
const Vector3 p3 = p_vertices[p_surface_vertex_map[p_polygon_vertex[(i + 2) % polygon_vertex_count]]];
const Vector3 edge1 = p1 - p2;
const Vector3 edge2 = p3 - p2;
const Vector3 res = edge1.normalized().cross(edge2.normalized()).normalized();
if (i == 0) {
first_vec = res;
} else {
if (first_vec.dot(res) < 0.0) {
// Ok we found an angle that is not the same dir of the
// others.
is_simple_convex = false;
break;
}
}
}
}
if (is_simple_convex) {
// This is a convex polygon, so just triangulate it.
for (int i = 0; i < (polygon_vertex_count - 2); i += 1) {
st->add_index(p_polygon_vertex[2 + i]);
st->add_index(p_polygon_vertex[1 + i]);
st->add_index(p_polygon_vertex[0]);
}
return;
}
}
{
// This is a concave polygon.
std::vector<Vector3> poly_vertices(polygon_vertex_count);
for (int i = 0; i < polygon_vertex_count; i += 1) {
poly_vertices[i] = p_vertices[p_surface_vertex_map[p_polygon_vertex[i]]];
}
const Vector3 poly_norm = get_poly_normal(poly_vertices);
if (poly_norm.length_squared() <= CMP_EPSILON) {
ERR_FAIL_COND_MSG(poly_norm.length_squared() <= CMP_EPSILON, "The normal of this poly was not computed. Is this FBX file corrupted.");
}
// Select the plan coordinate.
int axis_1_coord = 0;
int axis_2_coord = 1;
{
real_t inv = poly_norm.z;
const real_t axis_x = ABS(poly_norm.x);
const real_t axis_y = ABS(poly_norm.y);
const real_t axis_z = ABS(poly_norm.z);
if (axis_x > axis_y) {
if (axis_x > axis_z) {
// For the most part the normal point toward X.
axis_1_coord = 1;
axis_2_coord = 2;
inv = poly_norm.x;
}
} else if (axis_y > axis_z) {
// For the most part the normal point toward Y.
axis_1_coord = 2;
axis_2_coord = 0;
inv = poly_norm.y;
}
// Swap projection axes to take the negated projection vector into account
if (inv < 0.0f) {
SWAP(axis_1_coord, axis_2_coord);
}
}
TriangulatorPoly triangulator_poly;
triangulator_poly.Init(polygon_vertex_count);
std::vector<Vector2> projected_vertices(polygon_vertex_count);
for (int i = 0; i < polygon_vertex_count; i += 1) {
const Vector2 pv(poly_vertices[i][axis_1_coord], poly_vertices[i][axis_2_coord]);
projected_vertices[i] = pv;
triangulator_poly.GetPoint(i) = pv;
}
triangulator_poly.SetOrientation(TRIANGULATOR_CCW);
List<TriangulatorPoly> out_poly;
TriangulatorPartition triangulator_partition;
if (triangulator_partition.Triangulate_OPT(&triangulator_poly, &out_poly) == 0) { // Good result.
if (triangulator_partition.Triangulate_EC(&triangulator_poly, &out_poly) == 0) { // Medium result.
if (triangulator_partition.Triangulate_MONO(&triangulator_poly, &out_poly) == 0) { // Really poor result.
ERR_FAIL_MSG("The triangulation of this polygon failed, please try to triangulate your mesh or check if it has broken polygons.");
}
}
}
std::vector<Vector2> tris(out_poly.size());
for (List<TriangulatorPoly>::Element *I = out_poly.front(); I; I = I->next()) {
TriangulatorPoly &tp = I->get();
ERR_FAIL_COND_MSG(tp.GetNumPoints() != 3, "The triangulator returned more points, how this is possible?");
// Find Index
for (int i = 2; i >= 0; i -= 1) {
const Vector2 vertex = tp.GetPoint(i);
bool done = false;
// Find Index
for (int y = 0; y < polygon_vertex_count; y += 1) {
if ((projected_vertices[y] - vertex).length_squared() <= CMP_EPSILON) {
// This seems the right vertex
st->add_index(p_polygon_vertex[y]);
done = true;
break;
}
}
ERR_FAIL_COND(done == false);
}
}
}
}
void FBXMeshData::gen_weight_info(Ref<SurfaceTool> st, Vertex vertex_id) const {
if (vertex_weights.empty()) {
return;
}
if (vertex_weights.has(vertex_id)) {
// Let's extract the weight info.
