a69cc9f13d
Since Embree v3.13.0 supports AARCH64, switch back to the
official repo instead of using Embree-aarch64.
`thirdparty/embree/patches/godot-changes.patch` should now contain
an accurate diff of the changes done to the library.
(cherry picked from commit 767e374dce
)
411 lines
17 KiB
C++
411 lines
17 KiB
C++
// Copyright 2009-2021 Intel Corporation
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
#pragma once
|
|
|
|
#include "../bvh/bvh.h"
|
|
#include "../geometry/primitive.h"
|
|
#include "../builders/bvh_builder_sah.h"
|
|
#include "../builders/heuristic_binning_array_aligned.h"
|
|
#include "../builders/heuristic_binning_array_unaligned.h"
|
|
#include "../builders/heuristic_strand_array.h"
|
|
|
|
#define NUM_HAIR_OBJECT_BINS 32
|
|
|
|
namespace embree
|
|
{
|
|
namespace isa
|
|
{
|
|
struct BVHBuilderHair
|
|
{
|
|
/*! settings for builder */
|
|
struct Settings
|
|
{
|
|
/*! default settings */
|
|
Settings ()
|
|
: branchingFactor(2), maxDepth(32), logBlockSize(0), minLeafSize(1), maxLeafSize(7), finished_range_threshold(inf) {}
|
|
|
|
public:
|
|
size_t branchingFactor; //!< branching factor of BVH to build
|
|
size_t maxDepth; //!< maximum depth of BVH to build
|
|
size_t logBlockSize; //!< log2 of blocksize for SAH heuristic
|
|
size_t minLeafSize; //!< minimum size of a leaf
|
|
size_t maxLeafSize; //!< maximum size of a leaf
|
|
size_t finished_range_threshold; //!< finished range threshold
|
|
};
|
|
|
|
template<typename NodeRef,
|
|
typename CreateAllocFunc,
|
|
typename CreateAABBNodeFunc,
|
|
typename SetAABBNodeFunc,
|
|
typename CreateOBBNodeFunc,
|
|
typename SetOBBNodeFunc,
|
|
typename CreateLeafFunc,
|
|
typename ProgressMonitor,
|
|
typename ReportFinishedRangeFunc>
|
|
|
|
class BuilderT
|
|
{
|
|
ALIGNED_CLASS_(16);
|
|
friend struct BVHBuilderHair;
|
|
|
|
typedef FastAllocator::CachedAllocator Allocator;
|
|
typedef HeuristicArrayBinningSAH<PrimRef,NUM_HAIR_OBJECT_BINS> HeuristicBinningSAH;
|
|
typedef UnalignedHeuristicArrayBinningSAH<PrimRef,NUM_HAIR_OBJECT_BINS> UnalignedHeuristicBinningSAH;
|
|
typedef HeuristicStrandSplit HeuristicStrandSplitSAH;
|
|
|
|
static const size_t MAX_BRANCHING_FACTOR = 8; //!< maximum supported BVH branching factor
|
|
static const size_t MIN_LARGE_LEAF_LEVELS = 8; //!< create balanced tree if we are that many levels before the maximum tree depth
|
|
static const size_t SINGLE_THREADED_THRESHOLD = 4096; //!< threshold to switch to single threaded build
|
|
|
|
static const size_t travCostAligned = 1;
|
|
static const size_t travCostUnaligned = 5;
|
|
static const size_t intCost = 6;
|
|
|
|
BuilderT (Scene* scene,
|
|
PrimRef* prims,
|
|
const CreateAllocFunc& createAlloc,
|
|
const CreateAABBNodeFunc& createAABBNode,
|
|
const SetAABBNodeFunc& setAABBNode,
|
|
const CreateOBBNodeFunc& createOBBNode,
|
|
const SetOBBNodeFunc& setOBBNode,
|
|
const CreateLeafFunc& createLeaf,
|
|
