virtualx-engine/thirdparty/vhacd/inc/btVector3.h
Rémi Verschelde 668439d16a vhacd: Reapply downstream changes to namespace conflicting bullet code
Also adding a patch to easily identify and reapply them.
2019-04-11 18:20:32 +02:00

723 lines
22 KiB
C++

/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_VECTOR3_H
#define BT_VECTOR3_H
#include "btMinMax.h"
#include "btScalar.h"
#ifdef BT_USE_DOUBLE_PRECISION
#define btVector3Data btVector3DoubleData
#define btVector3DataName "btVector3DoubleData"
#else
#define btVector3Data btVector3FloatData
#define btVector3DataName "btVector3FloatData"
#endif //BT_USE_DOUBLE_PRECISION
// -- GODOT start --
namespace VHACD {
// -- GODOT end --
/**@brief btVector3 can be used to represent 3D points and vectors.
* It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user
* Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers
*/
ATTRIBUTE_ALIGNED16(class)
btVector3
{
public:
#if defined(__SPU__) && defined(__CELLOS_LV2__)
btScalar m_floats[4];
public:
SIMD_FORCE_INLINE const vec_float4& get128() const
{
return *((const vec_float4*)&m_floats[0]);
}
public:
#else //__CELLOS_LV2__ __SPU__
#ifdef BT_USE_SSE // _WIN32
union {
__m128 mVec128;
btScalar m_floats[4];
};
SIMD_FORCE_INLINE __m128 get128() const
{
return mVec128;
}
SIMD_FORCE_INLINE void set128(__m128 v128)
{
mVec128 = v128;
}
#else
btScalar m_floats[4];
#endif
#endif //__CELLOS_LV2__ __SPU__
public:
/**@brief No initialization constructor */
SIMD_FORCE_INLINE btVector3() {}
/**@brief Constructor from scalars
* @param x X value
* @param y Y value
* @param z Z value
*/
SIMD_FORCE_INLINE btVector3(const btScalar& x, const btScalar& y, const btScalar& z)
{
m_floats[0] = x;
m_floats[1] = y;
m_floats[2] = z;
m_floats[3] = btScalar(0.);
}
/**@brief Add a vector to this one
* @param The vector to add to this one */
SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v)
{
m_floats[0] += v.m_floats[0];
m_floats[1] += v.m_floats[1];
m_floats[2] += v.m_floats[2];
return *this;
}
/**@brief Subtract a vector from this one
* @param The vector to subtract */
SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v)
{
m_floats[0] -= v.m_floats[0];
m_floats[1] -= v.m_floats[1];
m_floats[2] -= v.m_floats[2];
return *this;
}
/**@brief Scale the vector
* @param s Scale factor */
SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s)
{
m_floats[0] *= s;
m_floats[1] *= s;
m_floats[2] *= s;
return *this;
}
/**@brief Inversely scale the vector
* @param s Scale factor to divide by */
SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s)
{
btFullAssert(s != btScalar(0.0));
return * this *= btScalar(1.0) / s;
}
/**@brief Return the dot product
* @param v The other vector in the dot product */
SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const
{
return m_floats[0] * v.m_floats[0] + m_floats[1] * v.m_floats[1] + m_floats[2] * v.m_floats[2];
}
/**@brief Return the length of the vector squared */
SIMD_FORCE_INLINE btScalar length2() const
{
return dot(*this);
}
/**@brief Return the length of the vector */
SIMD_FORCE_INLINE btScalar length() const
{
return btSqrt(length2());
}
/**@brief Return the distance squared between the ends of this and another vector
* This is symantically treating the vector like a point */
SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const;
/**@brief Return the distance between the ends of this and another vector
* This is symantically treating the vector like a point */
SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const;
SIMD_FORCE_INLINE btVector3& safeNormalize()
{
btVector3 absVec = this->absolute();
int32_t maxIndex = absVec.maxAxis();
if (absVec[maxIndex] > 0) {
*this /= absVec[maxIndex];
return * this /= length();
}
setValue(1, 0, 0);
return *this;
}
/**@brief Normalize this vector
* x^2 + y^2 + z^2 = 1 */
SIMD_FORCE_INLINE btVector3& normalize()
{
return * this /= length();
}
/**@brief Return a normalized version of this vector */
SIMD_FORCE_INLINE btVector3 normalized() const;
/**@brief Return a rotated version of this vector
