939 lines
28 KiB
C
939 lines
28 KiB
C
// Copyright 2011 Google Inc. All Rights Reserved.
|
|
//
|
|
// This code is licensed under the same terms as WebM:
|
|
// Software License Agreement: http://www.webmproject.org/license/software/
|
|
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// frame coding and analysis
|
|
//
|
|
// Author: Skal (pascal.massimino@gmail.com)
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "./vp8enci.h"
|
|
#include "./cost.h"
|
|
|
|
#if defined(__cplusplus) || defined(c_plusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define SEGMENT_VISU 0
|
|
#define DEBUG_SEARCH 0 // useful to track search convergence
|
|
|
|
// On-the-fly info about the current set of residuals. Handy to avoid
|
|
// passing zillions of params.
|
|
typedef struct {
|
|
int first;
|
|
int last;
|
|
const int16_t* coeffs;
|
|
|
|
int coeff_type;
|
|
ProbaArray* prob;
|
|
StatsArray* stats;
|
|
CostArray* cost;
|
|
} VP8Residual;
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Tables for level coding
|
|
|
|
const uint8_t VP8EncBands[16 + 1] = {
|
|
0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7,
|
|
0 // sentinel
|
|
};
|
|
|
|
static const uint8_t kCat3[] = { 173, 148, 140 };
|
|
static const uint8_t kCat4[] = { 176, 155, 140, 135 };
|
|
static const uint8_t kCat5[] = { 180, 157, 141, 134, 130 };
|
|
static const uint8_t kCat6[] =
|
|
{ 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129 };
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Reset the statistics about: number of skips, token proba, level cost,...
|
|
|
|
static void ResetStats(VP8Encoder* const enc) {
|
|
VP8Proba* const proba = &enc->proba_;
|
|
VP8CalculateLevelCosts(proba);
|
|
proba->nb_skip_ = 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Skip decision probability
|
|
|
|
#define SKIP_PROBA_THRESHOLD 250 // value below which using skip_proba is OK.
|
|
|
|
static int CalcSkipProba(uint64_t nb, uint64_t total) {
|
|
return (int)(total ? (total - nb) * 255 / total : 255);
|
|
}
|
|
|
|
// Returns the bit-cost for coding the skip probability.
|
|
static int FinalizeSkipProba(VP8Encoder* const enc) {
|
|
VP8Proba* const proba = &enc->proba_;
|
|
const int nb_mbs = enc->mb_w_ * enc->mb_h_;
|
|
const int nb_events = proba->nb_skip_;
|
|
int size;
|
|
proba->skip_proba_ = CalcSkipProba(nb_events, nb_mbs);
|
|
proba->use_skip_proba_ = (proba->skip_proba_ < SKIP_PROBA_THRESHOLD);
|
|
size = 256; // 'use_skip_proba' bit
|
|
if (proba->use_skip_proba_) {
|
|
size += nb_events * VP8BitCost(1, proba->skip_proba_)
|
|
+ (nb_mbs - nb_events) * VP8BitCost(0, proba->skip_proba_);
|
|
size += 8 * 256; // cost of signaling the skip_proba_ itself.
|
|
}
|
|
return size;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Recording of token probabilities.
|
|
|
|
static void ResetTokenStats(VP8Encoder* const enc) {
|
|
VP8Proba* const proba = &enc->proba_;
|
|
memset(proba->stats_, 0, sizeof(proba->stats_));
|
|
}
|
|
|
|
// Record proba context used
|
|
static int Record(int bit, proba_t* const stats) {
|
|
proba_t p = *stats;
|
|
if (p >= 0xffff0000u) { // an overflow is inbound.
|
|
p = ((p + 1u) >> 1) & 0x7fff7fffu; // -> divide the stats by 2.
|
|
}
|
|
// record bit count (lower 16 bits) and increment total count (upper 16 bits).
|
|
p += 0x00010000u + bit;
|
|
*stats = p;
|
|
return bit;
|
|
}
|
|
|
|
// We keep the table free variant around for reference, in case.
|
|
#define USE_LEVEL_CODE_TABLE
|
|
|
|
// Simulate block coding, but only record statistics.
|
|
// Note: no need to record the fixed probas.