const VertexWeightMapping *vm = vertex_weights.getptr(vertex_id);
st->add_weights(vm->weights);
st->add_bones(vm->bones);
}
}
int FBXMeshData::get_vertex_from_polygon_vertex(const std::vector<int> &p_polygon_indices, int p_index) const {
if (p_index < 0 || p_index >= (int)p_polygon_indices.size()) {
return -1;
}
const int vertex = p_polygon_indices[p_index];
if (vertex >= 0) {
return vertex;
} else {
// Negative numbers are the end of the face, reversing the bits is
// possible to obtain the positive correct vertex number.
return ~vertex;
}
}
bool FBXMeshData::is_end_of_polygon(const std::vector<int> &p_polygon_indices, int p_index) const {
if (p_index < 0 || p_index >= (int)p_polygon_indices.size()) {
return false;
}
const int vertex = p_polygon_indices[p_index];
// If the index is negative this is the end of the Polygon.
return vertex < 0;
}
bool FBXMeshData::is_start_of_polygon(const std::vector<int> &p_polygon_indices, int p_index) const {
if (p_index < 0 || p_index >= (int)p_polygon_indices.size()) {
return false;
}
if (p_index == 0) {
return true;
}
// If the previous indices is negative this is the begin of a new Polygon.
return p_polygon_indices[p_index - 1] < 0;
}
int FBXMeshData::count_polygons(const std::vector<int> &p_polygon_indices) const {
// The negative numbers define the end of the polygon. Counting the amount of
// negatives the numbers of polygons are obtained.
int count = 0;
for (size_t i = 0; i < p_polygon_indices.size(); i += 1) {
if (p_polygon_indices[i] < 0) {
count += 1;
}
}
return count;
}
template <class R, class T>
HashMap<int, R> FBXMeshData::extract_per_vertex_data(
int p_vertex_count,
const std::vector<FBXDocParser::MeshGeometry::Edge> &p_edge_map,
const std::vector<int> &p_mesh_indices,
const FBXDocParser::MeshGeometry::MappingData<T> &p_mapping_data,
R (*collector_function)(const Vector<VertexData<T>> *p_vertex_data, R p_fall_back),
R p_fall_back) const {
/* When index_to_direct is set
* index size is 184 ( contains index for the data array [values 0, 96] )
* data size is 96 (contains uv coordinates)
* this means index is simple data reduction basically
*/
////
if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct && p_mapping_data.index.size() == 0) {
print_verbose("debug count: index size: " + itos(p_mapping_data.index.size()) + ", data size: " + itos(p_mapping_data.data.size()));
print_verbose("vertex indices count: " + itos(p_mesh_indices.size()));
print_verbose("Edge map size: " + itos(p_edge_map.size()));
}
ERR_FAIL_COND_V_MSG(p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct && p_mapping_data.index.size() == 0, (HashMap<int, R>()), "FBX importer needs to map correctly to this field, please specify the override index name to fix this problem!");
ERR_FAIL_COND_V_MSG(p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index && p_mapping_data.index.size() == 0, (HashMap<int, R>()), "The FBX seems corrupted");
// Aggregate vertex data.
HashMap<Vertex, Vector<VertexData<T>>> aggregate_vertex_data;
switch (p_mapping_data.map_type) {
case FBXDocParser::MeshGeometry::MapType::none: {
// No data nothing to do.
return (HashMap<int, R>());
}
case FBXDocParser::MeshGeometry::MapType::vertex: {
ERR_FAIL_COND_V_MSG(p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct, (HashMap<int, R>()), "We will support in future");
if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
// The data is mapped per vertex directly.
ERR_FAIL_COND_V_MSG((int)p_mapping_data.data.size() != p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR01");
for (size_t vertex_index = 0; vertex_index < p_mapping_data.data.size(); vertex_index += 1) {
aggregate_vertex_data[vertex_index].push_back({ -1, p_mapping_data.data[vertex_index] });
}
} else {
// The data is mapped per vertex using a reference.
// The indices array, contains a *reference_id for each vertex.
// * Note that the reference_id is the id of data into the data array.
