668439d16a
Also adding a patch to easily identify and reapply them.
456 lines
12 KiB
C++
456 lines
12 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#ifndef BT_OBJECT_ARRAY__
|
|
#define BT_OBJECT_ARRAY__
|
|
|
|
#include "btAlignedAllocator.h"
|
|
#include "btScalar.h" // has definitions like SIMD_FORCE_INLINE
|
|
|
|
///If the platform doesn't support placement new, you can disable BT_USE_PLACEMENT_NEW
|
|
///then the btAlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors
|
|
///You can enable BT_USE_MEMCPY, then swapping elements in the array will use memcpy instead of operator=
|
|
///see discussion here: http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1231 and
|
|
///http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1240
|
|
|
|
#define BT_USE_PLACEMENT_NEW 1
|
|
//#define BT_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise...
|
|
#define BT_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful
|
|
|
|
#ifdef BT_USE_MEMCPY
|
|
#include <memory.h>
|
|
#include <string.h>
|
|
#endif //BT_USE_MEMCPY
|
|
|
|
#ifdef BT_USE_PLACEMENT_NEW
|
|
#include <new> //for placement new
|
|
#endif //BT_USE_PLACEMENT_NEW
|
|
|
|
// -- GODOT start --
|
|
namespace VHACD {
|
|
// -- GODOT end --
|
|
|
|
///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods
|
|
///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data
|
|
template <typename T>
|
|
//template <class T>
|
|
class btAlignedObjectArray {
|
|
btAlignedAllocator<T, 16> m_allocator;
|
|
|
|
int32_t m_size;
|
|
int32_t m_capacity;
|
|
T* m_data;
|
|
//PCK: added this line
|
|
bool m_ownsMemory;
|
|
|
|
#ifdef BT_ALLOW_ARRAY_COPY_OPERATOR
|
|
public:
|
|
SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other)
|
|
{
|
|
copyFromArray(other);
|
|
return *this;
|
|
}
|
|
#else //BT_ALLOW_ARRAY_COPY_OPERATOR
|
|
private:
|
|
SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other);
|
|
#endif //BT_ALLOW_ARRAY_COPY_OPERATOR
|
|
|
|
protected:
|
|
SIMD_FORCE_INLINE int32_t allocSize(int32_t size)
|
|
{
|
|
return (size ? size * 2 : 1);
|
|
}
|
|
SIMD_FORCE_INLINE void copy(int32_t start, int32_t end, T* dest) const
|
|
{
|
|
int32_t i;
|
|
for (i = start; i < end; ++i)
|
|
#ifdef BT_USE_PLACEMENT_NEW
|
|
new (&dest[i]) T(m_data[i]);
|
|
#else
|
|
dest[i] = m_data[i];
|
|
#endif //BT_USE_PLACEMENT_NEW
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void init()
|
|
{
|
|
//PCK: added this line
|
|
m_ownsMemory = true;
|
|
m_data = 0;
|
|
m_size = 0;
|
|
m_capacity = 0;
|
|
}
|
|
SIMD_FORCE_INLINE void destroy(int32_t first, int32_t last)
|
|
{
|
|
int32_t i;
|
|
for (i = first; i < last; i++) {
|
|
m_data[i].~T();
|
|
}
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void* allocate(int32_t size)
|
|
{
|
|
if (size)
|
|
return m_allocator.allocate(size);
|
|
return 0;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void deallocate()
|
|
{
|
|
if (m_data) {
|
|
//PCK: enclosed the deallocation in this block
|
|
if (m_ownsMemory) {
|
|
m_allocator.deallocate(m_data);
|
|
}
|
|
m_data = 0;
|
|
}
|
|
}
|
|
|
|
public:
|
|
btAlignedObjectArray()
|
|
{
|
|
init();
|
|
}
|
|
|
|
~btAlignedObjectArray()
|
|
{
|
|
clear();
|
|
}
|
|
|
|
///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead.
|
|
btAlignedObjectArray(const btAlignedObjectArray& otherArray)
|
|
{
|
|
init();
|
|
|
|
int32_t otherSize = otherArray.size();
|
|
resize(otherSize);
|
|
otherArray.copy(0, otherSize, m_data);
|
|
}
|
|
|
|
/// return the number of elements in the array
|
|
SIMD_FORCE_INLINE int32_t size() const
|
|
{
|
|
return m_size;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE const T& at(int32_t n) const
|
|
{
|
|
btAssert(n >= 0);
|
|
btAssert(n < size());
|
|
return m_data[n];
|
|
}
|
|
|
|
SIMD_FORCE_INLINE T& at(int32_t n)
|
|
{
|
|
btAssert(n >= 0);
|
|
btAssert(n < size());
|
|
return m_data[n];
|
|
}
|
|
|
|
SIMD_FORCE_INLINE const T& operator[](int32_t n) const
|
|
{
|
|
btAssert(n >= 0);
|
|
btAssert(n < size());
|
|
return m_data[n];
|
|
}
|
|
|
|
SIMD_FORCE_INLINE T& operator[](int32_t n)
|
|
{
|
|
btAssert(n >= 0);
|
|
btAssert(n < size());
|
|
return m_data[n];
|
|
}
|
|
|
|
///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations.