|
|
static int RecordCoeffs(int ctx, const VP8Residual* const res) {
|
|
int n = res->first;
|
|
proba_t* s = res->stats[VP8EncBands[n]][ctx];
|
|
if (res->last < 0) {
|
|
Record(0, s + 0);
|
|
return 0;
|
|
}
|
|
while (n <= res->last) {
|
|
int v;
|
|
Record(1, s + 0);
|
|
while ((v = res->coeffs[n++]) == 0) {
|
|
Record(0, s + 1);
|
|
s = res->stats[VP8EncBands[n]][0];
|
|
}
|
|
Record(1, s + 1);
|
|
if (!Record(2u < (unsigned int)(v + 1), s + 2)) { // v = -1 or 1
|
|
s = res->stats[VP8EncBands[n]][1];
|
|
} else {
|
|
v = abs(v);
|
|
#if !defined(USE_LEVEL_CODE_TABLE)
|
|
if (!Record(v > 4, s + 3)) {
|
|
if (Record(v != 2, s + 4))
|
|
Record(v == 4, s + 5);
|
|
} else if (!Record(v > 10, s + 6)) {
|
|
Record(v > 6, s + 7);
|
|
} else if (!Record((v >= 3 + (8 << 2)), s + 8)) {
|
|
Record((v >= 3 + (8 << 1)), s + 9);
|
|
} else {
|
|
Record((v >= 3 + (8 << 3)), s + 10);
|
|
}
|
|
#else
|
|
if (v > MAX_VARIABLE_LEVEL)
|
|
v = MAX_VARIABLE_LEVEL;
|
|
|
|
{
|
|
const int bits = VP8LevelCodes[v - 1][1];
|
|
int pattern = VP8LevelCodes[v - 1][0];
|
|
int i;
|
|
for (i = 0; (pattern >>= 1) != 0; ++i) {
|
|
const int mask = 2 << i;
|
|
if (pattern & 1) Record(!!(bits & mask), s + 3 + i);
|
|
}
|
|
}
|
|
#endif
|
|
s = res->stats[VP8EncBands[n]][2];
|
|
}
|
|
}
|
|
if (n < 16) Record(0, s + 0);
|
|
return 1;
|
|
}
|
|
|
|
// Collect statistics and deduce probabilities for next coding pass.
|
|
// Return the total bit-cost for coding the probability updates.
|
|
static int CalcTokenProba(int nb, int total) {
|
|
assert(nb <= total);
|
|
return nb ? (255 - nb * 255 / total) : 255;
|
|
}
|
|
|
|
// Cost of coding 'nb' 1's and 'total-nb' 0's using 'proba' probability.
|
|
static int BranchCost(int nb, int total, int proba) {
|
|
return nb * VP8BitCost(1, proba) + (total - nb) * VP8BitCost(0, proba);
|
|
}
|
|
|
|
static int FinalizeTokenProbas(VP8Encoder* const enc) {
|
|
VP8Proba* const proba = &enc->proba_;
|
|
int has_changed = 0;
|
|
int size = 0;
|
|
int t, b, c, p;
|
|
for (t = 0; t < NUM_TYPES; ++t) {
|
|
for (b = 0; b < NUM_BANDS; ++b) {
|
|
for (c = 0; c < NUM_CTX; ++c) {
|
|
for (p = 0; p < NUM_PROBAS; ++p) {
|
|
const proba_t stats = proba->stats_[t][b][c][p];
|
|
const int nb = (stats >> 0) & 0xffff;
|
|
const int total = (stats >> 16) & 0xffff;
|
|
const int update_proba = VP8CoeffsUpdateProba[t][b][c][p];
|
|
const int old_p = VP8CoeffsProba0[t][b][c][p];
|
|
const int new_p = CalcTokenProba(nb, total);
|
|
const int old_cost = BranchCost(nb, total, old_p)
|
|
+ VP8BitCost(0, update_proba);
|
|
const int new_cost = BranchCost(nb, total, new_p)
|
|
+ VP8BitCost(1, update_proba)
|
|
+ 8 * 256;
|
|
const int use_new_p = (old_cost > new_cost);
|
|
size += VP8BitCost(use_new_p, update_proba);
|
|
if (use_new_p) { // only use proba that seem meaningful enough.
|
|
proba->coeffs_[t][b][c][p] = new_p;
|
|
has_changed |= (new_p != old_p);
|
|
size += 8 * 256;
|
|
} else {
|
|
proba->coeffs_[t][b][c][p] = old_p;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
proba->dirty_ = has_changed;
|
|
return size;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// helper functions for residuals struct VP8Residual.