//
// https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
ERR_FAIL_COND_V_MSG((int)p_mapping_data.index.size() != p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR02");
for (size_t vertex_index = 0; vertex_index < p_mapping_data.index.size(); vertex_index += 1) {
ERR_FAIL_INDEX_V_MSG(p_mapping_data.index[vertex_index], (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR03.");
aggregate_vertex_data[vertex_index].push_back({ -1, p_mapping_data.data[p_mapping_data.index[vertex_index]] });
}
}
} break;
case FBXDocParser::MeshGeometry::MapType::polygon_vertex: {
if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct) {
// The data is mapped using each index from the indexes array then direct to the data (data reduction algorithm)
ERR_FAIL_COND_V_MSG((int)p_mesh_indices.size() != (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR04");
int polygon_id = -1;
for (size_t polygon_vertex_index = 0; polygon_vertex_index < p_mapping_data.index.size(); polygon_vertex_index += 1) {
if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
polygon_id += 1;
}
const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
ERR_FAIL_COND_V_MSG(vertex_index < 0, (HashMap<int, R>()), "FBX file corrupted: #ERR05");
ERR_FAIL_COND_V_MSG(vertex_index >= p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR06");
const int index_to_direct = get_vertex_from_polygon_vertex(p_mapping_data.index, polygon_vertex_index);
T value = p_mapping_data.data[index_to_direct];
aggregate_vertex_data[vertex_index].push_back({ polygon_id, value });
}
} else if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
// The data are mapped per polygon vertex directly.
ERR_FAIL_COND_V_MSG((int)p_mesh_indices.size() != (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR04");
int polygon_id = -1;
for (size_t polygon_vertex_index = 0; polygon_vertex_index < p_mapping_data.data.size(); polygon_vertex_index += 1) {
if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
polygon_id += 1;
}
const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
ERR_FAIL_COND_V_MSG(vertex_index < 0, (HashMap<int, R>()), "FBX file corrupted: #ERR05");
ERR_FAIL_COND_V_MSG(vertex_index >= p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR06");
aggregate_vertex_data[vertex_index].push_back({ polygon_id, p_mapping_data.data[polygon_vertex_index] });
}
} else {
// The data is mapped per polygon_vertex using a reference.
// The indices array, contains a *reference_id for each polygon_vertex.
// * Note that the reference_id is the id of data into the data array.
//
// https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
ERR_FAIL_COND_V_MSG(p_mesh_indices.size() != p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR7");
int polygon_id = -1;
for (size_t polygon_vertex_index = 0; polygon_vertex_index < p_mapping_data.index.size(); polygon_vertex_index += 1) {
if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
polygon_id += 1;
}
const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
ERR_FAIL_COND_V_MSG(vertex_index < 0, (HashMap<int, R>()), "FBX file corrupted: #ERR8");
ERR_FAIL_COND_V_MSG(vertex_index >= p_vertex_count, (HashMap<int, R>()), "FBX file seems corrupted: #ERR9.");
ERR_FAIL_COND_V_MSG(p_mapping_data.index[polygon_vertex_index] < 0, (HashMap<int, R>()), "FBX file seems corrupted: #ERR10.");
ERR_FAIL_COND_V_MSG(p_mapping_data.index[polygon_vertex_index] >= (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR11.");
aggregate_vertex_data[vertex_index].push_back({ polygon_id, p_mapping_data.data[p_mapping_data.index[polygon_vertex_index]] });
}
}
} break;
case FBXDocParser::MeshGeometry::MapType::polygon: {
if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
// The data are mapped per polygon directly.
const int polygon_count = count_polygons(p_mesh_indices);
ERR_FAIL_COND_V_MSG(polygon_count != (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR12");
// Advance each polygon vertex, each new polygon advance the polygon index.
int polygon_index = -1;
for (size_t polygon_vertex_index = 0;
polygon_vertex_index < p_mesh_indices.size();
polygon_vertex_index += 1) {
if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
polygon_index += 1;
ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR13");
}
const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
ERR_FAIL_INDEX_V_MSG(vertex_index, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR14");
aggregate_vertex_data[vertex_index].push_back({ polygon_index, p_mapping_data.data[polygon_index] });
}
ERR_FAIL_COND_V_MSG((polygon_index + 1) != polygon_count, (HashMap<int, R>()), "FBX file seems corrupted: #ERR16. Not all Polygons are present in the file.");
} else {
// The data is mapped per polygon using a reference.
// The indices array, contains a *reference_id for each polygon.
// * Note that the reference_id is the id of data into the data array.