* @param wAxis The axis to rotate about
* @param angle The angle to rotate by */
SIMD_FORCE_INLINE btVector3 rotate(const btVector3& wAxis, const btScalar angle) const;
/**@brief Return the angle between this and another vector
* @param v The other vector */
SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const
{
btScalar s = btSqrt(length2() * v.length2());
btFullAssert(s != btScalar(0.0));
return btAcos(dot(v) / s);
}
/**@brief Return a vector will the absolute values of each element */
SIMD_FORCE_INLINE btVector3 absolute() const
{
return btVector3(
btFabs(m_floats[0]),
btFabs(m_floats[1]),
btFabs(m_floats[2]));
}
/**@brief Return the cross product between this and another vector
* @param v The other vector */
SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const
{
return btVector3(
m_floats[1] * v.m_floats[2] - m_floats[2] * v.m_floats[1],
m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2],
m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]);
}
SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const
{
return m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]);
}
/**@brief Return the axis with the smallest value
* Note return values are 0,1,2 for x, y, or z */
SIMD_FORCE_INLINE int32_t minAxis() const
{
return m_floats[0] < m_floats[1] ? (m_floats[0] < m_floats[2] ? 0 : 2) : (m_floats[1] < m_floats[2] ? 1 : 2);
}
/**@brief Return the axis with the largest value
* Note return values are 0,1,2 for x, y, or z */
SIMD_FORCE_INLINE int32_t maxAxis() const
{
return m_floats[0] < m_floats[1] ? (m_floats[1] < m_floats[2] ? 2 : 1) : (m_floats[0] < m_floats[2] ? 2 : 0);
}
SIMD_FORCE_INLINE int32_t furthestAxis() const
{
return absolute().minAxis();
}
SIMD_FORCE_INLINE int32_t closestAxis() const
{
return absolute().maxAxis();
}
SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt)
{
btScalar s = btScalar(1.0) - rt;
m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0];
m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1];
m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2];
//don't do the unused w component
// m_co[3] = s * v0[3] + rt * v1[3];
}
/**@brief Return the linear interpolation between this and another vector
* @param v The other vector
* @param t The ration of this to v (t = 0 => return this, t=1 => return other) */
SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const
{
return btVector3(m_floats[0] + (v.m_floats[0] - m_floats[0]) * t,
m_floats[1] + (v.m_floats[1] - m_floats[1]) * t,
m_floats[2] + (v.m_floats[2] - m_floats[2]) * t);
}
/**@brief Elementwise multiply this vector by the other
* @param v The other vector */
SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v)
{
m_floats[0] *= v.m_floats[0];
m_floats[1] *= v.m_floats[1];
m_floats[2] *= v.m_floats[2];
return *this;
}
/**@brief Return the x value */
SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; }
/**@brief Return the y value */
SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; }
/**@brief Return the z value */
SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; }
/**@brief Set the x value */
SIMD_FORCE_INLINE void setX(btScalar x) { m_floats[0] = x; };
/**@brief Set the y value */
SIMD_FORCE_INLINE void setY(btScalar y) { m_floats[1] = y; };
/**@brief Set the z value */
SIMD_FORCE_INLINE void setZ(btScalar z) { m_floats[2] = z; };
/**@brief Set the w value */
SIMD_FORCE_INLINE void setW(btScalar w) { m_floats[3] = w; };
/**@brief Return the x value */
SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; }
/**@brief Return the y value */
SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; }
/**@brief Return the z value */
SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; }
/**@brief Return the w value */
SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; }
//SIMD_FORCE_INLINE btScalar& operator[](int32_t i) { return (&m_floats[0])[i]; }
//SIMD_FORCE_INLINE const btScalar& operator[](int32_t i) const { return (&m_floats[0])[i]; }
///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons.