|
|
|
|
static void InitResidual(int first, int coeff_type,
|
|
VP8Encoder* const enc, VP8Residual* const res) {
|
|
res->coeff_type = coeff_type;
|
|
res->prob = enc->proba_.coeffs_[coeff_type];
|
|
res->stats = enc->proba_.stats_[coeff_type];
|
|
res->cost = enc->proba_.level_cost_[coeff_type];
|
|
res->first = first;
|
|
}
|
|
|
|
static void SetResidualCoeffs(const int16_t* const coeffs,
|
|
VP8Residual* const res) {
|
|
int n;
|
|
res->last = -1;
|
|
for (n = 15; n >= res->first; --n) {
|
|
if (coeffs[n]) {
|
|
res->last = n;
|
|
break;
|
|
}
|
|
}
|
|
res->coeffs = coeffs;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Mode costs
|
|
|
|
static int GetResidualCost(int ctx, const VP8Residual* const res) {
|
|
int n = res->first;
|
|
int p0 = res->prob[VP8EncBands[n]][ctx][0];
|
|
const uint16_t* t = res->cost[VP8EncBands[n]][ctx];
|
|
int cost;
|
|
|
|
if (res->last < 0) {
|
|
return VP8BitCost(0, p0);
|
|
}
|
|
cost = 0;
|
|
while (n <= res->last) {
|
|
const int v = res->coeffs[n];
|
|
const int b = VP8EncBands[n + 1];
|
|
++n;
|
|
if (v == 0) {
|
|
// short-case for VP8LevelCost(t, 0) (note: VP8LevelFixedCosts[0] == 0):
|
|
cost += t[0];
|
|
t = res->cost[b][0];
|
|
continue;
|
|
}
|
|
cost += VP8BitCost(1, p0);
|
|
if (2u >= (unsigned int)(v + 1)) { // v = -1 or 1
|
|
// short-case for "VP8LevelCost(t, 1)" (256 is VP8LevelFixedCosts[1]):
|
|
cost += 256 + t[1];
|
|
p0 = res->prob[b][1][0];
|
|
t = res->cost[b][1];
|
|
} else {
|
|
cost += VP8LevelCost(t, abs(v));
|
|
p0 = res->prob[b][2][0];
|
|
t = res->cost[b][2];
|
|
}
|
|
}
|
|
if (n < 16) cost += VP8BitCost(0, p0);
|
|
return cost;
|
|
}
|
|
|
|
int VP8GetCostLuma4(VP8EncIterator* const it, const int16_t levels[16]) {
|
|
const int x = (it->i4_ & 3), y = (it->i4_ >> 2);
|
|
VP8Residual res;
|
|
VP8Encoder* const enc = it->enc_;
|
|
int R = 0;
|
|
int ctx;
|
|
|
|
InitResidual(0, 3, enc, &res);
|
|
ctx = it->top_nz_[x] + it->left_nz_[y];
|
|
SetResidualCoeffs(levels, &res);
|
|
R += GetResidualCost(ctx, &res);
|
|
return R;
|
|
}
|
|
|
|
int VP8GetCostLuma16(VP8EncIterator* const it, const VP8ModeScore* const rd) {
|
|
VP8Residual res;
|
|
VP8Encoder* const enc = it->enc_;
|
|
int x, y;
|
|
int R = 0;
|
|
|
|
VP8IteratorNzToBytes(it); // re-import the non-zero context
|
|
|
|
// DC
|
|
InitResidual(0, 1, enc, &res);
|
|
SetResidualCoeffs(rd->y_dc_levels, &res);
|
|
R += GetResidualCost(it->top_nz_[8] + it->left_nz_[8], &res);
|
|
|
|
// AC
|
|
InitResidual(1, 0, enc, &res);
|
|
for (y = 0; y < 4; ++y) {
|
|
for (x = 0; x < 4; ++x) {
|
|
const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
|
SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
|
|
R += GetResidualCost(ctx, &res);
|
|
it->top_nz_[x] = it->left_nz_[y] = (res.last >= 0);
|
|
}
|
|
}
|
|
return R;
|
|
}
|
|
|
|
int VP8GetCostUV(VP8EncIterator* const it, const VP8ModeScore* const rd) {
|
|
VP8Residual res;
|
|
VP8Encoder* const enc = it->enc_;
|
|
int ch, x, y;
|
|
int R = 0;
|
|
|
|
VP8IteratorNzToBytes(it); // re-import the non-zero context
|
|
|
|
InitResidual(0, 2, enc, &res);
|
|
for (ch = 0; ch <= 2; ch += 2) {
|
|
for (y = 0; y < 2; ++y) {
|
|
for (x = 0; x < 2; ++x) {
|
|
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
|
|
SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
|
|
R += GetResidualCost(ctx, &res);
|
|
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = (res.last >= 0);
|
|
}
|
|
}
|
|
}
|
|
return R;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Coefficient coding
|
|
|
|