//
// https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
const int polygon_count = count_polygons(p_mesh_indices);
ERR_FAIL_COND_V_MSG(polygon_count != (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR17");
// Advance each polygon vertex, each new polygon advance the polygon index.
int polygon_index = -1;
for (size_t polygon_vertex_index = 0;
polygon_vertex_index < p_mesh_indices.size();
polygon_vertex_index += 1) {
if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
polygon_index += 1;
ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR18");
ERR_FAIL_INDEX_V_MSG(p_mapping_data.index[polygon_index], (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR19");
}
const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
ERR_FAIL_INDEX_V_MSG(vertex_index, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR20");
aggregate_vertex_data[vertex_index].push_back({ polygon_index, p_mapping_data.data[p_mapping_data.index[polygon_index]] });
}
ERR_FAIL_COND_V_MSG((polygon_index + 1) != polygon_count, (HashMap<int, R>()), "FBX file seems corrupted: #ERR22. Not all Polygons are present in the file.");
}
} break;
case FBXDocParser::MeshGeometry::MapType::edge: {
if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
// The data are mapped per edge directly.
ERR_FAIL_COND_V_MSG(p_edge_map.size() != p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR23");
for (size_t edge_index = 0; edge_index < p_mapping_data.data.size(); edge_index += 1) {
const FBXDocParser::MeshGeometry::Edge edge = FBXDocParser::MeshGeometry::get_edge(p_edge_map, edge_index);
ERR_FAIL_INDEX_V_MSG(edge.vertex_0, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR24");
ERR_FAIL_INDEX_V_MSG(edge.vertex_1, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR25");
ERR_FAIL_INDEX_V_MSG(edge.vertex_0, (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR26");
ERR_FAIL_INDEX_V_MSG(edge.vertex_1, (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR27");
aggregate_vertex_data[edge.vertex_0].push_back({ -1, p_mapping_data.data[edge_index] });
aggregate_vertex_data[edge.vertex_1].push_back({ -1, p_mapping_data.data[edge_index] });
}
} else {
// The data is mapped per edge using a reference.
// The indices array, contains a *reference_id for each polygon.
// * Note that the reference_id is the id of data into the data array.
//
// https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
ERR_FAIL_COND_V_MSG(p_edge_map.size() != p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR28");
for (size_t edge_index = 0; edge_index < p_mapping_data.data.size(); edge_index += 1) {
const FBXDocParser::MeshGeometry::Edge edge = FBXDocParser::MeshGeometry::get_edge(p_edge_map, edge_index);
ERR_FAIL_INDEX_V_MSG(edge.vertex_0, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR29");
ERR_FAIL_INDEX_V_MSG(edge.vertex_1, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR30");
ERR_FAIL_INDEX_V_MSG(edge.vertex_0, (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR31");
ERR_FAIL_INDEX_V_MSG(edge.vertex_1, (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR32");
ERR_FAIL_INDEX_V_MSG(p_mapping_data.index[edge.vertex_0], (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR33");
ERR_FAIL_INDEX_V_MSG(p_mapping_data.index[edge.vertex_1], (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR34");
aggregate_vertex_data[edge.vertex_0].push_back({ -1, p_mapping_data.data[p_mapping_data.index[edge_index]] });
aggregate_vertex_data[edge.vertex_1].push_back({ -1, p_mapping_data.data[p_mapping_data.index[edge_index]] });
}
}
} break;
case FBXDocParser::MeshGeometry::MapType::all_the_same: {
// No matter the mode, no matter the data size; The first always win
// and is set to all the vertices.
ERR_FAIL_COND_V_MSG(p_mapping_data.data.size() <= 0, (HashMap<int, R>()), "FBX file seems corrupted: #ERR35");
if (p_mapping_data.data.size() > 0) {
for (int vertex_index = 0; vertex_index < p_vertex_count; vertex_index += 1) {
aggregate_vertex_data[vertex_index].push_back({ -1, p_mapping_data.data[0] });
}
}
} break;
}
if (aggregate_vertex_data.size() == 0) {
return (HashMap<int, R>());
}
// A map is used because turns out that the some FBX file are not well organized
// with vertices well compacted. Using a map allows avoid those issues.
HashMap<Vertex, R> result;
// Aggregate the collected data.
for (const Vertex *index = aggregate_vertex_data.next(nullptr); index != nullptr; index = aggregate_vertex_data.next(index)) {
Vector<VertexData<T>> *aggregated_vertex = aggregate_vertex_data.getptr(*index);
// This can't be null because we are just iterating.