const ProgressMonitor& progressMonitor,
|
|
const ReportFinishedRangeFunc& reportFinishedRange,
|
|
const Settings settings)
|
|
|
|
: cfg(settings),
|
|
prims(prims),
|
|
createAlloc(createAlloc),
|
|
createAABBNode(createAABBNode),
|
|
setAABBNode(setAABBNode),
|
|
createOBBNode(createOBBNode),
|
|
setOBBNode(setOBBNode),
|
|
createLeaf(createLeaf),
|
|
progressMonitor(progressMonitor),
|
|
reportFinishedRange(reportFinishedRange),
|
|
alignedHeuristic(prims), unalignedHeuristic(scene,prims), strandHeuristic(scene,prims) {}
|
|
|
|
/*! checks if all primitives are from the same geometry */
|
|
__forceinline bool sameGeometry(const PrimInfoRange& range)
|
|
{
|
|
if (range.size() == 0) return true;
|
|
unsigned int firstGeomID = prims[range.begin()].geomID();
|
|
for (size_t i=range.begin()+1; i<range.end(); i++) {
|
|
if (prims[i].geomID() != firstGeomID){
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*! creates a large leaf that could be larger than supported by the BVH */
|
|
NodeRef createLargeLeaf(size_t depth, const PrimInfoRange& pinfo, Allocator alloc)
|
|
{
|
|
/* this should never occur but is a fatal error */
|
|
if (depth > cfg.maxDepth)
|
|
throw_RTCError(RTC_ERROR_UNKNOWN,"depth limit reached");
|
|
|
|
/* create leaf for few primitives */
|
|
if (pinfo.size() <= cfg.maxLeafSize && sameGeometry(pinfo))
|
|
return createLeaf(prims,pinfo,alloc);
|
|
|
|
/* fill all children by always splitting the largest one */
|
|
PrimInfoRange children[MAX_BRANCHING_FACTOR];
|
|
unsigned numChildren = 1;
|
|
children[0] = pinfo;
|
|
|
|
do {
|
|
|
|
/* find best child with largest bounding box area */
|
|
int bestChild = -1;
|
|
size_t bestSize = 0;
|
|
for (unsigned i=0; i<numChildren; i++)
|
|
{
|
|
/* ignore leaves as they cannot get split */
|
|
if (children[i].size() <= cfg.maxLeafSize && sameGeometry(children[i]))
|
|
continue;
|
|
|
|
/* remember child with largest size */
|
|
if (children[i].size() > bestSize) {
|
|
bestSize = children[i].size();
|
|
bestChild = i;
|
|
}
|
|
}
|
|
if (bestChild == -1) break;
|
|
|
|
/*! split best child into left and right child */
|
|
__aligned(64) PrimInfoRange left, right;
|
|
if (!sameGeometry(children[bestChild])) {
|
|
alignedHeuristic.splitByGeometry(children[bestChild],left,right);
|
|
} else {
|
|
alignedHeuristic.splitFallback(children[bestChild],left,right);
|
|
}
|
|
|
|
/* add new children left and right */
|
|
children[bestChild] = children[numChildren-1];
|
|
children[numChildren-1] = left;
|
|
children[numChildren+0] = right;
|
|
numChildren++;
|
|
|
|
} while (numChildren < cfg.branchingFactor);
|
|
|
|
/* create node */
|
|
auto node = createAABBNode(alloc);
|
|
|
|
for (size_t i=0; i<numChildren; i++) {
|
|
const NodeRef child = createLargeLeaf(depth+1,children[i],alloc);
|
|
setAABBNode(node,i,child,children[i].geomBounds);
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
/*! performs split */
|
|