static int PutCoeffs(VP8BitWriter* const bw, int ctx, const VP8Residual* res) {
|
|
int n = res->first;
|
|
const uint8_t* p = res->prob[VP8EncBands[n]][ctx];
|
|
if (!VP8PutBit(bw, res->last >= 0, p[0])) {
|
|
return 0;
|
|
}
|
|
|
|
while (n < 16) {
|
|
const int c = res->coeffs[n++];
|
|
const int sign = c < 0;
|
|
int v = sign ? -c : c;
|
|
if (!VP8PutBit(bw, v != 0, p[1])) {
|
|
p = res->prob[VP8EncBands[n]][0];
|
|
continue;
|
|
}
|
|
if (!VP8PutBit(bw, v > 1, p[2])) {
|
|
p = res->prob[VP8EncBands[n]][1];
|
|
} else {
|
|
if (!VP8PutBit(bw, v > 4, p[3])) {
|
|
if (VP8PutBit(bw, v != 2, p[4]))
|
|
VP8PutBit(bw, v == 4, p[5]);
|
|
} else if (!VP8PutBit(bw, v > 10, p[6])) {
|
|
if (!VP8PutBit(bw, v > 6, p[7])) {
|
|
VP8PutBit(bw, v == 6, 159);
|
|
} else {
|
|
VP8PutBit(bw, v >= 9, 165);
|
|
VP8PutBit(bw, !(v & 1), 145);
|
|
}
|
|
} else {
|
|
int mask;
|
|
const uint8_t* tab;
|
|
if (v < 3 + (8 << 1)) { // kCat3 (3b)
|
|
VP8PutBit(bw, 0, p[8]);
|
|
VP8PutBit(bw, 0, p[9]);
|
|
v -= 3 + (8 << 0);
|
|
mask = 1 << 2;
|
|
tab = kCat3;
|
|
} else if (v < 3 + (8 << 2)) { // kCat4 (4b)
|
|
VP8PutBit(bw, 0, p[8]);
|
|
VP8PutBit(bw, 1, p[9]);
|
|
v -= 3 + (8 << 1);
|
|
mask = 1 << 3;
|
|
tab = kCat4;
|
|
} else if (v < 3 + (8 << 3)) { // kCat5 (5b)
|
|
VP8PutBit(bw, 1, p[8]);
|
|
VP8PutBit(bw, 0, p[10]);
|
|
v -= 3 + (8 << 2);
|
|
mask = 1 << 4;
|
|
tab = kCat5;
|
|
} else { // kCat6 (11b)
|
|
VP8PutBit(bw, 1, p[8]);
|
|
VP8PutBit(bw, 1, p[10]);
|
|
v -= 3 + (8 << 3);
|
|
mask = 1 << 10;
|
|
tab = kCat6;
|
|
}
|
|
while (mask) {
|
|
VP8PutBit(bw, !!(v & mask), *tab++);
|
|
mask >>= 1;
|
|
}
|
|
}
|
|
p = res->prob[VP8EncBands[n]][2];
|
|
}
|
|
VP8PutBitUniform(bw, sign);
|
|
if (n == 16 || !VP8PutBit(bw, n <= res->last, p[0])) {
|
|
return 1; // EOB
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void CodeResiduals(VP8BitWriter* const bw,
|
|
VP8EncIterator* const it,
|
|
const VP8ModeScore* const rd) {
|
|
int x, y, ch;
|
|
VP8Residual res;
|
|
uint64_t pos1, pos2, pos3;
|
|
const int i16 = (it->mb_->type_ == 1);
|
|
const int segment = it->mb_->segment_;
|
|
VP8Encoder* const enc = it->enc_;
|
|
|
|
VP8IteratorNzToBytes(it);
|
|
|
|
pos1 = VP8BitWriterPos(bw);
|
|
if (i16) {
|
|
InitResidual(0, 1, enc, &res);
|
|
SetResidualCoeffs(rd->y_dc_levels, &res);
|
|
it->top_nz_[8] = it->left_nz_[8] =
|
|
PutCoeffs(bw, it->top_nz_[8] + it->left_nz_[8], &res);
|
|
InitResidual(1, 0, enc, &res);
|
|
} else {
|
|
InitResidual(0, 3, enc, &res);
|
|
}
|
|
|
|
// luma-AC
|
|
for (y = 0; y < 4; ++y) {
|
|
for (x = 0; x < 4; ++x) {
|
|
const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
|
SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
|
|
it->top_nz_[x] = it->left_nz_[y] = PutCoeffs(bw, ctx, &res);
|
|
}
|
|
}
|
|
pos2 = VP8BitWriterPos(bw);
|
|
|
|
// U/V
|
|
InitResidual(0, 2, enc, &res);
|
|
for (ch = 0; ch <= 2; ch += 2) {
|
|
for (y = 0; y < 2; ++y) {
|
|
for (x = 0; x < 2; ++x) {
|
|
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
|
|
SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
|
|
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
|
|
PutCoeffs(bw, ctx, &res);
|
|
}
|
|
}
|
|
}
|
|
pos3 = VP8BitWriterPos(bw);
|
|
it->luma_bits_ = pos2 - pos1;
|
|
it->uv_bits_ = pos3 - pos2;
|
|
it->bit_count_[segment][i16] += it->luma_bits_;
|
|
it->bit_count_[segment][2] += it->uv_bits_;
|
|
VP8IteratorBytesToNz(it);
|
|
}
|
|
|
|
// Same as CodeResiduals, but doesn't actually write anything.
|
|
// Instead, it just records the event distribution.