SIMD_FORCE_INLINE operator btScalar*() { return &m_floats[0]; }
SIMD_FORCE_INLINE operator const btScalar*() const { return &m_floats[0]; }
SIMD_FORCE_INLINE bool operator==(const btVector3& other) const
{
return ((m_floats[3] == other.m_floats[3]) && (m_floats[2] == other.m_floats[2]) && (m_floats[1] == other.m_floats[1]) && (m_floats[0] == other.m_floats[0]));
}
SIMD_FORCE_INLINE bool operator!=(const btVector3& other) const
{
return !(*this == other);
}
/**@brief Set each element to the max of the current values and the values of another btVector3
* @param other The other btVector3 to compare with
*/
SIMD_FORCE_INLINE void setMax(const btVector3& other)
{
btSetMax(m_floats[0], other.m_floats[0]);
btSetMax(m_floats[1], other.m_floats[1]);
btSetMax(m_floats[2], other.m_floats[2]);
btSetMax(m_floats[3], other.w());
}
/**@brief Set each element to the min of the current values and the values of another btVector3
* @param other The other btVector3 to compare with
*/
SIMD_FORCE_INLINE void setMin(const btVector3& other)
{
btSetMin(m_floats[0], other.m_floats[0]);
btSetMin(m_floats[1], other.m_floats[1]);
btSetMin(m_floats[2], other.m_floats[2]);
btSetMin(m_floats[3], other.w());
}
SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z)
{
m_floats[0] = x;
m_floats[1] = y;
m_floats[2] = z;
m_floats[3] = btScalar(0.);
}
void getSkewSymmetricMatrix(btVector3 * v0, btVector3 * v1, btVector3 * v2) const
{
v0->setValue(0., -z(), y());
v1->setValue(z(), 0., -x());
v2->setValue(-y(), x(), 0.);
}
void setZero()
{
setValue(btScalar(0.), btScalar(0.), btScalar(0.));
}
SIMD_FORCE_INLINE bool isZero() const
{
return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0);
}
SIMD_FORCE_INLINE bool fuzzyZero() const
{
return length2() < SIMD_EPSILON;
}
SIMD_FORCE_INLINE void serialize(struct btVector3Data & dataOut) const;
SIMD_FORCE_INLINE void deSerialize(const struct btVector3Data& dataIn);
SIMD_FORCE_INLINE void serializeFloat(struct btVector3FloatData & dataOut) const;
SIMD_FORCE_INLINE void deSerializeFloat(const struct btVector3FloatData& dataIn);
SIMD_FORCE_INLINE void serializeDouble(struct btVector3DoubleData & dataOut) const;
SIMD_FORCE_INLINE void deSerializeDouble(const struct btVector3DoubleData& dataIn);
};
/**@brief Return the sum of two vectors (Point symantics)*/
SIMD_FORCE_INLINE btVector3
operator+(const btVector3& v1, const btVector3& v2)
{
return btVector3(v1.m_floats[0] + v2.m_floats[0], v1.m_floats[1] + v2.m_floats[1], v1.m_floats[2] + v2.m_floats[2]);
}
/**@brief Return the elementwise product of two vectors */
SIMD_FORCE_INLINE btVector3
operator*(const btVector3& v1, const btVector3& v2)
{
return btVector3(v1.m_floats[0] * v2.m_floats[0], v1.m_floats[1] * v2.m_floats[1], v1.m_floats[2] * v2.m_floats[2]);
}
/**@brief Return the difference between two vectors */
SIMD_FORCE_INLINE btVector3
operator-(const btVector3& v1, const btVector3& v2)
{
return btVector3(v1.m_floats[0] - v2.m_floats[0], v1.m_floats[1] - v2.m_floats[1], v1.m_floats[2] - v2.m_floats[2]);
}
/**@brief Return the negative of the vector */
SIMD_FORCE_INLINE btVector3
operator-(const btVector3& v)
{
return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]);
}
/**@brief Return the vector scaled by s */
SIMD_FORCE_INLINE btVector3
operator*(const btVector3& v, const btScalar& s)
{
return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s);
}