__noinline void split(const PrimInfoRange& pinfo, PrimInfoRange& linfo, PrimInfoRange& rinfo, bool& aligned) // FIXME: not inlined as ICC otherwise uses much stack
|
|
{
|
|
/* variable to track the SAH of the best splitting approach */
|
|
float bestSAH = inf;
|
|
const size_t blocks = (pinfo.size()+(1ull<<cfg.logBlockSize)-1ull) >> cfg.logBlockSize;
|
|
const float leafSAH = intCost*float(blocks)*halfArea(pinfo.geomBounds);
|
|
|
|
/* try standard binning in aligned space */
|
|
float alignedObjectSAH = inf;
|
|
HeuristicBinningSAH::Split alignedObjectSplit;
|
|
if (aligned) {
|
|
alignedObjectSplit = alignedHeuristic.find(pinfo,cfg.logBlockSize);
|
|
alignedObjectSAH = travCostAligned*halfArea(pinfo.geomBounds) + intCost*alignedObjectSplit.splitSAH();
|
|
bestSAH = min(alignedObjectSAH,bestSAH);
|
|
}
|
|
|
|
/* try standard binning in unaligned space */
|
|
UnalignedHeuristicBinningSAH::Split unalignedObjectSplit;
|
|
LinearSpace3fa uspace;
|
|
float unalignedObjectSAH = inf;
|
|
if (bestSAH > 0.7f*leafSAH) {
|
|
uspace = unalignedHeuristic.computeAlignedSpace(pinfo);
|
|
const PrimInfoRange sinfo = unalignedHeuristic.computePrimInfo(pinfo,uspace);
|
|
unalignedObjectSplit = unalignedHeuristic.find(sinfo,cfg.logBlockSize,uspace);
|
|
unalignedObjectSAH = travCostUnaligned*halfArea(pinfo.geomBounds) + intCost*unalignedObjectSplit.splitSAH();
|
|
bestSAH = min(unalignedObjectSAH,bestSAH);
|
|
}
|
|
|
|
/* try splitting into two strands */
|
|
HeuristicStrandSplitSAH::Split strandSplit;
|
|
float strandSAH = inf;
|
|
if (bestSAH > 0.7f*leafSAH && pinfo.size() <= 256) {
|
|
strandSplit = strandHeuristic.find(pinfo,cfg.logBlockSize);
|
|
strandSAH = travCostUnaligned*halfArea(pinfo.geomBounds) + intCost*strandSplit.splitSAH();
|
|
bestSAH = min(strandSAH,bestSAH);
|
|
}
|
|
|
|
/* fallback if SAH heuristics failed */
|
|
if (unlikely(!std::isfinite(bestSAH)))
|
|
{
|
|
alignedHeuristic.deterministic_order(pinfo);
|
|
alignedHeuristic.splitFallback(pinfo,linfo,rinfo);
|
|
}
|
|
|
|
/* perform aligned split if this is best */
|
|
else if (bestSAH == alignedObjectSAH) {
|
|
alignedHeuristic.split(alignedObjectSplit,pinfo,linfo,rinfo);
|
|
}
|
|
|
|
/* perform unaligned split if this is best */
|
|
else if (bestSAH == unalignedObjectSAH) {
|
|
unalignedHeuristic.split(unalignedObjectSplit,uspace,pinfo,linfo,rinfo);
|
|
aligned = false;
|
|
}
|
|
|
|
/* perform strand split if this is best */
|
|
else if (bestSAH == strandSAH) {
|
|
strandHeuristic.split(strandSplit,pinfo,linfo,rinfo);
|
|
aligned = false;
|
|
}
|
|
|
|
/* can never happen */
|
|
else
|
|
assert(false);
|
|
}
|
|
|
|
/*! recursive build */
|
|
NodeRef recurse(size_t depth, const PrimInfoRange& pinfo, Allocator alloc, bool toplevel, bool alloc_barrier)
|
|
{
|
|
/* get thread local allocator */
|
|
if (!alloc)
|
|
alloc = createAlloc();
|
|
|
|
/* call memory monitor function to signal progress */
|
|
if (toplevel && pinfo.size() <= SINGLE_THREADED_THRESHOLD)