|
|
static void RecordResiduals(VP8EncIterator* const it,
|
|
const VP8ModeScore* const rd) {
|
|
int x, y, ch;
|
|
VP8Residual res;
|
|
VP8Encoder* const enc = it->enc_;
|
|
|
|
VP8IteratorNzToBytes(it);
|
|
|
|
if (it->mb_->type_ == 1) { // i16x16
|
|
InitResidual(0, 1, enc, &res);
|
|
SetResidualCoeffs(rd->y_dc_levels, &res);
|
|
it->top_nz_[8] = it->left_nz_[8] =
|
|
RecordCoeffs(it->top_nz_[8] + it->left_nz_[8], &res);
|
|
InitResidual(1, 0, enc, &res);
|
|
} else {
|
|
InitResidual(0, 3, enc, &res);
|
|
}
|
|
|
|
// luma-AC
|
|
for (y = 0; y < 4; ++y) {
|
|
for (x = 0; x < 4; ++x) {
|
|
const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
|
SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
|
|
it->top_nz_[x] = it->left_nz_[y] = RecordCoeffs(ctx, &res);
|
|
}
|
|
}
|
|
|
|
// U/V
|
|
InitResidual(0, 2, enc, &res);
|
|
for (ch = 0; ch <= 2; ch += 2) {
|
|
for (y = 0; y < 2; ++y) {
|
|
for (x = 0; x < 2; ++x) {
|
|
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
|
|
SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
|
|
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
|
|
RecordCoeffs(ctx, &res);
|
|
}
|
|
}
|
|
}
|
|
|
|
VP8IteratorBytesToNz(it);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Token buffer
|
|
|
|
#ifdef USE_TOKEN_BUFFER
|
|
|
|
void VP8TBufferInit(VP8TBuffer* const b) {
|
|
b->rows_ = NULL;
|
|
b->tokens_ = NULL;
|
|
b->last_ = &b->rows_;
|
|
b->left_ = 0;
|
|
b->error_ = 0;
|
|
}
|
|
|
|
int VP8TBufferNewPage(VP8TBuffer* const b) {
|
|
VP8Tokens* const page = b->error_ ? NULL : (VP8Tokens*)malloc(sizeof(*page));
|
|
if (page == NULL) {
|
|
b->error_ = 1;
|
|
return 0;
|
|
}
|
|
*b->last_ = page;
|
|
b->last_ = &page->next_;
|
|
b->left_ = MAX_NUM_TOKEN;
|
|
b->tokens_ = page->tokens_;
|
|
return 1;
|
|
}
|
|
|
|
void VP8TBufferClear(VP8TBuffer* const b) {
|
|
if (b != NULL) {
|
|
const VP8Tokens* p = b->rows_;
|
|
while (p != NULL) {
|
|
const VP8Tokens* const next = p->next_;
|
|
free((void*)p);
|
|
p = next;
|
|
}
|
|
VP8TBufferInit(b);
|
|
}
|
|
}
|
|
|
|
int VP8EmitTokens(const VP8TBuffer* const b, VP8BitWriter* const bw,
|
|
const uint8_t* const probas) {
|
|
VP8Tokens* p = b->rows_;
|
|
if (b->error_) return 0;
|
|
while (p != NULL) {
|
|
const int N = (p->next_ == NULL) ? b->left_ : 0;
|
|
int n = MAX_NUM_TOKEN;
|
|
while (n-- > N) {
|
|
VP8PutBit(bw, (p->tokens_[n] >> 15) & 1, probas[p->tokens_[n] & 0x7fff]);
|
|
}
|
|
p = p->next_;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#define TOKEN_ID(b, ctx, p) ((p) + NUM_PROBAS * ((ctx) + (b) * NUM_CTX))
|
|
|
|
static int RecordCoeffTokens(int ctx, const VP8Residual* const res,
|
|
VP8TBuffer* tokens) {
|
|
int n = res->first;
|
|
int b = VP8EncBands[n];
|
|
if (!VP8AddToken(tokens, res->last >= 0, TOKEN_ID(b, ctx, 0))) {
|
|
return 0;
|
|
}
|
|
|
|
while (n < 16) {
|
|
const int c = res->coeffs[n++];
|
|
const int sign = c < 0;
|
|
int v = sign ? -c : c;
|
|
const int base_id = TOKEN_ID(b, ctx, 0);
|
|
if (!VP8AddToken(tokens, v != 0, base_id + 1)) {
|
|
b = VP8EncBands[n];
|
|
ctx = 0;
|
|
continue;
|
|
}
|
|
if (!VP8AddToken(tokens, v > 1, base_id + 2)) {
|
|
b = VP8EncBands[n];
|
|
ctx = 1;
|
|
} else {
|
|
if (!VP8AddToken(tokens, v > 4, base_id + 3)) {
|
|
if (VP8AddToken(tokens, v != 2, base_id + 4))
|
|
VP8AddToken(tokens, v == 4, base_id + 5);
|
|
} else if (!VP8AddToken(tokens, v > 10, base_id + 6)) {
