virtualx-engine/thirdparty/embree/kernels/subdiv/feature_adaptive_eval.h
jfons a69cc9f13d
Upgrade Embree to the latest official release.
Since Embree v3.13.0 supports AARCH64, switch back to the
official repo instead of using Embree-aarch64.

`thirdparty/embree/patches/godot-changes.patch` should now contain
an accurate diff of the changes done to the library.

(cherry picked from commit 767e374dce)
2021-05-22 15:14:07 +02:00

226 lines
9.6 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "patch.h"
namespace embree
{
namespace isa
{
template<typename Vertex, typename Vertex_t = Vertex>
struct FeatureAdaptiveEval
{
public:
typedef PatchT<Vertex,Vertex_t> Patch;
typedef typename Patch::Ref Ref;
typedef GeneralCatmullClarkPatchT<Vertex,Vertex_t> GeneralCatmullClarkPatch;
typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClarkRing;
typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch;
typedef BSplinePatchT<Vertex,Vertex_t> BSplinePatch;
typedef BezierPatchT<Vertex,Vertex_t> BezierPatch;
typedef GregoryPatchT<Vertex,Vertex_t> GregoryPatch;
typedef BilinearPatchT<Vertex,Vertex_t> BilinearPatch;
typedef BezierCurveT<Vertex> BezierCurve;
public:
FeatureAdaptiveEval (const HalfEdge* edge, const char* vertices, size_t stride, const float u, const float v,
Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv)
: P(P), dPdu(dPdu), dPdv(dPdv), ddPdudu(ddPdudu), ddPdvdv(ddPdvdv), ddPdudv(ddPdudv)
{
switch (edge->patch_type) {
case HalfEdge::BILINEAR_PATCH: BilinearPatch(edge,vertices,stride).eval(u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f); break;
case HalfEdge::REGULAR_QUAD_PATCH: RegularPatchT(edge,vertices,stride).eval(u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f); break;
#if PATCH_USE_GREGORY == 2
case HalfEdge::IRREGULAR_QUAD_PATCH: GregoryPatch(edge,vertices,stride).eval(u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f); break;
#endif
default: {
GeneralCatmullClarkPatch patch(edge,vertices,stride);
eval(patch,Vec2f(u,v),0);
break;
}
}
}
FeatureAdaptiveEval (CatmullClarkPatch& patch, const float u, const float v, float dscale, size_t depth,
Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv)
: P(P), dPdu(dPdu), dPdv(dPdv), ddPdudu(ddPdudu), ddPdvdv(ddPdvdv), ddPdudv(ddPdudv)
{
eval(patch,Vec2f(u,v),dscale,depth);
}
void eval_general_quad(const GeneralCatmullClarkPatch& patch, array_t<CatmullClarkPatch,GeneralCatmullClarkPatch::SIZE>& patches, const Vec2f& uv, size_t depth)
{
float u = uv.x, v = uv.y;
if (v < 0.5f) {
if (u < 0.5f) {
#if PATCH_USE_GREGORY == 2
BezierCurve borders[2]; patch.getLimitBorder(borders,0);
BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
eval(patches[0],Vec2f(2.0f*u,2.0f*v),2.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
#else
eval(patches[0],Vec2f(2.0f*u,2.0f*v),2.0f,depth+1);
#endif
if (dPdu && dPdv) {
const Vertex dpdx = *dPdu, dpdy = *dPdv;
*dPdu = dpdx; *dPdv = dpdy;
}
}
else {
#if PATCH_USE_GREGORY == 2
BezierCurve borders[2]; patch.getLimitBorder(borders,1);
BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
eval(patches[1],Vec2f(2.0f*v,2.0f-2.0f*u),2.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
#else
eval(patches[1],Vec2f(2.0f*v,2.0f-2.0f*u),2.0f,depth+1);
#endif
if (dPdu && dPdv) {
const Vertex dpdx = *dPdu, dpdy = *dPdv;
*dPdu = -dpdy; *dPdv = dpdx;
}
}
} else {
if (u > 0.5f) {
#if PATCH_USE_GREGORY == 2
BezierCurve borders[2]; patch.getLimitBorder(borders,2);
BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
eval(patches[2],Vec2f(2.0f-2.0f*u,2.0f-2.0f*v),2.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
#else
eval(patches[2],Vec2f(2.0f-2.0f*u,2.0f-2.0f*v),2.0f,depth+1);
#endif
if (dPdu && dPdv) {
const Vertex dpdx = *dPdu, dpdy = *dPdv;
*dPdu = -dpdx; *dPdv = -dpdy;
}
}
else {