|
|
progressMonitor(pinfo.size());
|
|
|
|
PrimInfoRange children[MAX_BRANCHING_FACTOR];
|
|
|
|
/* create leaf node */
|
|
if (depth+MIN_LARGE_LEAF_LEVELS >= cfg.maxDepth || pinfo.size() <= cfg.minLeafSize) {
|
|
alignedHeuristic.deterministic_order(pinfo);
|
|
return createLargeLeaf(depth,pinfo,alloc);
|
|
}
|
|
|
|
/* fill all children by always splitting the one with the largest surface area */
|
|
size_t numChildren = 1;
|
|
children[0] = pinfo;
|
|
bool aligned = true;
|
|
|
|
do {
|
|
|
|
/* find best child with largest bounding box area */
|
|
ssize_t bestChild = -1;
|
|
float bestArea = neg_inf;
|
|
for (size_t i=0; i<numChildren; i++)
|
|
{
|
|
/* ignore leaves as they cannot get split */
|
|
if (children[i].size() <= cfg.minLeafSize)
|
|
continue;
|
|
|
|
/* remember child with largest area */
|
|
if (area(children[i].geomBounds) > bestArea) {
|
|
bestArea = area(children[i].geomBounds);
|
|
bestChild = i;
|
|
}
|
|
}
|
|
if (bestChild == -1) break;
|
|
|
|
/*! split best child into left and right child */
|
|
PrimInfoRange left, right;
|
|
split(children[bestChild],left,right,aligned);
|
|
|
|
/* add new children left and right */
|
|
children[bestChild] = children[numChildren-1];
|
|
children[numChildren-1] = left;
|
|
children[numChildren+0] = right;
|
|
numChildren++;
|
|
|
|
} while (numChildren < cfg.branchingFactor);
|
|
|
|
NodeRef node;
|
|
|
|
/* create aligned node */
|
|
if (aligned)
|
|
{
|
|
node = createAABBNode(alloc);
|
|
|
|
/* spawn tasks or ... */
|
|
if (pinfo.size() > SINGLE_THREADED_THRESHOLD)
|
|
{
|
|
parallel_for(size_t(0), numChildren, [&] (const range<size_t>& r) {
|
|
for (size_t i=r.begin(); i<r.end(); i++) {
|
|
const bool child_alloc_barrier = pinfo.size() > cfg.finished_range_threshold && children[i].size() <= cfg.finished_range_threshold;
|
|
setAABBNode(node,i,recurse(depth+1,children[i],nullptr,true,child_alloc_barrier),children[i].geomBounds);
|
|
_mm_mfence(); // to allow non-temporal stores during build
|
|
}
|
|
});
|
|
}
|
|
/* ... continue sequentially */
|
|
else {
|
|
for (size_t i=0; i<numChildren; i++) {
|
|
const bool child_alloc_barrier = pinfo.size() > cfg.finished_range_threshold && children[i].size() <= cfg.finished_range_threshold;
|
|
setAABBNode(node,i,recurse(depth+1,children[i],alloc,false,child_alloc_barrier),children[i].geomBounds);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* create unaligned node */
|
|
else
|
|
{
|
|
node = createOBBNode(alloc);
|
|
|
|
/* spawn tasks or ... */
|
|
if (pinfo.size() > SINGLE_THREADED_THRESHOLD)
|
|
{
|
|
parallel_for(size_t(0), numChildren, [&] (const range<size_t>& r) {
|
|
for (size_t i=r.begin(); i<r.end(); i++) {
|
|
const LinearSpace3fa space = unalignedHeuristic.computeAlignedSpace(children[i]);
|
|
const PrimInfoRange sinfo = unalignedHeuristic.computePrimInfo(children[i],space);
|
|
const OBBox3fa obounds(space,sinfo.geomBounds);