|
|
if (!VP8AddToken(tokens, v > 6, base_id + 7)) {
|
|
// VP8AddToken(tokens, v == 6, 159);
|
|
} else {
|
|
// VP8AddToken(tokens, v >= 9, 165);
|
|
// VP8AddToken(tokens, !(v & 1), 145);
|
|
}
|
|
} else {
|
|
int mask;
|
|
const uint8_t* tab;
|
|
if (v < 3 + (8 << 1)) { // kCat3 (3b)
|
|
VP8AddToken(tokens, 0, base_id + 8);
|
|
VP8AddToken(tokens, 0, base_id + 9);
|
|
v -= 3 + (8 << 0);
|
|
mask = 1 << 2;
|
|
tab = kCat3;
|
|
} else if (v < 3 + (8 << 2)) { // kCat4 (4b)
|
|
VP8AddToken(tokens, 0, base_id + 8);
|
|
VP8AddToken(tokens, 1, base_id + 9);
|
|
v -= 3 + (8 << 1);
|
|
mask = 1 << 3;
|
|
tab = kCat4;
|
|
} else if (v < 3 + (8 << 3)) { // kCat5 (5b)
|
|
VP8AddToken(tokens, 1, base_id + 8);
|
|
VP8AddToken(tokens, 0, base_id + 10);
|
|
v -= 3 + (8 << 2);
|
|
mask = 1 << 4;
|
|
tab = kCat5;
|
|
} else { // kCat6 (11b)
|
|
VP8AddToken(tokens, 1, base_id + 8);
|
|
VP8AddToken(tokens, 1, base_id + 10);
|
|
v -= 3 + (8 << 3);
|
|
mask = 1 << 10;
|
|
tab = kCat6;
|
|
}
|
|
while (mask) {
|
|
// VP8AddToken(tokens, !!(v & mask), *tab++);
|
|
mask >>= 1;
|
|
}
|
|
}
|
|
ctx = 2;
|
|
}
|
|
b = VP8EncBands[n];
|
|
// VP8PutBitUniform(bw, sign);
|
|
if (n == 16 || !VP8AddToken(tokens, n <= res->last, TOKEN_ID(b, ctx, 0))) {
|
|
return 1; // EOB
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void RecordTokens(VP8EncIterator* const it,
|
|
const VP8ModeScore* const rd, VP8TBuffer tokens[2]) {
|
|
int x, y, ch;
|
|
VP8Residual res;
|
|
VP8Encoder* const enc = it->enc_;
|
|
|
|
VP8IteratorNzToBytes(it);
|
|
if (it->mb_->type_ == 1) { // i16x16
|
|
InitResidual(0, 1, enc, &res);
|
|
SetResidualCoeffs(rd->y_dc_levels, &res);
|
|
// TODO(skal): FIX -> it->top_nz_[8] = it->left_nz_[8] =
|
|
RecordCoeffTokens(it->top_nz_[8] + it->left_nz_[8], &res, &tokens[0]);
|
|
InitResidual(1, 0, enc, &res);
|
|
} else {
|
|
InitResidual(0, 3, enc, &res);
|
|
}
|
|
|
|
// luma-AC
|
|
for (y = 0; y < 4; ++y) {
|
|
for (x = 0; x < 4; ++x) {
|
|
const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
|
SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
|
|
it->top_nz_[x] = it->left_nz_[y] =
|
|
RecordCoeffTokens(ctx, &res, &tokens[0]);
|
|
}
|
|
}
|
|
|
|
// U/V
|
|
InitResidual(0, 2, enc, &res);
|
|
for (ch = 0; ch <= 2; ch += 2) {
|
|
for (y = 0; y < 2; ++y) {
|
|
for (x = 0; x < 2; ++x) {
|
|
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
|
|
SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
|
|
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
|
|
RecordCoeffTokens(ctx, &res, &tokens[1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // USE_TOKEN_BUFFER
|
|
|
|
//------------------------------------------------------------------------------
|
|
// ExtraInfo map / Debug function
|
|
|
|
#if SEGMENT_VISU
|
|
static void SetBlock(uint8_t* p, int value, int size) {
|
|
int y;
|
|
for (y = 0; y < size; ++y) {
|
|
memset(p, value, size);
|
|
p += BPS;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void ResetSSE(VP8Encoder* const enc) {
|
|
memset(enc->sse_, 0, sizeof(enc->sse_));
|
|
enc->sse_count_ = 0;
|
|
}
|
|
|
|
static void StoreSSE(const VP8EncIterator* const it) {
|
|
VP8Encoder* const enc = it->enc_;
|
|
const uint8_t* const in = it->yuv_in_;
|
|
const uint8_t* const out = it->yuv_out_;
|
|
// Note: not totally accurate at boundary. And doesn't include in-loop filter.
