995dcb610c
Took the opportunity to undo the Godot changed made to the
opus source. The opus module should eventually be built in its
own environment to avoid polluting others with too many include
dirs and defines.
TODO: Fix the platform/ stuff for opus.
(cherry picked from commit d9a291f641
)
speex module was only added while cherry-picking, as speex is removed
in the master branch but we don't want to break compatibility in 2.1.x.
Unbundling wasn't done as the module uses the internal speex_free,
so it would require some more work.
275 lines
16 KiB
C
275 lines
16 KiB
C
/***********************************************************************
|
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
|
names of specific contributors, may be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "SigProc_FIX.h"
|
|
#include "define.h"
|
|
#include "tuning_parameters.h"
|
|
#include "pitch.h"
|
|
|
|
#define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */
|
|
|
|
#define QA 25
|
|
#define N_BITS_HEAD_ROOM 2
|
|
#define MIN_RSHIFTS -16
|
|
#define MAX_RSHIFTS (32 - QA)
|
|
|
|
/* Compute reflection coefficients from input signal */
|
|
void silk_burg_modified_c(
|
|
opus_int32 *res_nrg, /* O Residual energy */
|
|
opus_int *res_nrg_Q, /* O Residual energy Q value */
|
|
opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
|
|
const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
|
|
const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
|
|
const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
|
|
const opus_int nb_subfr, /* I Number of subframes stacked in x */
|
|
const opus_int D, /* I Order */
|
|
int arch /* I Run-time architecture */
|
|
)
|
|
{
|
|
opus_int k, n, s, lz, rshifts, reached_max_gain;
|
|
opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
|
|
const opus_int16 *x_ptr;
|
|
opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ];
|
|
opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ];
|
|
opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ];
|
|
opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ];
|
|
opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ];
|
|
opus_int32 xcorr[ SILK_MAX_ORDER_LPC ];
|
|
opus_int64 C0_64;
|
|
|
|
silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
|
|
|
|
/* Compute autocorrelations, added over subframes */
|
|
C0_64 = silk_inner_prod16_aligned_64( x, x, subfr_length*nb_subfr, arch );
|
|
lz = silk_CLZ64(C0_64);
|
|
rshifts = 32 + 1 + N_BITS_HEAD_ROOM - lz;
|
|
if (rshifts > MAX_RSHIFTS) rshifts = MAX_RSHIFTS;
|
|
if (rshifts < MIN_RSHIFTS) rshifts = MIN_RSHIFTS;
|
|
|
|
if (rshifts > 0) {
|
|
C0 = (opus_int32)silk_RSHIFT64(C0_64, rshifts );
|
|
} else {
|
|
C0 = silk_LSHIFT32((opus_int32)C0_64, -rshifts );
|
|
}
|
|
|
|
CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
|
|
silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
|
|
if( rshifts > 0 ) {
|
|
for( s = 0; s < nb_subfr; s++ ) {
|
|
x_ptr = x + s * subfr_length;
|
|
for( n = 1; n < D + 1; n++ ) {
|
|
C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
|
|
silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n, arch ), rshifts );
|
|
}
|
|
}
|
|
} else {
|
|
for( s = 0; s < nb_subfr; s++ ) {
|
|
int i;
|
|
opus_int32 d;
|
|
x_ptr = x + s * subfr_length;
|
|
celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch );
|
|
for( n = 1; n < D + 1; n++ ) {
|
|
for ( i = n + subfr_length - D, d = 0; i < subfr_length; i++ )
|
|
d = MAC16_16( d, x_ptr[ i ], x_ptr[ i - n ] );
|
|
xcorr[ n - 1 ] += d;
|
|
}
|
|
for( n = 1; n < D + 1; n++ ) {
|
|
C_first_row[ n - 1 ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts );
|
|
}
|
|
}
|
|
}
|
|
silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
|
|
|
|
/* Initialize */
|
|
CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
|
|
|
|
invGain_Q30 = (opus_int32)1 << 30;
|
|
reached_max_gain = 0;
|
|
for( n = 0; n < D; n++ ) {
|
|
/* Update first row of correlation matrix (without first element) */
|
|
/* Update last row of correlation matrix (without last element, stored in reversed order) */
|
|
/* Update C * Af */
|
|
/* Update C * flipud(Af) (stored in reversed order) */
|
|
if( rshifts > -2 ) {
|
|
for( s = 0; s < nb_subfr; s++ ) {
|
|
x_ptr = x + s * subfr_length;
|
|
x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */
|
|
x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts) */
|
|
tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */
|
|
tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */
|
|
for( k = 0; k < n; k++ ) {
|
|
C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
|
|
C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
|
|
Atmp_QA = Af_QA[ k ];
|
|
tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */
|
|
tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */
|
|
}
|
|
tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */
|
|
tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */
|
|
for( k = 0; k <= n; k++ ) {
|
|
CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */
|
|
CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */
|
|
}