CRASH_COND(aggregated_vertex == nullptr);
ERR_FAIL_INDEX_V_MSG(0, aggregated_vertex->size(), (HashMap<int, R>()), "The FBX file is corrupted, No valid data for this vertex index.");
result[*index] = collector_function(aggregated_vertex, p_fall_back);
}
// Sanitize the data now, if the file is broken we can try import it anyway.
bool problem_found = false;
for (size_t i = 0; i < p_mesh_indices.size(); i += 1) {
const Vertex vertex = get_vertex_from_polygon_vertex(p_mesh_indices, i);
if (result.has(vertex) == false) {
result[vertex] = p_fall_back;
problem_found = true;
}
}
if (problem_found) {
WARN_PRINT("Some data is missing, this FBX file may be corrupted: #WARN0.");
}
return result;
}
template <class T>
HashMap<int, T> FBXMeshData::extract_per_polygon(
int p_vertex_count,
const std::vector<int> &p_polygon_indices,
const FBXDocParser::MeshGeometry::MappingData<T> &p_fbx_data,
T p_fallback_value) const {
ERR_FAIL_COND_V_MSG(p_fbx_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct && p_fbx_data.data.size() == 0, (HashMap<int, T>()), "invalid index to direct array");
ERR_FAIL_COND_V_MSG(p_fbx_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index && p_fbx_data.index.size() == 0, (HashMap<int, T>()), "The FBX seems corrupted");
const int polygon_count = count_polygons(p_polygon_indices);
// Aggregate vertex data.
HashMap<int, Vector<T>> aggregate_polygon_data;
switch (p_fbx_data.map_type) {
case FBXDocParser::MeshGeometry::MapType::none: {
// No data nothing to do.
return (HashMap<int, T>());
}
case FBXDocParser::MeshGeometry::MapType::vertex: {
ERR_FAIL_V_MSG((HashMap<int, T>()), "This data can't be extracted and organized per polygon, since into the FBX is mapped per vertex. This should not happen.");
} break;
case FBXDocParser::MeshGeometry::MapType::polygon_vertex: {
ERR_FAIL_V_MSG((HashMap<int, T>()), "This data can't be extracted and organized per polygon, since into the FBX is mapped per polygon vertex. This should not happen.");
} break;
case FBXDocParser::MeshGeometry::MapType::polygon: {
if (p_fbx_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct) {
// The data is stored efficiently index_to_direct allows less data in the FBX file.
for (int polygon_index = 0;
polygon_index < polygon_count;
polygon_index += 1) {
if (p_fbx_data.index.size() == 0) {
ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_fbx_data.data.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR62");
aggregate_polygon_data[polygon_index].push_back(p_fbx_data.data[polygon_index]);
} else {
ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_fbx_data.index.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR62");
const int index_to_direct = get_vertex_from_polygon_vertex(p_fbx_data.index, polygon_index);
T value = p_fbx_data.data[index_to_direct];
aggregate_polygon_data[polygon_index].push_back(value);
}
}
} else if (p_fbx_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
// The data are mapped per polygon directly.
ERR_FAIL_COND_V_MSG(polygon_count != (int)p_fbx_data.data.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR51");
// Advance each polygon vertex, each new polygon advance the polygon index.
for (int polygon_index = 0;
polygon_index < polygon_count;
polygon_index += 1) {
ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_fbx_data.data.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR52");
aggregate_polygon_data[polygon_index].push_back(p_fbx_data.data[polygon_index]);
}
} else {
// The data is mapped per polygon using a reference.
// The indices array, contains a *reference_id for each polygon.
// * Note that the reference_id is the id of data into the data array.
//
// https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
ERR_FAIL_COND_V_MSG(polygon_count != (int)p_fbx_data.index.size(), (HashMap<int, T>()), "FBX file seems corrupted: #ERR52");
// Advance each polygon vertex, each new polygon advance the polygon index.
for (int polygon_index = 0;
polygon_index < polygon_count;
polygon_index += 1) {
ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_fbx_data.index.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR53");
ERR_FAIL_INDEX_V_MSG(p_fbx_data.index[polygon_index], (int)p_fbx_data.data.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR54");
aggregate_polygon_data[polygon_index].push_back(p_fbx_data.data[p_fbx_data.index[polygon_index]]);
}
}
} break;
case FBXDocParser::MeshGeometry::MapType::edge: {
ERR_FAIL_V_MSG((HashMap<int, T>()), "This data can't be extracted and organized per polygon, since into the FBX is mapped per edge. This should not happen.");
} break;
case FBXDocParser::MeshGeometry::MapType::all_the_same: {
// No matter the mode, no matter the data size; The first always win
// and is set to all the vertices.