|
|
SIMD_FORCE_INLINE void clear()
|
|
{
|
|
destroy(0, size());
|
|
|
|
deallocate();
|
|
|
|
init();
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void pop_back()
|
|
{
|
|
btAssert(m_size > 0);
|
|
m_size--;
|
|
m_data[m_size].~T();
|
|
}
|
|
|
|
///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument.
|
|
///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations.
|
|
SIMD_FORCE_INLINE void resize(int32_t newsize, const T& fillData = T())
|
|
{
|
|
int32_t curSize = size();
|
|
|
|
if (newsize < curSize) {
|
|
for (int32_t i = newsize; i < curSize; i++) {
|
|
m_data[i].~T();
|
|
}
|
|
}
|
|
else {
|
|
if (newsize > size()) {
|
|
reserve(newsize);
|
|
}
|
|
#ifdef BT_USE_PLACEMENT_NEW
|
|
for (int32_t i = curSize; i < newsize; i++) {
|
|
new (&m_data[i]) T(fillData);
|
|
}
|
|
#endif //BT_USE_PLACEMENT_NEW
|
|
}
|
|
|
|
m_size = newsize;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE T& expandNonInitializing()
|
|
{
|
|
int32_t sz = size();
|
|
if (sz == capacity()) {
|
|
reserve(allocSize(size()));
|
|
}
|
|
m_size++;
|
|
|
|
return m_data[sz];
|
|
}
|
|
|
|
SIMD_FORCE_INLINE T& expand(const T& fillValue = T())
|
|
{
|
|
int32_t sz = size();
|
|
if (sz == capacity()) {
|
|
reserve(allocSize(size()));
|
|
}
|
|
m_size++;
|
|
#ifdef BT_USE_PLACEMENT_NEW
|
|
new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory)
|
|
#endif
|
|
|
|
return m_data[sz];
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void push_back(const T& _Val)
|
|
{
|
|
int32_t sz = size();
|
|
if (sz == capacity()) {
|
|
reserve(allocSize(size()));
|
|
}
|
|
|
|
#ifdef BT_USE_PLACEMENT_NEW
|
|
new (&m_data[m_size]) T(_Val);
|
|
#else
|
|
m_data[size()] = _Val;
|
|
#endif //BT_USE_PLACEMENT_NEW
|
|
|
|
m_size++;
|
|
}
|
|
|
|
/// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve()
|
|
SIMD_FORCE_INLINE int32_t capacity() const
|
|
{
|
|
return m_capacity;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void reserve(int32_t _Count)
|
|
{ // determine new minimum length of allocated storage
|
|
if (capacity() < _Count) { // not enough room, reallocate
|
|
T* s = (T*)allocate(_Count);
|
|
|
|
copy(0, size(), s);
|
|
|
|
destroy(0, size());
|
|
|
|
deallocate();
|
|
|
|
//PCK: added this line
|
|
m_ownsMemory = true;
|
|
|
|
m_data = s;
|
|
|
|
m_capacity = _Count;
|
|
}
|
|
}
|
|
|
|
class less {
|
|
public:
|
|
bool operator()(const T& a, const T& b)
|
|
{
|
|
return (a < b);
|
|
}
|
|
};
|
|
|
|
template <typename L>
|
|
void quickSortInternal(const L& CompareFunc, int32_t lo, int32_t hi)
|
|
{
|
|
// lo is the lower index, hi is the upper index
|
|
// of the region of array a that is to be sorted
|
|
int32_t i = lo, j = hi;
|
|
T x = m_data[(lo + hi) / 2];
|
|
|
|
// partition
|
|
do {
|
|
while (CompareFunc(m_data[i], x))
|
|
i++;
|
|
while (CompareFunc(x, m_data[j]))
|
|
j--;
|
|
if (i <= j) {
|
|
swap(i, j);
|
|
i++;
|
|
j--;
|
|
}
|
|
} while (i <= j);
|
|
|
|
// recursion
|
|
if (lo < j)
|
|
quickSortInternal(CompareFunc, lo, j);
|
|
if (i < hi)
|
|
quickSortInternal(CompareFunc, i, hi);
|
|
}
|
|
|
|
template <typename L>
|
|
void quickSort(const L& CompareFunc)
|
|
{
|
|