|
|
const bool child_alloc_barrier = pinfo.size() > cfg.finished_range_threshold && children[i].size() <= cfg.finished_range_threshold;
|
|
setOBBNode(node,i,recurse(depth+1,children[i],nullptr,true,child_alloc_barrier),obounds);
|
|
_mm_mfence(); // to allow non-temporal stores during build
|
|
}
|
|
});
|
|
}
|
|
/* ... continue sequentially */
|
|
else
|
|
{
|
|
for (size_t i=0; i<numChildren; i++) {
|
|
const LinearSpace3fa space = unalignedHeuristic.computeAlignedSpace(children[i]);
|
|
const PrimInfoRange sinfo = unalignedHeuristic.computePrimInfo(children[i],space);
|
|
const OBBox3fa obounds(space,sinfo.geomBounds);
|
|
const bool child_alloc_barrier = pinfo.size() > cfg.finished_range_threshold && children[i].size() <= cfg.finished_range_threshold;
|
|
setOBBNode(node,i,recurse(depth+1,children[i],alloc,false,child_alloc_barrier),obounds);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* reports a finished range of primrefs */
|
|
if (unlikely(alloc_barrier))
|
|
reportFinishedRange(pinfo);
|
|
|
|
return node;
|
|
}
|
|
|
|
private:
|
|
Settings cfg;
|
|
PrimRef* prims;
|
|
const CreateAllocFunc& createAlloc;
|
|
const CreateAABBNodeFunc& createAABBNode;
|
|
const SetAABBNodeFunc& setAABBNode;
|
|
const CreateOBBNodeFunc& createOBBNode;
|
|
const SetOBBNodeFunc& setOBBNode;
|
|
const CreateLeafFunc& createLeaf;
|
|
const ProgressMonitor& progressMonitor;
|
|
const ReportFinishedRangeFunc& reportFinishedRange;
|
|
|
|
private:
|
|
HeuristicBinningSAH alignedHeuristic;
|
|
UnalignedHeuristicBinningSAH unalignedHeuristic;
|
|
HeuristicStrandSplitSAH strandHeuristic;
|
|
};
|
|
|
|
template<typename NodeRef,
|
|
typename CreateAllocFunc,
|
|
typename CreateAABBNodeFunc,
|
|
typename SetAABBNodeFunc,
|
|
typename CreateOBBNodeFunc,
|
|
typename SetOBBNodeFunc,
|
|
typename CreateLeafFunc,
|
|
typename ProgressMonitor,
|
|
typename ReportFinishedRangeFunc>
|
|
|
|
static NodeRef build (const CreateAllocFunc& createAlloc,
|
|
const CreateAABBNodeFunc& createAABBNode,
|
|
const SetAABBNodeFunc& setAABBNode,
|
|
const CreateOBBNodeFunc& createOBBNode,
|
|
const SetOBBNodeFunc& setOBBNode,
|
|
const CreateLeafFunc& createLeaf,
|
|
const ProgressMonitor& progressMonitor,
|
|
const ReportFinishedRangeFunc& reportFinishedRange,
|
|
Scene* scene,
|
|
PrimRef* prims,
|
|
const PrimInfo& pinfo,
|
|
const Settings settings)
|
|
{
|
|
typedef BuilderT<NodeRef,
|
|
CreateAllocFunc,
|
|
CreateAABBNodeFunc,SetAABBNodeFunc,
|
|
CreateOBBNodeFunc,SetOBBNodeFunc,
|
|
CreateLeafFunc,ProgressMonitor,
|
|
ReportFinishedRangeFunc> Builder;
|
|
|
|
Builder builder(scene,prims,createAlloc,
|
|
createAABBNode,setAABBNode,
|
|
createOBBNode,setOBBNode,
|
|
createLeaf,progressMonitor,reportFinishedRange,settings);
|
|
|
|
NodeRef root = builder.recurse(1,pinfo,nullptr,true,false);
|
|
_mm_mfence(); // to allow non-temporal stores during build
|
|
return root;
|
|
}
|
|
};
|
|
}
|
|
}
|