|
|
enc->sse_[0] += VP8SSE16x16(in + Y_OFF, out + Y_OFF);
|
|
enc->sse_[1] += VP8SSE8x8(in + U_OFF, out + U_OFF);
|
|
enc->sse_[2] += VP8SSE8x8(in + V_OFF, out + V_OFF);
|
|
enc->sse_count_ += 16 * 16;
|
|
}
|
|
|
|
static void StoreSideInfo(const VP8EncIterator* const it) {
|
|
VP8Encoder* const enc = it->enc_;
|
|
const VP8MBInfo* const mb = it->mb_;
|
|
WebPPicture* const pic = enc->pic_;
|
|
|
|
if (pic->stats != NULL) {
|
|
StoreSSE(it);
|
|
enc->block_count_[0] += (mb->type_ == 0);
|
|
enc->block_count_[1] += (mb->type_ == 1);
|
|
enc->block_count_[2] += (mb->skip_ != 0);
|
|
}
|
|
|
|
if (pic->extra_info != NULL) {
|
|
uint8_t* const info = &pic->extra_info[it->x_ + it->y_ * enc->mb_w_];
|
|
switch (pic->extra_info_type) {
|
|
case 1: *info = mb->type_; break;
|
|
case 2: *info = mb->segment_; break;
|
|
case 3: *info = enc->dqm_[mb->segment_].quant_; break;
|
|
case 4: *info = (mb->type_ == 1) ? it->preds_[0] : 0xff; break;
|
|
case 5: *info = mb->uv_mode_; break;
|
|
case 6: {
|
|
const int b = (int)((it->luma_bits_ + it->uv_bits_ + 7) >> 3);
|
|
*info = (b > 255) ? 255 : b; break;
|
|
}
|
|
default: *info = 0; break;
|
|
};
|
|
}
|
|
#if SEGMENT_VISU // visualize segments and prediction modes
|
|
SetBlock(it->yuv_out_ + Y_OFF, mb->segment_ * 64, 16);
|
|
SetBlock(it->yuv_out_ + U_OFF, it->preds_[0] * 64, 8);
|
|
SetBlock(it->yuv_out_ + V_OFF, mb->uv_mode_ * 64, 8);
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Main loops
|
|
//
|
|
// VP8EncLoop(): does the final bitstream coding.
|
|
|
|
static void ResetAfterSkip(VP8EncIterator* const it) {
|
|
if (it->mb_->type_ == 1) {
|
|
*it->nz_ = 0; // reset all predictors
|
|
it->left_nz_[8] = 0;
|
|
} else {
|
|
*it->nz_ &= (1 << 24); // preserve the dc_nz bit
|
|
}
|
|
}
|
|
|
|
int VP8EncLoop(VP8Encoder* const enc) {
|
|
int i, s, p;
|
|
int ok = 1;
|
|
VP8EncIterator it;
|
|
VP8ModeScore info;
|
|
const int dont_use_skip = !enc->proba_.use_skip_proba_;
|
|
const int rd_opt = enc->rd_opt_level_;
|
|
const int kAverageBytesPerMB = 5; // TODO: have a kTable[quality/10]
|
|
const int bytes_per_parts =
|
|
enc->mb_w_ * enc->mb_h_ * kAverageBytesPerMB / enc->num_parts_;
|
|
|
|
// Initialize the bit-writers
|
|
for (p = 0; p < enc->num_parts_; ++p) {
|
|
VP8BitWriterInit(enc->parts_ + p, bytes_per_parts);
|
|
}
|
|
|
|
ResetStats(enc);
|
|
ResetSSE(enc);
|
|
|
|
VP8IteratorInit(enc, &it);
|
|
VP8InitFilter(&it);
|
|
do {
|
|
VP8IteratorImport(&it);
|
|
// Warning! order is important: first call VP8Decimate() and
|
|
// *then* decide how to code the skip decision if there's one.
|
|
if (!VP8Decimate(&it, &info, rd_opt) || dont_use_skip) {
|
|
CodeResiduals(it.bw_, &it, &info);
|
|
} else { // reset predictors after a skip
|
|
ResetAfterSkip(&it);
|
|
}
|
|
#ifdef WEBP_EXPERIMENTAL_FEATURES
|
|
if (enc->use_layer_) {
|
|
VP8EncCodeLayerBlock(&it);
|
|
}
|
|
#endif
|
|
StoreSideInfo(&it);
|
|
VP8StoreFilterStats(&it);
|
|
VP8IteratorExport(&it);
|
|
ok = VP8IteratorProgress(&it, 20);
|
|
} while (ok && VP8IteratorNext(&it, it.yuv_out_));
|
|
|
|
if (ok) { // Finalize the partitions, check for extra errors.
|
|
for (p = 0; p < enc->num_parts_; ++p) {
|
|
VP8BitWriterFinish(enc->parts_ + p);
|
|
ok &= !enc->parts_[p].error_;
|
|
}
|
|
}
|
|
|
|
if (ok) { // All good. Finish up.
|
|
if (enc->pic_->stats) { // finalize byte counters...
|
|
for (i = 0; i <= 2; ++i) {
|
|
for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
|
|
enc->residual_bytes_[i][s] = (int)((it.bit_count_[s][i] + 7) >> 3);
|
|
}
|
|
}
|
|
}
|
|
VP8AdjustFilterStrength(&it); // ...and store filter stats.
|
|
} else {
|
|
// Something bad happened -> need to do some memory cleanup.