//don't sort 0 or 1 elements
|
|
if (size() > 1) {
|
|
quickSortInternal(CompareFunc, 0, size() - 1);
|
|
}
|
|
}
|
|
|
|
///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/
|
|
template <typename L>
|
|
void downHeap(T* pArr, int32_t k, int32_t n, const L& CompareFunc)
|
|
{
|
|
/* PRE: a[k+1..N] is a heap */
|
|
/* POST: a[k..N] is a heap */
|
|
|
|
T temp = pArr[k - 1];
|
|
/* k has child(s) */
|
|
while (k <= n / 2) {
|
|
int32_t child = 2 * k;
|
|
|
|
if ((child < n) && CompareFunc(pArr[child - 1], pArr[child])) {
|
|
child++;
|
|
}
|
|
/* pick larger child */
|
|
if (CompareFunc(temp, pArr[child - 1])) {
|
|
/* move child up */
|
|
pArr[k - 1] = pArr[child - 1];
|
|
k = child;
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
pArr[k - 1] = temp;
|
|
} /*downHeap*/
|
|
|
|
void swap(int32_t index0, int32_t index1)
|
|
{
|
|
#ifdef BT_USE_MEMCPY
|
|
char temp[sizeof(T)];
|
|
memcpy(temp, &m_data[index0], sizeof(T));
|
|
memcpy(&m_data[index0], &m_data[index1], sizeof(T));
|
|
memcpy(&m_data[index1], temp, sizeof(T));
|
|
#else
|
|
T temp = m_data[index0];
|
|
m_data[index0] = m_data[index1];
|
|
m_data[index1] = temp;
|
|
#endif //BT_USE_PLACEMENT_NEW
|
|
}
|
|
|
|
template <typename L>
|
|
void heapSort(const L& CompareFunc)
|
|
{
|
|
/* sort a[0..N-1], N.B. 0 to N-1 */
|
|
int32_t k;
|
|
int32_t n = m_size;
|
|
for (k = n / 2; k > 0; k--) {
|
|
downHeap(m_data, k, n, CompareFunc);
|
|
}
|
|
|
|
/* a[1..N] is now a heap */
|
|
while (n >= 1) {
|
|
swap(0, n - 1); /* largest of a[0..n-1] */
|
|
|
|
n = n - 1;
|
|
/* restore a[1..i-1] heap */
|
|
downHeap(m_data, 1, n, CompareFunc);
|
|
}
|
|
}
|
|
|
|
///non-recursive binary search, assumes sorted array
|
|
int32_t findBinarySearch(const T& key) const
|
|
{
|
|
int32_t first = 0;
|
|
int32_t last = size() - 1;
|
|
|
|
//assume sorted array
|
|
while (first <= last) {
|
|
int32_t mid = (first + last) / 2; // compute mid point.
|
|
if (key > m_data[mid])
|
|
first = mid + 1; // repeat search in top half.
|
|
else if (key < m_data[mid])
|
|
last = mid - 1; // repeat search in bottom half.
|
|
else
|
|
return mid; // found it. return position /////
|
|
}
|
|
return size(); // failed to find key
|
|
}
|
|
|
|
int32_t findLinearSearch(const T& key) const
|
|
{
|
|
int32_t index = size();
|
|
int32_t i;
|
|
|
|
for (i = 0; i < size(); i++) {
|
|
if (m_data[i] == key) {
|
|
index = i;
|
|
break;
|
|
}
|
|
}
|
|
return index;
|
|
}
|
|
|
|
void remove(const T& key)
|
|
{
|
|
|
|
int32_t findIndex = findLinearSearch(key);
|
|
if (findIndex < size()) {
|
|
swap(findIndex, size() - 1);
|
|
pop_back();
|
|
}
|
|
}
|
|
|
|
//PCK: whole function
|
|
void initializeFromBuffer(void* buffer, int32_t size, int32_t capacity)
|
|
{
|
|
clear();
|
|
m_ownsMemory = false;
|
|
m_data = (T*)buffer;
|
|
m_size = size;
|
|
m_capacity = capacity;
|
|
}
|
|
|
|
void copyFromArray(const btAlignedObjectArray& otherArray)
|
|
{
|
|
int32_t otherSize = otherArray.size();
|
|
resize(otherSize);
|
|
otherArray.copy(0, otherSize, m_data);
|
|
}
|
|
};
|
|
|
|
// -- GODOT start --
|
|
}; // namespace VHACD
|
|
// -- GODOT end --
|
|
|
|
#endif //BT_OBJECT_ARRAY__
|