ERR_FAIL_COND_V_MSG(p_fbx_data.data.size() <= 0, (HashMap<int, T>()), "FBX file seems corrupted: #ERR55");
if (p_fbx_data.data.size() > 0) {
for (int polygon_index = 0; polygon_index < polygon_count; polygon_index += 1) {
aggregate_polygon_data[polygon_index].push_back(p_fbx_data.data[0]);
}
}
} break;
}
if (aggregate_polygon_data.size() == 0) {
return (HashMap<int, T>());
}
// A map is used because turns out that the some FBX file are not well organized
// with vertices well compacted. Using a map allows avoid those issues.
HashMap<int, T> polygons;
// Take the first value for each vertex.
for (const Vertex *index = aggregate_polygon_data.next(nullptr); index != nullptr; index = aggregate_polygon_data.next(index)) {
Vector<T> *aggregated_polygon = aggregate_polygon_data.getptr(*index);
// This can't be null because we are just iterating.
CRASH_COND(aggregated_polygon == nullptr);
ERR_FAIL_INDEX_V_MSG(0, (int)aggregated_polygon->size(), (HashMap<int, T>()), "The FBX file is corrupted, No valid data for this polygon index.");
// Validate the final value.
polygons[*index] = (*aggregated_polygon)[0];
}
// Sanitize the data now, if the file is broken we can try import it anyway.
bool problem_found = false;
for (int polygon_i = 0; polygon_i < polygon_count; polygon_i += 1) {
if (polygons.has(polygon_i) == false) {
polygons[polygon_i] = p_fallback_value;
problem_found = true;
}
}
if (problem_found) {
WARN_PRINT("Some data is missing, this FBX file may be corrupted: #WARN1.");
}
return polygons;
}
void FBXMeshData::extract_morphs(const FBXDocParser::MeshGeometry *mesh_geometry, HashMap<String, MorphVertexData> &r_data) {
r_data.clear();
const int vertex_count = mesh_geometry->get_vertices().size();
for (const FBXDocParser::BlendShape *blend_shape : mesh_geometry->get_blend_shapes()) {
for (const FBXDocParser::BlendShapeChannel *blend_shape_channel : blend_shape->BlendShapeChannels()) {
const std::vector<const FBXDocParser::ShapeGeometry *> &shape_geometries = blend_shape_channel->GetShapeGeometries();
for (const FBXDocParser::ShapeGeometry *shape_geometry : shape_geometries) {
String morph_name = ImportUtils::FBXAnimMeshName(shape_geometry->Name()).c_str();
if (morph_name.empty()) {
morph_name = "morph";
}
// TODO we have only these??
const std::vector<unsigned int> &morphs_vertex_indices = shape_geometry->GetIndices();
const std::vector<Vector3> &morphs_vertices = shape_geometry->GetVertices();
const std::vector<Vector3> &morphs_normals = shape_geometry->GetNormals();
ERR_FAIL_COND_MSG((int)morphs_vertex_indices.size() > vertex_count, "The FBX file is corrupted: #ERR103");
ERR_FAIL_COND_MSG(morphs_vertex_indices.size() != morphs_vertices.size(), "The FBX file is corrupted: #ERR104");
ERR_FAIL_COND_MSG((int)morphs_vertices.size() > vertex_count, "The FBX file is corrupted: #ERR105");
ERR_FAIL_COND_MSG(morphs_normals.size() != 0 && morphs_normals.size() != morphs_vertices.size(), "The FBX file is corrupted: #ERR106");
if (r_data.has(morph_name) == false) {
// This morph doesn't exist yet.
// Create it.
MorphVertexData md;
md.vertices.resize(vertex_count);
md.normals.resize(vertex_count);
r_data.set(morph_name, md);
}
MorphVertexData *data = r_data.getptr(morph_name);
Vector3 *data_vertices_ptr = data->vertices.ptrw();
Vector3 *data_normals_ptr = data->normals.ptrw();
for (int i = 0; i < (int)morphs_vertex_indices.size(); i += 1) {
const Vertex vertex = morphs_vertex_indices[i];
ERR_FAIL_INDEX_MSG(vertex, vertex_count, "The blend shapes of this FBX file are corrupted. It has a not valid vertex.");
data_vertices_ptr[vertex] = morphs_vertices[i];
if (morphs_normals.size() != 0) {
data_normals_ptr[vertex] = morphs_normals[i];
}
}
}
}
}
}