|
|
}
|
|
} else {
|
|
for( s = 0; s < nb_subfr; s++ ) {
|
|
x_ptr = x + s * subfr_length;
|
|
x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */
|
|
x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */
|
|
tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */
|
|
tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */
|
|
for( k = 0; k < n; k++ ) {
|
|
C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
|
|
C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
|
|
Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */
|
|
tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */
|
|
tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */
|
|
}
|
|
tmp1 = -tmp1; /* Q17 */
|
|
tmp2 = -tmp2; /* Q17 */
|
|
for( k = 0; k <= n; k++ ) {
|
|
CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
|
|
silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */
|
|
CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
|
|
silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
|
|
tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */
|
|
tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */
|
|
num = 0; /* Q( -rshifts ) */
|
|
nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */
|
|
for( k = 0; k < n; k++ ) {
|
|
Atmp_QA = Af_QA[ k ];
|
|
lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
|
|
lz = silk_min( 32 - QA, lz );
|
|
Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */
|
|
|
|
tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
|
|
tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
|
|
num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
|
|
nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
|
|
Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */
|
|
}
|
|
CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */
|
|
CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */
|
|
num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */
|
|
num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */
|
|
|
|
/* Calculate the next order reflection (parcor) coefficient */
|
|
if( silk_abs( num ) < nrg ) {
|
|
rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
|
|
} else {
|
|
rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN;
|
|
}
|
|
|
|
/* Update inverse prediction gain */
|
|
tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
|
|
tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 );
|
|
if( tmp1 <= minInvGain_Q30 ) {
|
|
/* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
|
|
tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */
|
|
rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */
|
|
/* Newton-Raphson iteration */
|
|
rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */
|
|
rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */
|
|
if( num < 0 ) {
|
|
/* Ensure adjusted reflection coefficients has the original sign */
|
|
rc_Q31 = -rc_Q31;
|
|
}
|
|
invGain_Q30 = minInvGain_Q30;
|
|
reached_max_gain = 1;
|
|
} else {
|
|
invGain_Q30 = tmp1;
|
|
}
|
|
|
|
/* Update the AR coefficients */
|
|
for( k = 0; k < (n + 1) >> 1; k++ ) {
|
|
tmp1 = Af_QA[ k ]; /* QA */
|
|
tmp2 = Af_QA[ n - k - 1 ]; /* QA */
|
|
Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */
|
|
Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */
|
|
}
|
|
Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */
|
|
|
|
if( reached_max_gain ) {
|
|
/* Reached max prediction gain; set remaining coefficients to zero and exit loop */
|
|
for( k = n + 1; k < D; k++ ) {
|
|
Af_QA[ k ] = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Update C * Af and C * Ab */
|
|
for( k = 0; k <= n + 1; k++ ) {
|
|
tmp1 = CAf[ k ]; /* Q( -rshifts ) */
|
|
tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */
|
|
CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */
|
|
CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */
|
|
}
|
|
}
|
|
|
|
if( reached_max_gain ) {
|
|
for( k = 0; k < D; k++ ) {
|
|
/* Scale coefficients */
|
|
A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
|
|
}
|
|
/* Subtract energy of preceding samples from C0 */
|
|
if( rshifts > 0 ) {
|
|
for( s = 0; s < nb_subfr; s++ ) {
|
|
x_ptr = x + s * subfr_length;
|
|
C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D, arch ), rshifts );
|
|
}
|
|
} else {
|
|
for( s = 0; s < nb_subfr; s++ ) {
|
|
x_ptr = x + s * subfr_length;
|
|
C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D, arch), -rshifts);
|
|
}
|
|
}
|
|
/* Approximate residual energy */
|
|
*res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
|
|
*res_nrg_Q = -rshifts;
|
|
} else {
|
|
/* Return residual energy */
|
|
nrg = CAf[ 0 ]; /* Q( -rshifts ) */
|
|
tmp1 = (opus_int32)1 << 16; /* Q16 */
|
|
for( k = 0; k < D; k++ ) {
|
|
Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */
|
|
nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */
|
|
tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */
|
|
A_Q16[ k ] = -Atmp1;
|
|
}
|
|
*res_nrg = silk_SMLAWW( nrg, silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ), -tmp1 );/* Q( -rshifts ) */
|
|
*res_nrg_Q = -rshifts;
|
|
}
|
|
}
|