/**@brief Return the vector scaled by s */
SIMD_FORCE_INLINE btVector3
operator*(const btScalar& s, const btVector3& v)
{
return v * s;
}
/**@brief Return the vector inversely scaled by s */
SIMD_FORCE_INLINE btVector3
operator/(const btVector3& v, const btScalar& s)
{
btFullAssert(s != btScalar(0.0));
return v * (btScalar(1.0) / s);
}
/**@brief Return the vector inversely scaled by s */
SIMD_FORCE_INLINE btVector3
operator/(const btVector3& v1, const btVector3& v2)
{
return btVector3(v1.m_floats[0] / v2.m_floats[0], v1.m_floats[1] / v2.m_floats[1], v1.m_floats[2] / v2.m_floats[2]);
}
/**@brief Return the dot product between two vectors */
SIMD_FORCE_INLINE btScalar
btDot(const btVector3& v1, const btVector3& v2)
{
return v1.dot(v2);
}
/**@brief Return the distance squared between two vectors */
SIMD_FORCE_INLINE btScalar
btDistance2(const btVector3& v1, const btVector3& v2)
{
return v1.distance2(v2);
}
/**@brief Return the distance between two vectors */
SIMD_FORCE_INLINE btScalar
btDistance(const btVector3& v1, const btVector3& v2)
{
return v1.distance(v2);
}
/**@brief Return the angle between two vectors */
SIMD_FORCE_INLINE btScalar
btAngle(const btVector3& v1, const btVector3& v2)
{
return v1.angle(v2);
}
/**@brief Return the cross product of two vectors */
SIMD_FORCE_INLINE btVector3
btCross(const btVector3& v1, const btVector3& v2)
{
return v1.cross(v2);
}
SIMD_FORCE_INLINE btScalar
btTriple(const btVector3& v1, const btVector3& v2, const btVector3& v3)
{
return v1.triple(v2, v3);
}
/**@brief Return the linear interpolation between two vectors
* @param v1 One vector
* @param v2 The other vector
* @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */
SIMD_FORCE_INLINE btVector3
lerp(const btVector3& v1, const btVector3& v2, const btScalar& t)
{
return v1.lerp(v2, t);
}
SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const
{
return (v - *this).length2();
}
SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3& v) const
{
return (v - *this).length();
}
SIMD_FORCE_INLINE btVector3 btVector3::normalized() const
{
return *this / length();
}
SIMD_FORCE_INLINE btVector3 btVector3::rotate(const btVector3& wAxis, const btScalar angle) const
{
// wAxis must be a unit lenght vector
btVector3 o = wAxis * wAxis.dot(*this);
btVector3 x = *this - o;
btVector3 y;
y = wAxis.cross(*this);
return (o + x * btCos(angle) + y * btSin(angle));
}
class btVector4 : public btVector3 {
public:
SIMD_FORCE_INLINE btVector4() {}
SIMD_FORCE_INLINE btVector4(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w)
: btVector3(x, y, z)
{
m_floats[3] = w;
}
SIMD_FORCE_INLINE btVector4 absolute4() const
{
return btVector4(
btFabs(m_floats[0]),
btFabs(m_floats[1]),
btFabs(m_floats[2]),
btFabs(m_floats[3]));
}
btScalar getW() const { return m_floats[3]; }
SIMD_FORCE_INLINE int32_t maxAxis4() const
{
int32_t maxIndex = -1;
btScalar maxVal = btScalar(-BT_LARGE_FLOAT);
if (m_floats[0] > maxVal) {
maxIndex = 0;
maxVal = m_floats[0];
}
if (m_floats[1] > maxVal) {
maxIndex = 1;
maxVal = m_floats[1];
}
if (m_floats[2] > maxVal) {
maxIndex = 2;
maxVal = m_floats[2];
}
if (m_floats[3] > maxVal) {
maxIndex = 3;
}
return maxIndex;
}
SIMD_FORCE_INLINE int32_t minAxis4() const
{
int32_t minIndex = -1;
btScalar minVal = btScalar(BT_LARGE_FLOAT);
if (m_floats[0] < minVal) {
minIndex = 0;
minVal = m_floats[0];
}
if (m_floats[1] < minVal) {
minIndex = 1;
minVal = m_floats[1];
}
if (m_floats[2] < minVal) {