|
|
VP8EncFreeBitWriters(enc);
|
|
}
|
|
|
|
return ok;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// VP8StatLoop(): only collect statistics (number of skips, token usage, ...)
|
|
// This is used for deciding optimal probabilities. It also
|
|
// modifies the quantizer value if some target (size, PNSR)
|
|
// was specified.
|
|
|
|
#define kHeaderSizeEstimate (15 + 20 + 10) // TODO: fix better
|
|
|
|
static int OneStatPass(VP8Encoder* const enc, float q, int rd_opt, int nb_mbs,
|
|
float* const PSNR, int percent_delta) {
|
|
VP8EncIterator it;
|
|
uint64_t size = 0;
|
|
uint64_t distortion = 0;
|
|
const uint64_t pixel_count = nb_mbs * 384;
|
|
|
|
// Make sure the quality parameter is inside valid bounds
|
|
if (q < 0.) {
|
|
q = 0;
|
|
} else if (q > 100.) {
|
|
q = 100;
|
|
}
|
|
|
|
VP8SetSegmentParams(enc, q); // setup segment quantizations and filters
|
|
|
|
ResetStats(enc);
|
|
ResetTokenStats(enc);
|
|
|
|
VP8IteratorInit(enc, &it);
|
|
do {
|
|
VP8ModeScore info;
|
|
VP8IteratorImport(&it);
|
|
if (VP8Decimate(&it, &info, rd_opt)) {
|
|
// Just record the number of skips and act like skip_proba is not used.
|
|
enc->proba_.nb_skip_++;
|
|
}
|
|
RecordResiduals(&it, &info);
|
|
size += info.R;
|
|
distortion += info.D;
|
|
if (percent_delta && !VP8IteratorProgress(&it, percent_delta))
|
|
return 0;
|
|
} while (VP8IteratorNext(&it, it.yuv_out_) && --nb_mbs > 0);
|
|
size += FinalizeSkipProba(enc);
|
|
size += FinalizeTokenProbas(enc);
|
|
size += enc->segment_hdr_.size_;
|
|
size = ((size + 1024) >> 11) + kHeaderSizeEstimate;
|
|
|
|
if (PSNR) {
|
|
*PSNR = (float)(10.* log10(255. * 255. * pixel_count / distortion));
|
|
}
|
|
return (int)size;
|
|
}
|
|
|
|
// successive refinement increments.
|
|
static const int dqs[] = { 20, 15, 10, 8, 6, 4, 2, 1, 0 };
|
|
|
|
int VP8StatLoop(VP8Encoder* const enc) {
|
|
const int do_search =
|
|
(enc->config_->target_size > 0 || enc->config_->target_PSNR > 0);
|
|
const int fast_probe = (enc->method_ < 2 && !do_search);
|
|
float q = enc->config_->quality;
|
|
const int max_passes = enc->config_->pass;
|
|
const int task_percent = 20;
|
|
const int percent_per_pass = (task_percent + max_passes / 2) / max_passes;
|
|
const int final_percent = enc->percent_ + task_percent;
|
|
int pass;
|
|
int nb_mbs;
|
|
|
|
// Fast mode: quick analysis pass over few mbs. Better than nothing.
|
|
nb_mbs = enc->mb_w_ * enc->mb_h_;
|
|
if (fast_probe && nb_mbs > 100) nb_mbs = 100;
|
|
|
|
// No target size: just do several pass without changing 'q'
|
|
if (!do_search) {
|
|
for (pass = 0; pass < max_passes; ++pass) {
|
|
const int rd_opt = (enc->method_ > 2);
|
|
if (!OneStatPass(enc, q, rd_opt, nb_mbs, NULL, percent_per_pass)) {
|
|
return 0;
|
|
}
|
|
}
|
|
} else {
|
|
// binary search for a size close to target
|
|
for (pass = 0; pass < max_passes && (dqs[pass] > 0); ++pass) {
|
|
const int rd_opt = 1;
|
|
float PSNR;
|
|
int criterion;
|
|
const int size = OneStatPass(enc, q, rd_opt, nb_mbs, &PSNR,
|
|
percent_per_pass);
|
|
#if DEBUG_SEARCH
|
|
printf("#%d size=%d PSNR=%.2f q=%.2f\n", pass, size, PSNR, q);
|
|
#endif
|
|
if (!size) return 0;
|
|
if (enc->config_->target_PSNR > 0) {
|
|
criterion = (PSNR < enc->config_->target_PSNR);
|
|
} else {
|
|
criterion = (size < enc->config_->target_size);
|
|
}
|
|
// dichotomize
|
|
if (criterion) {
|
|
q += dqs[pass];
|
|
} else {
|
|
q -= dqs[pass];
|
|
}
|
|
}
|
|
}
|
|
return WebPReportProgress(enc->pic_, final_percent, &enc->percent_);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
#if defined(__cplusplus) || defined(c_plusplus)
|
|
} // extern "C"
|
|
#endif
|