#if PATCH_USE_GREGORY == 2
BezierCurve borders[2]; patch.getLimitBorder(borders,3);
BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
eval(patches[3],Vec2f(2.0f-2.0f*v,2.0f*u),2.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
#else
eval(patches[3],Vec2f(2.0f-2.0f*v,2.0f*u),2.0f,depth+1);
#endif
if (dPdu && dPdv) {
const Vertex dpdx = *dPdu, dpdy = *dPdv;
*dPdu = dpdy; *dPdv = -dpdx;
}
}
}
}
__forceinline bool final(const CatmullClarkPatch& patch, const typename CatmullClarkRing::Type type, size_t depth)
{
const int max_eval_depth = (type & CatmullClarkRing::TYPE_CREASES) ? PATCH_MAX_EVAL_DEPTH_CREASE : PATCH_MAX_EVAL_DEPTH_IRREGULAR;
//#if PATCH_MIN_RESOLUTION
// return patch.isFinalResolution(PATCH_MIN_RESOLUTION) || depth>=(size_t)max_eval_depth;
//#else
return depth>=(size_t)max_eval_depth;
//#endif
}
void eval(CatmullClarkPatch& patch, Vec2f uv, float dscale, size_t depth,
BezierCurve* border0 = nullptr, BezierCurve* border1 = nullptr, BezierCurve* border2 = nullptr, BezierCurve* border3 = nullptr)
{
while (true)
{
typename CatmullClarkPatch::Type ty = patch.type();
if (unlikely(final(patch,ty,depth)))
{
if (ty & CatmullClarkRing::TYPE_REGULAR) {
RegularPatch(patch,border0,border1,border2,border3).eval(uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
PATCH_DEBUG_SUBDIVISION(234423,c,c,-1);
return;
} else {
IrregularFillPatch(patch,border0,border1,border2,border3).eval(uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
PATCH_DEBUG_SUBDIVISION(34534,c,-1,c);
return;
}
}
else if (ty & CatmullClarkRing::TYPE_REGULAR_CREASES) {
assert(depth > 0);
RegularPatch(patch,border0,border1,border2,border3).eval(uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
PATCH_DEBUG_SUBDIVISION(43524,c,c,-1);
return;
}
#if PATCH_USE_GREGORY == 2
else if (ty & CatmullClarkRing::TYPE_GREGORY_CREASES) {
assert(depth > 0);
GregoryPatch(patch,border0,border1,border2,border3).eval(uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
PATCH_DEBUG_SUBDIVISION(23498,c,-1,c);
return;
}
#endif
else
{
array_t<CatmullClarkPatch,4> patches;
patch.subdivide(patches); // FIXME: only have to generate one of the patches
const float u = uv.x, v = uv.y;
if (v < 0.5f) {
if (u < 0.5f) { patch = patches[0]; uv = Vec2f(2.0f*u,2.0f*v); dscale *= 2.0f; }
else { patch = patches[1]; uv = Vec2f(2.0f*u-1.0f,2.0f*v); dscale *= 2.0f; }
} else {
if (u > 0.5f) { patch = patches[2]; uv = Vec2f(2.0f*u-1.0f,2.0f*v-1.0f); dscale *= 2.0f; }
else { patch = patches[3]; uv = Vec2f(2.0f*u,2.0f*v-1.0f); dscale *= 2.0f; }
}
depth++;
}
}
}
void eval(const GeneralCatmullClarkPatch& patch, const Vec2f& uv, const size_t depth)
{
/* convert into standard quad patch if possible */
if (likely(patch.isQuadPatch()))
{
CatmullClarkPatch qpatch; patch.init(qpatch);
return eval(qpatch,uv,1.0f,depth);
}
/* subdivide patch */
unsigned N;
array_t<CatmullClarkPatch,GeneralCatmullClarkPatch::SIZE> patches;
patch.subdivide(patches,N); // FIXME: only have to generate one of the patches
/* parametrization for quads */
if (N == 4)
eval_general_quad(patch,patches,uv,depth);
/* parametrization for arbitrary polygons */
else
{
const unsigned l = (unsigned) floor(0.5f*uv.x); const float u = 2.0f*frac(0.5f*uv.x)-0.5f;
const unsigned h = (unsigned) floor(0.5f*uv.y); const float v = 2.0f*frac(0.5f*uv.y)-0.5f;
const unsigned i = 4*h+l; assert(i<N);
if (i >= N) return;
#if PATCH_USE_GREGORY == 2
BezierCurve borders[2]; patch.getLimitBorder(borders,i);
BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
eval(patches[i],Vec2f(u,v),1.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
#else
eval(patches[i],Vec2f(u,v),1.0f,depth+1);
#endif
}
}
private:
Vertex* const P;
Vertex* const dPdu;
Vertex* const dPdv;
Vertex* const ddPdudu;
Vertex* const ddPdvdv;
Vertex* const ddPdudv;
};
}
}