minIndex = 2;
minVal = m_floats[2];
}
if (m_floats[3] < minVal) {
minIndex = 3;
}
return minIndex;
}
SIMD_FORCE_INLINE int32_t closestAxis4() const
{
return absolute4().maxAxis4();
}
/**@brief Set x,y,z and zero w
* @param x Value of x
* @param y Value of y
* @param z Value of z
*/
/* void getValue(btScalar *m) const
{
m[0] = m_floats[0];
m[1] = m_floats[1];
m[2] =m_floats[2];
}
*/
/**@brief Set the values
* @param x Value of x
* @param y Value of y
* @param z Value of z
* @param w Value of w
*/
SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w)
{
m_floats[0] = x;
m_floats[1] = y;
m_floats[2] = z;
m_floats[3] = w;
}
};
///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal)
{
#ifdef BT_USE_DOUBLE_PRECISION
unsigned char* dest = (unsigned char*)&destVal;
unsigned char* src = (unsigned char*)&sourceVal;
dest[0] = src[7];
dest[1] = src[6];
dest[2] = src[5];
dest[3] = src[4];
dest[4] = src[3];
dest[5] = src[2];
dest[6] = src[1];
dest[7] = src[0];
#else
unsigned char* dest = (unsigned char*)&destVal;
unsigned char* src = (unsigned char*)&sourceVal;
dest[0] = src[3];
dest[1] = src[2];
dest[2] = src[1];
dest[3] = src[0];
#endif //BT_USE_DOUBLE_PRECISION
}
///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec)
{
for (int32_t i = 0; i < 4; i++) {
btSwapScalarEndian(sourceVec[i], destVec[i]);
}
}
///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3& vector)
{
btVector3 swappedVec;
for (int32_t i = 0; i < 4; i++) {
btSwapScalarEndian(vector[i], swappedVec[i]);
}
vector = swappedVec;
}
template <class T>
SIMD_FORCE_INLINE void btPlaneSpace1(const T& n, T& p, T& q)
{
if (btFabs(n[2]) > SIMDSQRT12) {
// choose p in y-z plane
btScalar a = n[1] * n[1] + n[2] * n[2];
btScalar k = btRecipSqrt(a);
p[0] = 0;
p[1] = -n[2] * k;
p[2] = n[1] * k;
// set q = n x p
q[0] = a * k;
q[1] = -n[0] * p[2];
q[2] = n[0] * p[1];
}
else {
// choose p in x-y plane
btScalar a = n[0] * n[0] + n[1] * n[1];
btScalar k = btRecipSqrt(a);
p[0] = -n[1] * k;
p[1] = n[0] * k;
p[2] = 0;
// set q = n x p
q[0] = -n[2] * p[1];
q[1] = n[2] * p[0];
q[2] = a * k;
}
}
struct btVector3FloatData {
float m_floats[4];
};
struct btVector3DoubleData {
double m_floats[4];
};
SIMD_FORCE_INLINE void btVector3::serializeFloat(struct btVector3FloatData& dataOut) const
{
///could also do a memcpy, check if it is worth it
for (int32_t i = 0; i < 4; i++)
dataOut.m_floats[i] = float(m_floats[i]);
}
SIMD_FORCE_INLINE void btVector3::deSerializeFloat(const struct btVector3FloatData& dataIn)
{
for (int32_t i = 0; i < 4; i++)
m_floats[i] = btScalar(dataIn.m_floats[i]);
}
SIMD_FORCE_INLINE void btVector3::serializeDouble(struct btVector3DoubleData& dataOut) const
{
///could also do a memcpy, check if it is worth it
for (int32_t i = 0; i < 4; i++)
dataOut.m_floats[i] = double(m_floats[i]);
}
SIMD_FORCE_INLINE void btVector3::deSerializeDouble(const struct btVector3DoubleData& dataIn)
{
for (int32_t i = 0; i < 4; i++)
m_floats[i] = btScalar(dataIn.m_floats[i]);
}
SIMD_FORCE_INLINE void btVector3::serialize(struct btVector3Data& dataOut) const
{
///could also do a memcpy, check if it is worth it
for (int32_t i = 0; i < 4; i++)
dataOut.m_floats[i] = m_floats[i];
}
SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3Data& dataIn)
{
for (int32_t i = 0; i < 4; i++)
m_floats[i] = dataIn.m_floats[i];
}
// -- GODOT start --
}; // namespace VHACD
// -- GODOT end --
#endif //BT_VECTOR3_H